Если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник- описанным около этой окружности.
В любой треугольник можно вписать окружность. Центром вписанной окружности (точка $О$) является точка пересечения биссектрис внутренних углов треугольника.
$OD$ – это радиус $(r)$ вписанной окружности
$r={2S_{ABC}}/{a+b+c}$
Площадь треугольника равна произведению его полупериметра на радиус вписанной окружности.
$S={P∙r}/{2}$
В равнобедренном треугольнике вписанная окружность точкой касания делит основание пополам
В равностороннем треугольнике радиус вписанной окружности равен трети высоты данного треугольника.
$r={h}/{3}$
В прямоугольном треугольнике радиус вписанной окружности равен:
$r={a+b-c}/{2}$, где $а$ и $b$ – это катеты, $с$ – гипотенуза.
Пример:
В прямоугольном треугольнике $АВС$ катет и гипотенуза соответственно равны $8$ и $10$. Найдите радиус окружности, вписанной в этот треугольник.
Решение:
В прямоугольном треугольнике радиус вписанной окружности равен:
$r={a+b-c}/{2}$, где $а$ и $b$ – это катеты, $с$ – гипотенуза.
Нам неизвестен один из катетов, найдем его по теореме Пифагора:
$a^2+b^2=c^2$
$8^2+b^2=10^2$
$64+b^2=100$
$b^2=100-64$
$b^2=36$
$b=6$
Теперь подставим все величины в формулу нахождения радиуса вписанной окружности в прямоугольном треугольнике:
$r={6+8-10}/{2}={4}/{2}=2$
Ответ: $2$
Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.
$АВ+CD=BC+AD$
В трапеции и ромбе центр вписанной окружности лежит в точке пересечения биссектрис внутренних углов, радиус вписанной окружности равен половине высоты.
$r={h}/{2}$
В квадрате радиус вписанной окружности равен половине стороны.
$r={a}/{2}$
Площадь любого многоугольника можно найти как произведение полупериметра на радиус вписанной окружности.
$S={P∙r}/{2}$
Если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник- вписанным в эту окружность.
Около любого треугольника можно описать окружность, причем только одну. Центром описанной окружности является точка $(О)$ пересечения серединных перпендикуляров к сторонам треугольника.
$ОА$ — радиус описанной окружности $(R)$
В равностороннем треугольнике радиус описанной окружности равен две трети высоты данного треугольника.
$R={2h}/{3}$
Центр описанной окружности может находиться в различных положениях относительно треугольника:
1. В остроугольном треугольнике центр описанной окружности лежит внутри треугольника.
2. В тупоугольном треугольнике центр описанной окружности лежит снаружи треугольника.
3. В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы и радиус равен половине гипотенузы.
$R={c}/{2}$
Радиус описанной окружности можно найти как:
$R={a}/{2sinA}={b}/{2sinB}={c}/{2sinC};$
$R={a∙b∙c}/{4S}$, где $S$ — это площадь заданного треугольника.
Около четырехугольника не всегда можно описать окружность. Если сумма противоположных углов четырехугольника равна $180°$, то только тогда около него можно описать окружность.
$∠В+∠D=180°$
$∠A+∠C=180°$
В прямоугольнике и квадрате центр описанной окружности лежит в точке пересечения диагоналей, а радиус описанной окружности равен половине диагонали.
$R={d}/{2}$
Только вокруг равнобедренной трапеции можно описать окружность.
Выпуклый многоугольник называется правильным, если у него все стороны и все углы равны.
Связь между сторонами правильного n-угольника и радиусами описанной и вписанной окружностей:
$АВ=an$ — сторона правильного многоугольника
$R$ — радиус описанной окружности
$r$ — радиус вписанной окружности
$n$ — количество сторон и углов
$a_n=2∙R∙sin{180°}/{n};$
$r=R∙cos{180°}/{n};$
$a_n=2∙r∙tg{180°}/{n}.$
Углы в окружности:
1. Угол, образованный двумя радиусами, называется центральным. Центральный угол равен градусной мере дуги, на которую он опирается
$∠О=∪BmA$
2. Угол, вершина которого лежит на окружности, а стороны являются хордами, называется вписанным. Вписанный угол равен половине градусной меры дуги, на которую он опирается
$∠B={∪AmC}/{2}$
3. Угол между хордой и касательной равен половине дуги, заключенной внутри него.
$∠B={∪BmC}/{2}$
ЕГЭ формулы, шпаргалки — Элементарная геометрия. Окружность и круг.
.
,
где S — площадь круга,
R — радиус круга,
D — диаметр круга,
Полный список всех формул, шпаргалок для ЕГЭ по математике тут: ЕГЭ математика — формулы, шпаргалки.
Площадь круга и его частей. Длина окружности и ее дуг
Основные определения и свойства
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности
Часть окружности, расположенная между двумя точками окружности
Конечная часть плоскости, ограниченная окружностью
Часть круга, ограниченная двумя радиусами
Часть круга, ограниченная хордой
Выпуклый многоугольник, у которого все стороны равны и все углы равны
Около любого правильного многоугольника можно описать окружность
Фигура | Рисунок | Определения и свойства |
Окружность | ||
Дуга | ||
Круг | ||
Сектор | ||
Сегмент | ||
Правильный многоугольник | ||
Окружность |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности
Дуга
Часть окружности, расположенная между двумя точками окружности
Круг
Конечная часть плоскости, ограниченная окружностью
Сектор
Часть круга, ограниченная двумя радиусами
Сегмент
Часть круга, ограниченная хордой
Правильный многоугольник
Выпуклый многоугольник, у которого все стороны равны и все углы равны
Около любого правильного многоугольника можно описать окружность
Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.
Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.
Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.
Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.
Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:
Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.
Формулы для площади круга и его частей
,
где R – радиус круга, D – диаметр круга
,
если величина угла α выражена в радианах
,
если величина угла α выражена в градусах
,
если величина угла α выражена в радианах
,
если величина угла α выражена в градусах
Числовая характеристика | Рисунок | Формула |
Площадь круга | ||
Площадь сектора | ||
Площадь сегмента |
Площадь круга |
,
где R – радиус круга, D – диаметр круга
Площадь сектора
,
если величина угла α выражена в радианах
,
если величина угла α выражена в градусах
Площадь сегмента
,
если величина угла α выражена в радианах
,
если величина угла α выражена в градусах
Формулы для длины окружности и её дуг
где R – радиус круга, D – диаметр круга
если величина угла α выражена в радианах
,
если величина угла α выражена в градусах
Длина окружности |
где R – радиус круга, D – диаметр круга
Длина дуги
если величина угла α выражена в радианах
,
если величина угла α выражена в градусах
Площадь круга
Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).
Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .
Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .
Таким образом, площадь круга радиуса R , обозначаемая S , равна
Длина окружности
то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:
откуда вытекает формула для длины окружности радиуса R :
Следствие . Длина окружности радиуса 1 равна 2π.
Длина дуги
Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство:
Площадь сектора
Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство:
Площадь сегмента
Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.
Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем
В случае, когда величина α выражена в в радианах, получаем
Основные теоремы, связанные с окружностями
Радикальная ось — прямая, проходящая через точки пересечения двух окружностей.
Линия центров окружностей — прямая, проходящая через центры двух окружностей.
Теорема 1.
1) Радикальная ось перпендикулярна линии центров окружностей.
