Все формулы логарифмов для егэ по математике профильный уровень

Логарифмы

Предыдущую статью о показательных уравнениях мы начали с уравнения 2x = 8. Там всё было ясно: x = 3.

А теперь рассмотрим уравнение 2x = 7.

По графику функции y = 2x мы видим, что это уравнение имеет корень, и притом единственный.


Ясно, что этот корень — не целое число (так как 22 = 4, 23 = 8). Более того, оказывается, что он не является даже рациональным числом, т. е. не представляется в виде обыкновенной дроби. Интуитивно мы чувствуем лишь, что он меньше 3, но не намного.

Этот корень обозначается log27 (читается: «логарифм семи по основанию два»). Он является иррациональным числом, т. е. бесконечной непериодической десятичной дробью. Калькулятор даёт: log27 = 2,807354922057604107…

Итак, наше число log27 — это показатель степени, в которую надо возвести 2, чтобы получить 7.

Теперь дадим общее определение логарифма. Пусть a > 0 и a ≠ 1 (условия те же, что и для основания показательной функции).

Определение. Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b.

Иными словами,

Например:

  так как  ;

, так как  ;

  так как  ;

, так как  .

Логарифм с основанием 10 называется десятичным и обозначается lg. Например, lg 100 = 2, lg 1000 = 3, lg 0,01 = −2.

Логарифм с основанием e называется натуральным и обозначается ln.

Обратите внимание: логарифм определён только для положительных чисел. Причина заключается в том, что показательная функция может принимать лишь положительные значения. Например, число log2(−4) не существует: в какую бы степень мы ни возводили 2, мы никогда не получим −4.

Не забывайте также про ограничения на основание логарифма: 0 < a < 1 или a > 1.

Основные формулы

По определению, logab — это показатель степени, в которую надо возвести число a, чтобы получить число b:

Формула (1) называется основным логарифмическим тождеством.
Вот еще один вариант записи основного логарифмического тождества:

logaax=x.

Перечислим свойства логарифмов. Они являются простыми следствиями правил действия со степенями. Все логарифмы ниже считаются определёнными.

Логарифм произведения — это сумма логарифмов:

loga(bc) = logab + logac. (2)

Логарифм частного — это разность логарифмов:

log_{a}frac{b}{c}=log_{a}b-log_{a}c. (3)

Показатель степени логарифмируемого числа «спрыгивает» перед логарифмом:

log_{a}b^{m}=mlog_{a}b. (4)

Показатель степени основания логарифма тоже «спрыгивает», но в виде обратного числа:

log_{a^{n}}b=frac{1}{n}log_{a}b. (5)

Формулы (4) и (5) вместе дают:

. (6)

В частности, если m = n, мы получаем формулу:

. (7)

Например, .

Наконец, важнейшая формула перехода к новому основанию:

. (8)

В частности, если c = b, то logbb = 1, и тогда:

. (9)

Приведём несколько примеров из банка заданий.
1. (применили формулу (2) суммы логарифмов).

2. (применили основное логарифмическое тождество(1)).

3. log^{2}_{sqrt{7}}49=(log_{sqrt{7}}49)^{2}=(log_{sqrt{7}}7^{2})^{2}=(2log_{sqrt{7}}7)^{2}=(2cdot 2)^{2}=16 (применили формулу (4)).

4. log_{0,8}3cdot log_{3}1,25=log_{0,8}3cdot frac{log_{0,8}1,25}{log_{0,8}3}=log_{0,8}1,25=log_{frac{4}{5}}frac{5}{4}=-1 (применили формулу (9), перейдя к новому основанию 0,8).

5. frac{9^{log_{5}50}}{9^{log_{5}2}}=9^{log_{5}50-log_{5}2}=9^{log_{5}25}=9^{2}=81 (применили формулу (3) разности логарифмов).

Немного истории

Теперь вы поняли, что такое логарифмы и как ими пользоваться. Но для чего они всё-таки нужны? Или это просто такая математическая игрушка с хитрой инструкцией по применению?

Понятие логарифма и логарифмические таблицы появились в 17 веке, и значение их было огромно.

Это в наши дни вычисления не представляют труда — у каждого есть калькулятор. А как считали в «докомпьютерные» времена?

Складывать и вычитать можно было на счётах, а вот умножать и делить приходилось «в столбик» — медленно и трудно.

В 15–17 веках, в эпоху великих географических открытий, стали бурно развиваться торговля, экономика и наука. Требования к математике росли: расчёты становились более сложными, а точность — например, для решения навигационных задач — нужна была всё более высокая.

Необходим был инструмент, позволяющий упростить и ускорить расчёты, и таким инструментом явились логарифмы.

Предположим, что b и c — большие числа, которые надо перемножить. Появление таблиц логарифмов (например, с основанием 10) существенно упростило эту задачу. Теперь вычислителю достаточно было найти по таблицам десятичные логарифмы чисел b и c, сложить их (на счётах) и получить логарифм произведения: lgb + lgc = lg(bc).

А затем по таблице логарифмов найти само произведение чисел b и c.