2) Отрезки касательных, проведенных из любой точки радикальной оси к этим окружностям, равны.
Доказательство:
1) Рассмотрим (triangle BMN) и (triangle AMN) : они равны по трем сторонам ( (BM=AM=R_1, BN=AN=R_2) — радиусы первой и второй окружностей соответственно). Таким образом, (angle BNM=angle ANM) , следовательно, (MN) — биссектриса в равнобедренном (triangle ANB) , следовательно, (MNperp AB) .
2) Отметим произвольную точку (O) на радикальной оси и проведем касательные (OK_1, OK_3) к первой окружности и (OK_2, OK_4) ко второй окружности. Т.к. квадрат отрезка касательной равен произведению секущей на ее внешнюю часть, то (OK_1^2=OK_2^2=OK_3^2=OK_4^2=OBcdot OA) .
Теорема 2.
Пусть две окружности с центрами (M) и (N) касаются внешним образом в точке (A) . Две общие касательные (внутренняя и внешняя) (a) и (b) этих окружностей пересекаются в точке (B) . Точки касания — точки (A, K_1, K_2) (как показано на рисунке). Тогда [(1) <large>] [(2) <large<angle K_1AK_2=90^circ>>]
Доказательство:
1) Т.к. (BA) и (BK_1) — две касательные, проведенные к первой окружности из одной точки, то отрезки касательных равны: (BA=BK_1) . Аналогично, (BA=BK_2) . Таким образом, (BA=BK_1=BK_2) .
2) Значит, (BA) — медиана в (triangle K_1AK_2) , равная половине стороны, к которой она проведена. Значит, (angle A=90^circ) .
Теорема 3.
Пусть две окружности касаются внешним образом в точке (A) . Через точку (A) проведены две прямые (B_1B_2) и (C_1C_2) , пересекающие каждую окружность в двух точках, как показано на рисунке. Тогда: [(1) <large<triangle AB_1C_1 sim triangle AB_2C_2>>] [(2) <large>]
Доказательство:
1) Проведем через точку (A) общую касательную этих окружностей (OQ) . (angle OAC_2=angle QAC_1=alpha) как вертикальные. Т.к. угол между касательной и хордой, проведенной через точку касания, равен половине дуги, заключенной между ними, то (angle OAC_2=frac12buildrelsmileover) , (angle QAC_1=frac12buildrelsmileover) . Следовательно, (buildrelsmileover=buildrelsmileover=2alpha) . Таким образом, (angle AB_1C_1=angle AB_2C_2=alpha) . Значит, по двум углам (triangle AB_1C_1sim triangle AB_2C_2) .
2) Т.к. (angle AB_1C_1=angle AB_2C_2) , то прямые (B_1C_1parallel B_2C_2) по накрест лежащим углам при секущей (B_1B_2) .
Теорема Птолемея
Во вписанном четырехугольнике произведение диагоналей равно сумме произведений противоположных сторон: [ACcdot BD=ABcdot CD+BCcdot AD]
Доказательство
Пусть для определенности (angle ABD . Проведем отрезок (BO) так, чтобы (O) лежала на (AC) и (angle ABD=angle CBO) :
Т.к. (angle ACB=angle ADB) (опираются на одну и ту же дугу), то по двум углам (triangle OBCsim triangle ABD) . Значит: [dfrac=dfrac Rightarrow ADcdot BC=OCcdot BDphantom <00000000000>(1)]
Т.к. (angle BAC=angle BDC) (опираются на одну и ту же дугу), (angle ABO=angle CBD) (состоят из равных по построению (оранжевых) углов и общего угла (angle DBO) ), то по двум углам (triangle ABOsim triangle BDC) . Значит: [dfrac=dfrac Rightarrow ABcdot CD=AOcdot BD phantom <00000000000>(2)]
Сложим равенства ((1)) и ((2)) : (ADcdot BC+ABcdot CD=OCcdot BD+AOcdot BD=ACcdot BD) , чтд.
Формула Эйлера:
Пусть (R) — радиус описанной около треугольника (ABC) окружности, (r) — радиус вписанной окружности. Тогда расстояние (d) между центрами этих окружностей вычисляется по формуле: [<large>]
Доказательство:
а) Предположим, что (dne 0) . Пусть (O, Q) — центры описанной и вписанной окружности соответственно. Проведем диаметр описанной окружности (PS) через точку (Q) . Проведем также биссектрисы углов (angle A, angle B) — (AA_1, BB_1) соответственно (заметим, что они пересекутся в точке (Q) , т.к. центр вписанной окружности лежит на пересечении биссектрис). Хорды (PS) и (BB_1) пересекаются, следовательно, отрезки этих хорд равны: (PQcdot QS=BQcdot QB_1) .
Т.к. (OP=OS=R, OQ=d) , то последнее равенство можно переписать в виде ((R-d)(R+d)=BQcdot QB_1 (*)) .
Заметим, что т.к. (AA_1, BB_1) — биссектрисы, то (buildrelsmileover=buildrelsmileover=x, buildrelsmileover=buildrelsmileover=y) . Т.к. угол между хордами равен полусумме дуг, заключенных между ними, то:
(angle AQB_1=frac12(x+y)) .
С другой стороны, (angle B_1AA_1=frac12big(buildrelsmileover+buildrelsmileoverbig)=frac12(x+y))
Таким образом, (angle AQB_1=angle B_1AA_1) . Следовательно, (triangle QB_1A) — равнобедренный и (B_1Q=B_1A) . Значит, равенство ((*)) можно переписать как:
(R^2-d^2=BQcdot AB_1 (**)) .
Проведем еще один диаметр описанной окружности (B_1B_2) . Тогда (triangle B_1AB_2) — прямоугольный ( (angle A) опирается на диаметр). Пусть также вписанная окружность касается стороны (AB) в точке (K) . Тогда (triangle BKQ) — прямоугольный.
Заметим также, что (angle KBQ=angle AB_2B_1) (т.к. они опираются на одну и ту же дугу).
Значит, (triangle B_1AB_2sim triangle BKQ) по двум углам, следовательно:
(dfrac=dfrac Rightarrow dfrac=dfrac <2R>Rightarrow BQcdot AB_1=2Rr) .
Подставим это в ((**)) и получим:
(R^2-d^2=2Rr Rightarrow d^2=R^2-2Rr) .
б) Если (d=0) , т.е. центры вписанной и описанной окружностей совпадают, то (AK=BK=sqrt Rightarrow AB=2sqrt) . Аналогично (AC=BC=AB=sqrt) , т.е. треугольник равносторонний. Следовательно, (angle A=60^circ Rightarrow angle KAO=30^circ Rightarrow r=frac12R Rightarrow R=2r) или (0=R^2-2Rr) (т.е. в этом случае формула также верна).
Теорема о бабочке:
Пусть через середину хорды (AB) — точку (O) , проведены две хорды (MN) и (KP) . Пусть (MPcap AB=X, KNcap AB=Y) . Тогда [<large>]
Доказательство:
Проведем перпендикуляры (XX_1, YY_2perp MN, XX_2, YY_1perp KP) .
Следующие углы равны, т.к. опираются на одну и ту же дугу: (angle PMO=angle NKO, angle MPO=angle KNO) .
Следующие углы равны, т.к. вертикальные: (angle XOX_1=angle YOY_2, angle XOX_2=angle YOY_1) .
Следующие прямоугольные треугольники подобны:
1) (triangle XX_1Osim triangle YY_2O Rightarrow dfrac=dfrac)
2) (triangle XX_2Osim triangle YY_1O Rightarrow dfrac=dfrac)
3) (triangle MXX_1sim triangle KYY_1 Rightarrow dfrac=dfrac)
4) (triangle PXX_2sim triangle NYY_2 Rightarrow dfrac=dfrac)
Из 1) и 2) следует, что
Из 3) и 4) следует, что
Совместив последние два равенства, получим:
Заметим, что для пересекающихся хорд (AB) и (MP) : (AXcdot XB=MXcdot PX) . Аналогично (AYcdot YB=KYcdot NY) . Значит:
Обозначим (OX=x, OY=y, OA=OB=t Rightarrow)
источники:
http://www.resolventa.ru/demo/diaggia6.htm
http://shkolkovo.net/theory/41
Окружность на ЕГЭ и ОГЭ — сложно. Все потому, что эта фигура не похожа на остальные: у неё нет углов и сторон, зато есть совсем другие элементы. В этой статье мы подробно поговорим про элементы окружности, углы, отрезки и прямые, которые с ней связаны, а также обсудим длину окружности и площадь круга. Ну и разберем основные задания ЕГЭ и ОГЭ, конечно же!
Для начала давайте разберёмся, что же такое окружность. Окружность — это замкнутая линия, состоящая из множества точек, которые равноудалены от центра окружности. Основной элемент окружности — это радиус, он соединяет центр с любой точкой на окружности.
Углы у окружности на ЕГЭ и ОГЭ
У окружности есть 2 вида углов:
- вписанные (их вершина лежит на окружности);
- центральные (тут всё понятно из названия, у них вершина в центре окружности).
Расположение и свойства углов в окружности можно увидеть на схеме ниже:
Давайте отработаем это на практике:
Решение
Можно заметить, что угол АСВ — вписанный и опирается на дугу АВ, соответственно, центральный угол АОD, опирающийся на ту же дугу будет в 2 раза больше, то есть 70 градусов. Теперь рассмотрим развёрнутый угол ВОD, он состоит из углов АОВ и АОD. Градусная мера развёрнутого угла 180 градусов, следовательно искомый угол АОD будет равен 180 – 70 = 110 градусов.
Отрезки и прямые в окружности на ЕГЭ и ОГЭ
Теперь рассмотрим отрезки и прямые в окружности. Приготовьтесь, их будет много!
Есть хорда — это отрезок, который соединяет 2 любые точки на окружности. Если хорда пройдёт через центр окружности, то она превратится в диаметр. Кстати, если внимательно посмотреть, то можно увидеть, что диаметр — это 2 радиуса!
Теперь продлим хорду в обе стороны за пределы окружности, получим прямую, которая переСЕКает нашу окружность, отсюда и её название — секущая. Можно заметить, что секущая имеет 2 общих точки пересечения с окружностью. А ещё мы можем провести прямую так, чтобы она имела с окружностью только 1 точку пересечения, то есть касалась её, такая прямая будет называться касательная.
Подробнее со свойствами касательной и секущей можно ознакомиться на рисунке:
Рассмотрим на примерах заданий про окружность в ЕГЭ и ОГЭ:
4 теоремы про окружность в ЕГЭ и ОГЭ
Теперь я предлагаю ознакомиться с теоремами, которые появляются в комбинациях различных прямых и отрезков в окружности.
Теорема № 1: теория и задания из ЕГЭ и ОГЭ
Первая теорема про хорду и касательную звучит так:
Угол между касательной и хордой равен половине дуге, которую стягивает хорда.
Подробнее с выведением вы можете ознакомиться на рисунке:
Однако хочу обратить ваше внимание, что если вы просто запомните формулировку, то многие задачи на окружность в ЕГЭ и ОГЭ покажутся вам супер-простыми и будут решаться в 1 действие. Давайте в этом убедимся:
Вот так просто и быстро в 1 действие мы справились с задачей. Правда здорово?!
Теорема № 2: теория и задания из ЕГЭ и ОГЭ
А теперь давайте посмотрим на одну из моих самых любимых теорем. А любимая она, потому что без неё некоторые задачи кажутся практически нерешаемыми, а с ней их можно решить быстро и просто! Звучит она так:
Квадрат касательной равен произведению секущей на её внешнюю часть.
Я советую запоминать именно словесную формулировку, так как чертежи и буквы на них могут быть разными, и есть риск всё перепутать.
Наглядно познакомиться с теоремой можно на рисунке ниже:
И конечно же давайте отработаем на практике!
Если бы мы не знали ту теорему, которую только что прошли, то было бы много версий, как можно решить задачу. Кто-то начал бы строить радиус к касательной и рассматривать треугольники, а кто-то просто не стал бы решать, однако у нас есть формула: давайте её используем!
Решение:
Теорема № 3: теория и задания из ЕГЭ и ОГЭ
Если вы ещё не устали от теорем, то давайте познакомимся с ещё одной, которая связывает хорду с диаметром (радиусом).
Эта теорема интересна тем, что работает в обе стороны:
Конечно же я не могу оставить вас без тренировки, поэтому посмотрим на следующую задачу:
Теорема № 4: пересекающиеся хорды
Последнее, с чем я вас познакомлю в контексте прямых и отрезков в окружности будет свойство пересекающихся хорд:
Произведения отрезков пересекающихся хорд равны.
Для наглядности отрезки выделены разными цветами, так вам будет проще запомнить свойство.
А теперь отработаем его на практике:
Длина окружности и площадь круга
Вот мы и подошли с вами к самому интересному, формулам длины окружности и площади круга, давайте их запишем:
Эти формулы очень походы, в них есть двойка, число Pi и радиус, однако можно заметить, что у формулы длины окружности двойка слева, а у площади круга справа в степени.
Так как же их не путать? Очень просто: запомните, что вторая степень (или квадрат) должна быть у площади, значит двойка слева будет у длины.
Давайте это закрепим:
Вот так просто и быстро мы закрепили сразу обе формулы.
Как находить площадь и длину дуги сектора круга: задачи
А теперь перейдём к самому интересному — нахождению площади и длины дуги сектора круга. Многие ученики думаю, что это сложно, но на самом деле это не так. Я предлагаю записать 2 коротких алгоритма, с помощью которых вы сможете легко найти площадь или длину дуги сектора.
И конечно же давайте закрепим эти алгоритмы на практике:
Теперь вы умеете решать задания на поиск площади сектора. Согласитесь, что с алгоритмом всё намного понятнее и проще?
Что нужно иметь в виду для ЕГЭ и ОГЭ
На самом деле это всё, что я хотела вам рассказать в данной статье. Давайте ещё раз повторим, что вы узнали.
- Сначала мы познакомились с понятием окружность, потом посмотрели, какие бывают углы в окружности.
- Затем увидели множество отрезков и прямых в окружности, записали их свойства, а также несколько теорем с ними.
- В завершение мы поговорили про длину окружности, площадь круга, а также поиск площади и длины дуги сектора.