Недаром французский математик и астроном Лаплас сказал, что изобретение логарифмов удлинило жизнь вычислителей. Логарифмическая линейка (которой инженеры пользовались до 70-х годов двадцатого века) была не менее прогрессивным изобретением, чем современный калькулятор.

Но это еще не всё! Мы не занимались бы логарифмами, если бы они имели лишь историческую, «музейную» ценность. О неожиданных применениях логарифмов мы расскажем в следующей статье, посвящённой логарифмической функции.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Логарифмы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Ученики, сдающие базовую математику, почти не тратят времени на подготовку к ней, ведь в экзамене нужно решить лишь задания, которые требуют самых основ. Тем же выпускникам, которые хотят поступать в технические вузы, предстоит готовиться не только к предметам по выбору, но и к профилю. В этой статье мы расскажем, какие формулы для ЕГЭ по математике (профильный уровень) сделают подготовку легче, а баллы на экзамене — выше.

Формулы вероятности для егэ по профильной математике

Какие формулы необходимы для сдачи ЕГЭ по профильной математике?

Помимо очевидного, что для сдачи профиля нужно уметь складывать, вычитать и умножать, необходимы еще некоторые знания. Все это проходится в течение школы, но повторить или заполнить пробелы перед экзаменом нужно обязательно. Вот, что пригодится:

  • Формулы сокращенного умножения;
  • Арифметическая и геометрическая прогрессии;
  • Вероятность;
  • Свойства степеней;
  • Свойства логарифмов;
  • Тригонометрия;
  • Производные;
  • Первообразные.

Список внушительный, но вполне реальный, чтобы его выучить. Для того, чтобы лишний раз не гуглить в интернете «формулы для ЕГЭ по математике профильный уровень», приложим их ниже. А начнем по порядку из списка выше.

Формулы сокращённого умножения

Первые в нашем списке – формулы сокращенного умножения – нужны для решения задания №9 из профильного уровня. Вам встретятся задачи на преобразование выражений, поэтому умение это делать будет вознаграждено баллами.

Вот то, что будет вашим спасательным кругом:

Есть те, которые знать не обязательно. Но чем большими знаниями вы будете обладать, тем легче вам будет на экзамене. Вот они:

Умея применять эти формулы для ЕГЭ по математике, профильный уровень вам уже будет решить легче. Но это далеко не все, что нужно знать, чтобы получить сто баллов за ЕГЭ.

Арифметическая и геометрическая прогрессии

Для задания №19 нужно знание арифметической и геометрической прогрессии. Прикладываем формулы для ЕГЭ по математике, профильный уровень которой невозможен без их знания:

Вероятность

Вероятность встречается в задании №4, а ведь в самом начале обычно ставят легкие задания. Тем не менее, придется применять знания, которые представлены ниже:

Перейдем к свойствам степеней, ведь в них тоже есть, что запомнить.

Свойства степеней

Эти свойства нужно знать и для того, чтобы решить «базу», так что гуманитарии тоже могут обратить внимание на это:

Как вы видите, запоминать не очень много, зато формулы не самые простые. Но есть еще сложнее, и сейчас узнаем, какие они.

Свойства логарифмов

Формулы логарифмов лучше всего начать с их определения:

Теперь перейдем к более сложному:

Тригонометрия

Тригонометрические уравнения встречаются в задании №13. Для того, чтобы заработать баллы, нужно знать это:

Но это еще не все. Есть такая вещь, как основное тригонометрическое тождество. Вот оно:

Формулы двойного угла:

Формулы суммы и разности аргументов:

Преобразование суммы и разности в произведение:

Формулы половинного аргумента:

На этом с тригонометрией все.

Производные

Начнем с основных правил дифференцирования:

Уравнение касательной: 

Производные элементарных функций:

Закончим эту статью первообразными.

Первообразные

Она выглядит так:

Таблица первообразных:

Формулы для производных егэ по профильной математике

Итог

То, что работа предстоит колоссальная — и правда, и нет. Да, придется хорошо постараться, чтобы набрать высокие баллы, так как составители ЕГЭ все больше усложняют экзамен. С другой стороны, хотя бы часть формул, описанных выше, вы уже знаете. А значит, работы хоть на немного, но меньше. А это ли не счастье в такие тяжелые времена подготовки?

Логарифмом положительного числа $b$ по основанию а, где $a>0$, $a≠1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

Пример:

$log_{2}8=3$, т.к. $2^{3}=8;$

$log_{3}{1}/{27}=-3$, т.к $3^{-3}={1}/{27}$

Особенно можно выделить три формулы:

$log_{a}a=1;$

$log_{a}1=0;$

$log_{a}a^b=b.$

Основное логарифмическое тождество:

$a^{log_{a}b}=b$

Это равенство справедливо при $b>0, a>0, a≠1$

Пример:

$4^{log_{4}5}=5;$

$3^{-2log_{3}5}={3^{log_{3}5^{-2}}}=5^{-2}={1}/{25}$

Десятичным логарифмом числа называют логарифм этого числа по основанию $10$ и пишут $lg⁡b$ вместо $log_{10}b$.