Самое ценное, что всю теорию мы закрепили на реальных заданиях из ОГЭ и ЕГЭ. Конечно, это далеко не всё, что вам может встретиться. Если вы хотите хорошо разбираться в окружности и в других темах, которые встречаются на экзаменах, записывайтесь на наши курсы подготовки к ОГЭ и ЕГЭ. На них мы подробно изучаем всю теорию, решаем много заданий, запоминаем удобные лайфхаки и решаем пробные экзамены, чтобы не стрессовать на реальном. Присоединяйтесь!
Эта статья содержит минимальный набор сведений об окружности, необходимый для успешной сдачи ЕГЭ по математике.
Окружностью называется множество точек, расположенных на одинаковом расстоянии от данной точки, которая называется центром окружности.
Для любой точки , лежащей на окружности выполняется равенство
( Длина отрезка
равна радиусу окружности.
Отрезок, соединяющий две точки окружности называется хордой.
Хорда, проходящая через центр окружности называется диаметром окружности ().
Длина окружности:
Площадь круга:
Дуга окружности:
Часть окружности, заключенная между двумя ее точками называется дугой окружности. Две точки окружности определяют две дуги. Хорда стягивает две дуги:
и
. Равные хорды стягивают равные дуги.
Угол между двумя радиусами называется центральным углом:
Чтобы найти длину дуги
, составляем пропорцию:
а) угол дан в градусах:
Отсюда
б) угол дан в радианах:
Отсюда
Диаметр, перпендикулярный хорде, делит эту хорду и дуги, которые она стягивает пополам:
Если хорды и
окружности пересекаются в точке
, то произведения отрезков хорд, на которые они делятся точкой
равны между собой:
Касательная к окружности.
Прямая, имеющая с окружностью одну общую точку называется касательной к окружности. Прямая, имеющая с окружностью две общие точки называется секущей.
Касательная к окружности перпендикулярна радиусу, проведенному к точке касания.
Если из данной точки проведены к окружности две касательные, то отрезки касательных равны между собой и центр окружности лежит на биссектрисе угла с вершиной в этой точке:
Если из данной точки проведены к окружности касательная и секущая, то квадрат длины отрезка касательной равен произведению всего отрезка секущей на его внешнюю часть:
Следствие: произведение всего отрезка одной секущей на его внешнюю часть равно произведению всего отрезка другой секущей на его внешнюю часть:
Углы в окружности.
Градусная мера центрального угла равна градусной мере дуги, на которую он опирается:
∠ ⌣
Угол, вершина которого лежит на окружности, а стороны содержат хорды, называется вписанным углом. Вписанный угол измеряется половиной дуги, на которую он опирается:
∠
∠
Вписанный угол, опирающийся на диаметр, прямой:
∠∠
∠
Вписанные углы, опирающиеся на одну дугу, равны:
∠∠
∠
Вписанные углы, опирающиеся на одну хорду равны или их сумма равна
∠
∠
∠∠
∠
Вершины треугольников с заданным основанием и равными углами при вершине лежат на одной окружности:
Угол между двумя хордами (угол с вершиной внутри окружности) равен полусумме угловых величин дуг окружности, заключенных внутри данного угла и внутри вертикального угла.
∠
∠
∠
( ⌣
⌣
)
Угол между двумя секущими (угол с вершиной вне окружности) равен полуразности угловых величин дуг окружности, заключенных внутри угла.
∠ ∠
∠
( ⌣
⌣
)
Вписанная окружность.
Окружность называется вписанной в многоугольник, если она касается его сторон. Центр вписанной окружности лежит в точке пересечения биссектрис углов многоугольника.
Не во всякий многоугольник можно вписать окружность.
Площадь многоугольника, в который вписана окружность можно найти по формуле
,
здесь — полупериметр многоугольника,
— радиус вписанной окружности.
Отсюда радиус вписанной окружности равен
Если в выпуклый четырехугольник вписана окружность, то суммы длин противоположных сторон равны. Обратно: если в выпуклом четырехугольнике суммы длин противоположных сторон равны, то в четырехугольник можно вписать окружность:
В любой треугольник можно вписать окружность, притом только одну. Центр вписанной окружности лежит в точке пересечения биссектрис внутренних углов треугольника.
Радиус вписанной окружности равен
. Здесь
Описанная окружность.
Окружность называется описанной около многоугольника, если она проходит через все вершины многоугольника. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров сторон многоугольника. Радиус вычисляется как радиус окружности, описанной около треугольника, определенного любыми тремя вершинами данного многоугольника:
Около четырехугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна .
∠+∠
=∠
+∠
Около любого треугольника можно описать окружность, притом только одну. Ее центр лежит в точке пересечения серединных перпендикуляров сторон треугольника:
Радиус описанной окружности вычисляется по формулам:
Где — длины сторон треугольника,
— его площадь.
Теорема Птолемея
Во вписанном четырехугольнике произведение диагоналей равно сумме произведений его противоположных сторон:
Радикальная ось — прямая, проходящая через точки пересечения двух окружностей.
Линия центров окружностей — прямая, проходящая через центры двух окружностей.
Теорема 1.
1) Радикальная ось перпендикулярна линии центров окружностей.
2) Отрезки касательных, проведенных из любой точки радикальной оси к этим окружностям, равны.
Доказательство:
1) Рассмотрим (triangle BMN) и (triangle AMN): они равны по трем сторонам ((BM=AM=R_1, BN=AN=R_2) — радиусы первой и второй окружностей соответственно). Таким образом, (angle BNM=angle ANM), следовательно, (MN) — биссектриса в равнобедренном (triangle ANB), следовательно, (MNperp AB).
2) Отметим произвольную точку (O) на радикальной оси и проведем касательные (OK_1, OK_3) к первой окружности и (OK_2, OK_4) ко второй окружности. Т.к. квадрат отрезка касательной равен произведению секущей на ее внешнюю часть, то (OK_1^2=OK_2^2=OK_3^2=OK_4^2=OBcdot OA).
Теорема 2.
Пусть две окружности с центрами (M) и (N) касаются внешним образом в точке (A). Две общие касательные (внутренняя и внешняя) (a) и (b) этих окружностей пересекаются в точке (B). Точки касания — точки (A, K_1, K_2) (как показано на рисунке). Тогда [(1) {large{K_1B=AB=K_2B}}] [(2) {large{angle K_1AK_2=90^circ}}]
Доказательство:
1) Т.к. (BA) и (BK_1) — две касательные, проведенные к первой окружности из одной точки, то отрезки касательных равны: (BA=BK_1). Аналогично, (BA=BK_2). Таким образом, (BA=BK_1=BK_2).
2) Значит, (BA) — медиана в (triangle K_1AK_2), равная половине стороны, к которой она проведена. Значит, (angle A=90^circ).
Теорема 3.
Пусть две окружности касаются внешним образом в точке (A). Через точку (A) проведены две прямые (B_1B_2) и (C_1C_2), пересекающие каждую окружность в двух точках, как показано на рисунке. Тогда: [(1) {large{triangle AB_1C_1 sim triangle AB_2C_2}}] [(2) {large{B_1C_1parallel B_2C_2}}]
Доказательство:
1) Проведем через точку (A) общую касательную этих окружностей (OQ). (angle OAC_2=angle QAC_1=alpha) как вертикальные. Т.к. угол между касательной и хордой, проведенной через точку касания, равен половине дуги, заключенной между ними, то (angle
OAC_2=frac12buildrelsmileover{AC_2}), (angle
QAC_1=frac12buildrelsmileover{AC_1}). Следовательно, (buildrelsmileover{AC_1}=buildrelsmileover{AC_2}=2alpha). Таким образом, (angle AB_1C_1=angle AB_2C_2=alpha). Значит, по двум углам (triangle AB_1C_1sim triangle AB_2C_2).
2) Т.к. (angle AB_1C_1=angle AB_2C_2), то прямые (B_1C_1parallel
B_2C_2) по накрест лежащим углам при секущей (B_1B_2).
Теорема Птолемея
Во вписанном четырехугольнике произведение диагоналей равно сумме произведений противоположных сторон: [ACcdot BD=ABcdot CD+BCcdot AD]
Доказательство
Пусть для определенности (angle ABD<angle CBD). Проведем отрезок (BO) так, чтобы (O) лежала на (AC) и (angle ABD=angle CBO):
Т.к. (angle ACB=angle ADB) (опираются на одну и ту же дугу), то по двум углам (triangle OBCsim triangle ABD). Значит: [dfrac{OC}{AD}=dfrac{BC}{BD} Rightarrow ADcdot BC=OCcdot BDphantom{00000000000} (1)]
Т.к. (angle BAC=angle BDC) (опираются на одну и ту же дугу), (angle ABO=angle CBD) (состоят из равных по построению (оранжевых) углов и общего угла (angle DBO)), то по двум углам (triangle
ABOsim triangle BDC). Значит: [dfrac{AO}{DC}=dfrac{AB}{BD} Rightarrow ABcdot CD=AOcdot BD phantom{00000000000} (2)]
Сложим равенства ((1)) и ((2)): (ADcdot BC+ABcdot CD=OCcdot
BD+AOcdot BD=ACcdot BD), чтд.
Формула Эйлера:
Пусть (R) — радиус описанной около треугольника (ABC) окружности, (r) — радиус вписанной окружности. Тогда расстояние (d) между центрами этих окружностей вычисляется по формуле: [{large{d^2=R^2-2Rr}}]
Доказательство:
а) Предположим, что (dne 0). Пусть (O, Q) — центры описанной и вписанной окружности соответственно. Проведем диаметр описанной окружности (PS) через точку (Q). Проведем также биссектрисы углов (angle A, angle B) — (AA_1, BB_1) соответственно (заметим, что они пересекутся в точке (Q), т.к. центр вписанной окружности лежит на пересечении биссектрис). Хорды (PS) и (BB_1) пересекаются, следовательно, отрезки этих хорд равны: (PQcdot QS=BQcdot QB_1).
Т.к. (OP=OS=R, OQ=d), то последнее равенство можно переписать в виде ((R-d)(R+d)=BQcdot QB_1 (*)).
Заметим, что т.к. (AA_1, BB_1) — биссектрисы, то (buildrelsmileover{AB_1}=buildrelsmileover{B_1C}=x,
buildrelsmileover{CA_1}=buildrelsmileover{A_1B}=y). Т.к. угол между хордами равен полусумме дуг, заключенных между ними, то:
(angle AQB_1=frac12(x+y)).
С другой стороны, (angle
B_1AA_1=frac12big(buildrelsmileover{B_1C}+buildrelsmileover{CA_1}big)=frac12(x+y))
Таким образом, (angle AQB_1=angle B_1AA_1). Следовательно, (triangle QB_1A) — равнобедренный и (B_1Q=B_1A). Значит, равенство ((*)) можно переписать как:
(R^2-d^2=BQcdot AB_1 (**)).
Проведем еще один диаметр описанной окружности (B_1B_2). Тогда (triangle B_1AB_2) — прямоугольный ((angle A) опирается на диаметр). Пусть также вписанная окружность касается стороны (AB) в точке (K). Тогда (triangle BKQ) — прямоугольный.
Заметим также, что (angle KBQ=angle AB_2B_1) (т.к. они опираются на одну и ту же дугу).
Значит, (triangle B_1AB_2sim triangle BKQ) по двум углам, следовательно:
(dfrac{KQ}{AB_1}=dfrac{BQ}{B_1B_2} Rightarrow
dfrac{r}{AB_1}=dfrac{BQ}{2R} Rightarrow BQcdot AB_1=2Rr).
Подставим это в ((**)) и получим:
(R^2-d^2=2Rr Rightarrow d^2=R^2-2Rr).
б) Если (d=0), т.е. центры вписанной и описанной окружностей совпадают, то (AK=BK=sqrt{R^2-r^2} Rightarrow AB=2sqrt{R^2-r^2}). Аналогично (AC=BC=AB=sqrt{R^2-r^2}), т.е. треугольник равносторонний. Следовательно, (angle A=60^circ Rightarrow angle
KAO=30^circ Rightarrow r=frac12R Rightarrow R=2r) или (0=R^2-2Rr) (т.е. в этом случае формула также верна).
Теорема о бабочке:
Пусть через середину хорды (AB) — точку (O), проведены две хорды (MN) и (KP). Пусть (MPcap AB=X, KNcap AB=Y). Тогда [{large{OX=OY}}]
Доказательство:
Проведем перпендикуляры (XX_1, YY_2perp
MN, XX_2, YY_1perp KP).
Следующие углы равны, т.к. опираются на одну и ту же дугу: (angle
PMO=angle NKO, angle MPO=angle KNO).
Следующие углы равны, т.к. вертикальные: (angle XOX_1=angle YOY_2,
angle XOX_2=angle YOY_1).
Следующие прямоугольные треугольники подобны:
1) (triangle XX_1Osim triangle YY_2O Rightarrow
dfrac{XO}{YO}=dfrac{XX_1}{YY_2})
2) (triangle XX_2Osim triangle YY_1O Rightarrow
dfrac{XO}{YO}=dfrac{XX_2}{YY_1})
3) (triangle MXX_1sim triangle KYY_1 Rightarrow
dfrac{XX_1}{YY_1}=dfrac{MX}{KY})
4) (triangle PXX_2sim triangle NYY_2 Rightarrow
dfrac{XX_2}{YY_2}=dfrac{PX}{NY})
Из 1) и 2) следует, что
(dfrac{XO^2}{YO^2}=dfrac{XX_1cdot XX_2}{YY_1cdot YY_2})
Из 3) и 4) следует, что
(dfrac{XX_1cdot XX_2}{YY_1cdot YY_2}=dfrac{MXcdot PX}{KYcdot
NY})
Совместив последние два равенства, получим:
(dfrac{XO^2}{YO^2}=dfrac{MXcdot PX}{KYcdot NY})
Заметим, что для пересекающихся хорд (AB) и (MP): (AXcdot
XB=MXcdot PX). Аналогично (AYcdot YB=KYcdot NY). Значит:
(dfrac{XO^2}{YO^2}==dfrac{AXcdot XB}{AYcdot YB})
Обозначим (OX=x, OY=y, OA=OB=t Rightarrow)
(dfrac{x^2}{y^2}=dfrac{(t-x)(t+x)}{(t+y)(t-y)}=dfrac{t^2-x^2}{t^2-y^2}
Rightarrow x^2t^2-x^2y^2=y^2t^2-x^2y^2 Rightarrow x^2=y^2
Rightarrow x=y).
Свойство касательных.
Свойства касательных и секущих.
Свойства хорд.
Углы окружности.
Площадь, сектор, длина окружности.
Задачи на окружности.
По статистике окружности никто не любит, но при этом леденец любим, солнце любим, давай и окружность полюбим!
Окружность − геометрическое место точек плоскости, равноудаленных от одной ее точки (центра). На рисунке центр − точка О.
В окружности может быть проведено 3 типа отрезка:
Отрезок, проходящий через две точки окружности, но не через центр, называют хордой (AB).
Хорда, проходящая через центр окружности, называется диаметром (самая большая хорда в окружности − диаметр (D)).
Радиус − отрезок, соединяющий центр окружности с точкой на окружности. Диаметр в два раза больше радиуса (R).
А также две прямые снаружи от окружности:
Касательная имеет одну общую точку с окружностью. Сразу стоит сказать о том, что радиус, проведенный в точку касания, будет иметь с касательной угол 90°.
Секущая пересекает окружность в двух точках, внутри окружности получается хорда или, в частном случае, диаметр.
Теперь чуть-чуть об углах и дугах:
Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее. Он в два раза меньше дуги, на которую опирается.
Центральный угол — это угол, вершина которого находится в центре окружности, равен дуге на которую опирается.
Вписанные углы, опирающиеся на одну дугу, равны между собой (β=β=α/2) и равны половине дуги, на которую опираются.
Градусная мера дуги – величина в °, соответствует центральному углу. Длина дуги равна α.
А вот такой угол НЕвписанный, такой угол «никто и звать никак».
Можно сделать вывод, что вписанный угол, который опирается на половину дуги окружности, будет прямым, а также будет опираться на диаметр:
Любая пара углов, опирающихся на одну и ту же хорду, вершина которых находится по разные стороны от хорды, составляет в сумме 180°.
Запишем основные свойства углов в окружности:
Нашел что-то общее?
Если угол находится вне окружности, без разницы, чем он получен (касательной или секущей), то найти его можно через половину разности дуг.
Если угол находится внутри окружности, то находим его через полусумму дуг.
Если есть одна дуга, которая находится на требуемом угле, то угол равен половине этой дуги.
Отношение отрезков:
Для любых двух хорд, проходящих через некоторую точку О, выполняет равенство:
Для любых двух секущих, проходящих через некоторую точку O, выполняется равенство:
Согласен, что они похожи, особенно если не смотреть на картинки.
Как не перепутать такие равенства? В каждом отрезке должна присутствовать точка, вне окружности (О).
Если из точки, лежащей вне окружности, проведены касательная и секущая:
Аналогично в каждом отрезке присутствует точка, вне окружности (О).
Если теперь провести две касательные из точки O, то получим такие равные отрезки:
Касательные равны, как, сообственно, и радиусы!
Площадь и длина окружности находятся по формуле:
По своему определению число π показывает, во сколько раз длина окружности больше диаметра, отсюда такая формула: L = πD
Если хочешь вывести площадь круга, можешь проинтегрировать длину окружности относительно R или вывести зависимость, как сделал Архимед!
Задача №1. Дано на рисунке:
Достаточно вспомнить свойства центральных и вписанных углов.
Ответ: 39°
Задача №2. Дано на рисунке:
Найти нужно меньшую дугу BD
Ответ: 100°Задача №3. Дано на рисунке:
Найти меньшую дугу ВС
Ответ: 114°
Задача №4. Дано на рисунке:
Найти отрезок МК
Ответ: МК = 15.
Задача №5. Дано на рисунке:
Попробуй найти подобные треугольники
Ответ: 6
Задача №5. Дано на рисунке:
Без свойства секущей и касательной здесь будет тяжело
Ответ: 12√7.
Я могу долго тебе показывать, как решать задачи, но без твоих усилий ничего не выйдет.
Попробуй эти задачи с подсказками.
О треугольниках
О четырехуголникахp.s. Не бойся ошибаться и задавать вопросы!
Если нашел опечатку, или что-то непонятно − напиши.
В данной публикации мы рассмотрим определение и свойства одного из основных геометрических объектов – окружности. Также приведем формулы, с помощью которых можно найти ее радиус, диаметр и длину.
Определение окружности
Окружность – это замкнутая кривая на плоскости, состоящая из точек, равноудаленных от определенной точки. Данная точка называется центром окружности.
Радиус окружности (R) – это отрезок, соединяющий любую точку, лежащую на окружности, с ее центром.
Диаметр окружности (d) – это линия (хорда), проходящая через центр окружности и соединяющая две противоположные точки, лежащие на ней.
Примечание: Не стоит путать окружность с кругом, т.к. круг – это множество точек плоскости, ограниченных окружностью (т.е. лежащих внутри окружности).
Свойства окружности
Свойство 1
Через три точки на плоскости, не лежащие на одной прямой, можно провести окружность, причем только одну.
Свойство 2
Точка касания двух окружностей (C) лежит на одной прямой (AB), которая проходит через их центры.
Свойство 3
Изопериметрическое неравенство: Из всех замкнутых кривых одинаковой длины окружность ограничивает область с самой большой площадью.
Формулы
1. Диаметр окружности (d):
2. Длина окружности (С):
3. Радиус окружности (R):
Эта статья содержит минимальный набор сведений об окружности, необходимый для успешной сдачи ЕГЭ по математике.
Окружностью называется множество точек, расположенных на одинаковом расстоянии от данной точки, которая называется центром окружности.
Для любой точки , лежащей на окружности выполняется равенство
( Длина отрезка
равна радиусу окружности.
Отрезок, соединяющий две точки окружности называется хордой.
Хорда, проходящая через центр окружности называется диаметром окружности ().
Длина окружности:
Площадь круга:
Дуга окружности:
Часть окружности, заключенная между двумя ее точками называется дугой окружности. Две точки окружности определяют две дуги. Хорда стягивает две дуги:
и
. Равные хорды стягивают равные дуги.
Угол между двумя радиусами называется центральным углом:
Чтобы найти длину дуги
, составляем пропорцию:
а) угол дан в градусах:
Отсюда
б) угол дан в радианах:
Отсюда
Диаметр, перпендикулярный хорде, делит эту хорду и дуги, которые она стягивает пополам:
Если хорды и
окружности пересекаются в точке
, то произведения отрезков хорд, на которые они делятся точкой
равны между собой:
Касательная к окружности.
Прямая, имеющая с окружностью одну общую точку называется касательной к окружности. Прямая, имеющая с окружностью две общие точки называется секущей.
Касательная к окружности перпендикулярна радиусу, проведенному к точке касания.
Если из данной точки проведены к окружности две касательные, то отрезки касательных равны между собой и центр окружности лежит на биссектрисе угла с вершиной в этой точке:
Если из данной точки проведены к окружности касательная и секущая, то квадрат длины отрезка касательной равен произведению всего отрезка секущей на его внешнюю часть:
Следствие: произведение всего отрезка одной секущей на его внешнюю часть равно произведению всего отрезка другой секущей на его внешнюю часть:
Углы в окружности.
Градусная мера центрального угла равна градусной мере дуги, на которую он опирается:
∠ ⌣
Угол, вершина которого лежит на окружности, а стороны содержат хорды, называется вписанным углом. Вписанный угол измеряется половиной дуги, на которую он опирается:
∠
∠
Вписанный угол, опирающийся на диаметр, прямой:
∠∠
∠
Вписанные углы, опирающиеся на одну дугу, равны:
∠∠
∠
Вписанные углы, опирающиеся на одну хорду равны или их сумма равна
∠
∠
∠∠
∠
Вершины треугольников с заданным основанием и равными углами при вершине лежат на одной окружности:
Угол между двумя хордами (угол с вершиной внутри окружности) равен полусумме угловых величин дуг окружности, заключенных внутри данного угла и внутри вертикального угла.
∠
∠
∠
( ⌣
⌣
)
Угол между двумя секущими (угол с вершиной вне окружности) равен полуразности угловых величин дуг окружности, заключенных внутри угла.
∠ ∠
∠
( ⌣
⌣
)
Вписанная окружность.
Окружность называется вписанной в многоугольник, если она касается его сторон. Центр вписанной окружности лежит в точке пересечения биссектрис углов многоугольника.
Не во всякий многоугольник можно вписать окружность.
Площадь многоугольника, в который вписана окружность можно найти по формуле
,
здесь — полупериметр многоугольника,
— радиус вписанной окружности.
Отсюда радиус вписанной окружности равен
Если в выпуклый четырехугольник вписана окружность, то суммы длин противоположных сторон равны. Обратно: если в выпуклом четырехугольнике суммы длин противоположных сторон равны, то в четырехугольник можно вписать окружность:
В любой треугольник можно вписать окружность, притом только одну. Центр вписанной окружности лежит в точке пересечения биссектрис внутренних углов треугольника.
Радиус вписанной окружности равен
. Здесь
Описанная окружность.
Окружность называется описанной около многоугольника, если она проходит через все вершины многоугольника. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров сторон многоугольника. Радиус вычисляется как радиус окружности, описанной около треугольника, определенного любыми тремя вершинами данного многоугольника:
Около четырехугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна .
∠+∠
=∠
+∠
Около любого треугольника можно описать окружность, притом только одну. Ее центр лежит в точке пересечения серединных перпендикуляров сторон треугольника:
Радиус описанной окружности вычисляется по формулам:
Где — длины сторон треугольника,
— его площадь.
Теорема Птолемея
Во вписанном четырехугольнике произведение диагоналей равно сумме произведений его противоположных сторон:
Радикальная ось — прямая, проходящая через точки пересечения двух окружностей.
Линия центров окружностей — прямая, проходящая через центры двух окружностей.
Теорема 1.
1) Радикальная ось перпендикулярна линии центров окружностей.
2) Отрезки касательных, проведенных из любой точки радикальной оси к этим окружностям, равны.
Доказательство:
1) Рассмотрим (triangle BMN) и (triangle AMN): они равны по трем сторонам ((BM=AM=R_1, BN=AN=R_2) — радиусы первой и второй окружностей соответственно). Таким образом, (angle BNM=angle ANM), следовательно, (MN) — биссектриса в равнобедренном (triangle ANB), следовательно, (MNperp AB).
2) Отметим произвольную точку (O) на радикальной оси и проведем касательные (OK_1, OK_3) к первой окружности и (OK_2, OK_4) ко второй окружности. Т.к. квадрат отрезка касательной равен произведению секущей на ее внешнюю часть, то (OK_1^2=OK_2^2=OK_3^2=OK_4^2=OBcdot OA).
Теорема 2.
Пусть две окружности с центрами (M) и (N) касаются внешним образом в точке (A). Две общие касательные (внутренняя и внешняя) (a) и (b) этих окружностей пересекаются в точке (B). Точки касания — точки (A, K_1, K_2) (как показано на рисунке). Тогда [(1) {large{K_1B=AB=K_2B}}] [(2) {large{angle K_1AK_2=90^circ}}]
Доказательство:
1) Т.к. (BA) и (BK_1) — две касательные, проведенные к первой окружности из одной точки, то отрезки касательных равны: (BA=BK_1). Аналогично, (BA=BK_2). Таким образом, (BA=BK_1=BK_2).
2) Значит, (BA) — медиана в (triangle K_1AK_2), равная половине стороны, к которой она проведена. Значит, (angle A=90^circ).
Теорема 3.
Пусть две окружности касаются внешним образом в точке (A). Через точку (A) проведены две прямые (B_1B_2) и (C_1C_2), пересекающие каждую окружность в двух точках, как показано на рисунке. Тогда: [(1) {large{triangle AB_1C_1 sim triangle AB_2C_2}}] [(2) {large{B_1C_1parallel B_2C_2}}]
Доказательство:
1) Проведем через точку (A) общую касательную этих окружностей (OQ). (angle OAC_2=angle QAC_1=alpha) как вертикальные. Т.к. угол между касательной и хордой, проведенной через точку касания, равен половине дуги, заключенной между ними, то (angle
OAC_2=frac12buildrelsmileover{AC_2}), (angle
QAC_1=frac12buildrelsmileover{AC_1}). Следовательно, (buildrelsmileover{AC_1}=buildrelsmileover{AC_2}=2alpha). Таким образом, (angle AB_1C_1=angle AB_2C_2=alpha). Значит, по двум углам (triangle AB_1C_1sim triangle AB_2C_2).
2) Т.к. (angle AB_1C_1=angle AB_2C_2), то прямые (B_1C_1parallel
B_2C_2) по накрест лежащим углам при секущей (B_1B_2).
Теорема Птолемея
Во вписанном четырехугольнике произведение диагоналей равно сумме произведений противоположных сторон: [ACcdot BD=ABcdot CD+BCcdot AD]
Доказательство
Пусть для определенности (angle ABD<angle CBD). Проведем отрезок (BO) так, чтобы (O) лежала на (AC) и (angle ABD=angle CBO):
Т.к. (angle ACB=angle ADB) (опираются на одну и ту же дугу), то по двум углам (triangle OBCsim triangle ABD). Значит: [dfrac{OC}{AD}=dfrac{BC}{BD} Rightarrow ADcdot BC=OCcdot BDphantom{00000000000} (1)]
Т.к. (angle BAC=angle BDC) (опираются на одну и ту же дугу), (angle ABO=angle CBD) (состоят из равных по построению (оранжевых) углов и общего угла (angle DBO)), то по двум углам (triangle
ABOsim triangle BDC). Значит: [dfrac{AO}{DC}=dfrac{AB}{BD} Rightarrow ABcdot CD=AOcdot BD phantom{00000000000} (2)]
Сложим равенства ((1)) и ((2)): (ADcdot BC+ABcdot CD=OCcdot
BD+AOcdot BD=ACcdot BD), чтд.
Формула Эйлера:
Пусть (R) — радиус описанной около треугольника (ABC) окружности, (r) — радиус вписанной окружности. Тогда расстояние (d) между центрами этих окружностей вычисляется по формуле: [{large{d^2=R^2-2Rr}}]
Доказательство:
а) Предположим, что (dne 0). Пусть (O, Q) — центры описанной и вписанной окружности соответственно. Проведем диаметр описанной окружности (PS) через точку (Q). Проведем также биссектрисы углов (angle A, angle B) — (AA_1, BB_1) соответственно (заметим, что они пересекутся в точке (Q), т.к. центр вписанной окружности лежит на пересечении биссектрис). Хорды (PS) и (BB_1) пересекаются, следовательно, отрезки этих хорд равны: (PQcdot QS=BQcdot QB_1).
Т.к. (OP=OS=R, OQ=d), то последнее равенство можно переписать в виде ((R-d)(R+d)=BQcdot QB_1 (*)).
Заметим, что т.к. (AA_1, BB_1) — биссектрисы, то (buildrelsmileover{AB_1}=buildrelsmileover{B_1C}=x,
buildrelsmileover{CA_1}=buildrelsmileover{A_1B}=y). Т.к. угол между хордами равен полусумме дуг, заключенных между ними, то:
(angle AQB_1=frac12(x+y)).
С другой стороны, (angle
B_1AA_1=frac12big(buildrelsmileover{B_1C}+buildrelsmileover{CA_1}big)=frac12(x+y))
Таким образом, (angle AQB_1=angle B_1AA_1). Следовательно, (triangle QB_1A) — равнобедренный и (B_1Q=B_1A). Значит, равенство ((*)) можно переписать как:
(R^2-d^2=BQcdot AB_1 (**)).
Проведем еще один диаметр описанной окружности (B_1B_2). Тогда (triangle B_1AB_2) — прямоугольный ((angle A) опирается на диаметр). Пусть также вписанная окружность касается стороны (AB) в точке (K). Тогда (triangle BKQ) — прямоугольный.
Заметим также, что (angle KBQ=angle AB_2B_1) (т.к. они опираются на одну и ту же дугу).
Значит, (triangle B_1AB_2sim triangle BKQ) по двум углам, следовательно:
(dfrac{KQ}{AB_1}=dfrac{BQ}{B_1B_2} Rightarrow
dfrac{r}{AB_1}=dfrac{BQ}{2R} Rightarrow BQcdot AB_1=2Rr).
Подставим это в ((**)) и получим:
(R^2-d^2=2Rr Rightarrow d^2=R^2-2Rr).
б) Если (d=0), т.е. центры вписанной и описанной окружностей совпадают, то (AK=BK=sqrt{R^2-r^2} Rightarrow AB=2sqrt{R^2-r^2}). Аналогично (AC=BC=AB=sqrt{R^2-r^2}), т.е. треугольник равносторонний. Следовательно, (angle A=60^circ Rightarrow angle
KAO=30^circ Rightarrow r=frac12R Rightarrow R=2r) или (0=R^2-2Rr) (т.е. в этом случае формула также верна).
Теорема о бабочке:
Пусть через середину хорды (AB) — точку (O), проведены две хорды (MN) и (KP). Пусть (MPcap AB=X, KNcap AB=Y). Тогда [{large{OX=OY}}]
Доказательство:
Проведем перпендикуляры (XX_1, YY_2perp
MN, XX_2, YY_1perp KP).
Следующие углы равны, т.к. опираются на одну и ту же дугу: (angle
PMO=angle NKO, angle MPO=angle KNO).
Следующие углы равны, т.к. вертикальные: (angle XOX_1=angle YOY_2,
angle XOX_2=angle YOY_1).
Следующие прямоугольные треугольники подобны:
1) (triangle XX_1Osim triangle YY_2O Rightarrow
dfrac{XO}{YO}=dfrac{XX_1}{YY_2})
2) (triangle XX_2Osim triangle YY_1O Rightarrow
dfrac{XO}{YO}=dfrac{XX_2}{YY_1})
3) (triangle MXX_1sim triangle KYY_1 Rightarrow
dfrac{XX_1}{YY_1}=dfrac{MX}{KY})
4) (triangle PXX_2sim triangle NYY_2 Rightarrow
dfrac{XX_2}{YY_2}=dfrac{PX}{NY})
Из 1) и 2) следует, что
(dfrac{XO^2}{YO^2}=dfrac{XX_1cdot XX_2}{YY_1cdot YY_2})
Из 3) и 4) следует, что
(dfrac{XX_1cdot XX_2}{YY_1cdot YY_2}=dfrac{MXcdot PX}{KYcdot
NY})
Совместив последние два равенства, получим:
(dfrac{XO^2}{YO^2}=dfrac{MXcdot PX}{KYcdot NY})
Заметим, что для пересекающихся хорд (AB) и (MP): (AXcdot
XB=MXcdot PX). Аналогично (AYcdot YB=KYcdot NY). Значит:
(dfrac{XO^2}{YO^2}==dfrac{AXcdot XB}{AYcdot YB})
Обозначим (OX=x, OY=y, OA=OB=t Rightarrow)
(dfrac{x^2}{y^2}=dfrac{(t-x)(t+x)}{(t+y)(t-y)}=dfrac{t^2-x^2}{t^2-y^2}
Rightarrow x^2t^2-x^2y^2=y^2t^2-x^2y^2 Rightarrow x^2=y^2
Rightarrow x=y).
Касательная к окружности, секущая и хорда — в чем разница
В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.
Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.
Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).
Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.
Свойства касательной к окружности
Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.
-
Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.
Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:
- окружность с центральной точкой А;
- прямая а — касательная к ней;
- радиус АВ, проведенный к касательной.
Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. а ⟂ АВ.
Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.
В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.
Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.
Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.
Задача
У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.
Решение:
Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.
Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.
∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°
Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно,
АВ = 62°.
Ответ:
АВ = 62°.
Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.
Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.
Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.
Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.
Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.
Задача 1
У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.
Решение
Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.
∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).
Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:
∠BDC = ∠BDA × 2 = 30° × 2 = 60°
Итак, угол между касательными составляет 60°.
Ответ: ∠BDA = 60°.
Задача 2
К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.
Решение
Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.
Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.
∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°
Ответ: ∠NМК = 65°.
Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.
Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.
Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.
AB2 = AD × AC
Задача 1
Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.
Решение
Исходя из соотношения касательной и секущей МА 2 = МВ × МС.
Найдем длину внешней части секущей:
МС = МВ — ВС = 16 — 12 = 4 (см)
МА2 = МВ × МС = 16 х 4 = 64
МА = √
64= 8 (см)
Ответ: MA = 8 см.
Задача 2
Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.
Решение
Допустим, что МО = у, а радиус окружности обозначим как R.
В таком случае МВ = у + R, а МС = у – R.
Поскольку МВ = 2 МА, значит:
МА = МВ : 2 = (у + R) : 2
Согласно теореме о касательной и секущей, МА2 = МВ × МС.
Значит:
(у + R)2 : 4 = (у + R) × (у — R)
Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:
(у + R) : 4 = (у — R)
у = 5R : 3
Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).
Ответ: MO = 10 см.
Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.
Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда AВ. Отметим на касательной прямой точку C, чтобы получился угол AВC.
∠АВС = ½
АВ
Задача 1
Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.
Решение
Согласно свойствам угла между касательной и хордой, ∠АВС = ½
АВ.
АВ = ∠АВС × 2 = 32° × 2 = 64°
Ответ:
АВ = 64°.
Задача 2
У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.
Решение
Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:
КМ = 2 ∠МКВ = 2 х 84° = 168°
Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.
∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2
Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:
∠КОМ =
КМ = 168°
∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°
Ответ: ∠ОМК = 6°.
2 марта 2019
В закладки
Обсудить
Жалоба
Как решать задачи на вписанную окружность с формулами и без? В этом видео будет рассказано об основных свойствах, используемых для решения задач, и примеры с решениями.
→ Теорема о двух касательных 00:01
→ Окружность в треугольнике 2:57
→ Окружность в правильном треугольнике 9:00
→ Окружность в равнобедренном треугольнике 11:27
→Окружность в прямоугольном треугольнике 17:47
→ Окружность в четырехугольнике 23:28
Тест «Виды потребления»
Проверочная работа по обществознанию.