Пример:

$lg100000=lg10^5=5$

Ответ: $5$

Натуральным логарифмом числа называют логарифм этого числа по основанию $е$, где $е$ – иррациональное число, приближенно равное $2.7$. При этом пишут $lnb$, вместо $log_{e}b$

Свойства логарифмов.

Все свойства логарифмов мы будем рассматривать для $a>0, a≠1, b>0, c>0, m$ – любое действительное число.

1. Для любых действительных чисел $m$ и $n$ справедливы равенства:

$log{_а}b^m=mlog_{a}b;$

$log_{a^m}b={1}/{m}log_{a}b.$

$log_{a^n}b^m={m}/{n}log_{a}b$

Пример:

$log_{3}3^{10}=10log_{3}3=10;$

$log_{5^3}7={1}/{3}log_{5}7;$

$log_{3^7}4^5={5}/{7}log_{3}4;$

2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.

$log_{a}(bc)=log_{a}b+log_{a}c$

Пример:

Вычислить $log_{12}2+log_{12}72$

Применим второе свойство наоборот: сумма логарифмов по одинаковому основанию равна логарифму произведения подлогарифмических выражений

$log_{12}2+log_{12}72=log_{12}2·72=log_{12}144=2$

Ответ: $2$

3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию

$log_{a}{b}/{c}=log_{a}b-log_{a}c$

Пример:

Вычислить $log_{5}75-log_{5}3$

Решение:

Разность логарифмов с одинаковыми основаниями равна логарифму частного подлогарифмических выражений

$log_{5}75-log_{5}3=log_{5}{75}/{3}=log_{5}25=2$

Ответ: $2$

4. При умножении двух логарифмов можно поменять местами их основания

$log_{a}b·log_{c}d=log_{c}b·log_{a}d$, если $a$, $b$, $c$, $d>0$, $a≠1$, $b≠1.$

5. $c^{log_{a}b}=b^{log_{a}c}$, где $а, b, c>0, a≠1$

6. Формула перехода к новому основанию

$log_{a}b={log_{c}b}/{log_{c}a}$

7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение

$log_{a}b={1}/{log_{b}a}$

Пример:

Найдите значение выражения: ${log_{2}∜{13}}/{log_{2}13}$

Решение:

В выражении видим, что был произведен переход к новому основанию $2$. Нам необходимо вернуться к старому основанию $13$.

${log_{2}∜{13}}/{log_{2}13}=log_{13}∜{13}$

Далее вычислим получившийся логарифм, для этого подлогарифмическое выражение необходимо представить в виде степени. Любой корень можно выразить в виде степени с дробным показателем, в знаменателе показателя будет находиться показатель корня

$∜{13}=13^{{1}/{4}}$

$log_{13}∜{13}=log_{13}13^{{1}/{4}}={1}/{4}=0.25$

Ответ: $0.25$

Свойства  и графики логарифмических функций

 

1.    
Область определения: D( y ): x ϵ (0; +∞).

2.    
Множество значений: E( y ): y ϵ (-∞;+∞).

3.    
Функция не является четной и не является нечетной.

4.    
Нули функции: при x = 1 логарифмическая функция y = log a x
приобретает значение, равное 0.

5.    
График пересекает ось O x в точке (1; 0).

6.    
Интервалы монотонности: При a > 1 функция возрастает на
интервале (0; +∞). При 0 < a < 1 функция убывает на интервале (0; +∞)

7.    
Интервалы выпуклости / вогнутости: При a > 1 график функции
выпуклый на интервале (0; +∞). При 0 < a < 1 график функции вогнутый на
интервале (0; +∞).

8.    
Из равенства логарифмов двух чисел по одному и тому же основанию
следует равенство самих чисел: log a x = log a y => x = y , a > 0, a ≠ 1.

Примеры решения логарифмических уравнений

Краткий алгоритм решения логарифмических
уравнений:

1. Привести логарифмы в разных частях уравнения к одному
основанию, исключая коэффициенты перед ними с помощью свойства логарифмов.

2. Исключить логарифмы, прибегая к правилу потенцирования.

3. Решить стандартное уравнение.

4. Проверить результат.

5.Записать ответ.

Несколько схем решений логарифмических
уравнений

Схема выполнения равносильных преобразований
логарифмических неравенств (потенцирование неравенств)

 

Обобщенный метод интервалов

Схема:

1. Привести неравенство к такому виду, где в
левой части находится функция f(x), а в правой 0.

2. Найти область определения функции f(x).

3. Найти нули функции f(x), то есть – решить
уравнение f(x) = 0 (а решать уравнение обычно проще, чем решать неравенство)

4. Изобразить на числовой прямой область
определения и нули функции.

5. Определить знаки функции f(x) на полученных
интервалах.

6. Выбрать интервалы, где функция принимает
необходимые значения и записать ответ.

Запомни:
знаки расставляются только на области определения функции!

Метод рационализации

(метод
декомпозиции, метод замены множителей, метод замены функции, правило знаков)

Метод рационализации заключается в замене сложного выражения F(x)ü0 на более простое выражение G(x)ü0 равносильно неравенству F(x)ü0 в области определения выражения F(x).

Выделим некоторые выражения F и
соответствующие им рационализирующие выражения
G, где f, g, h, p, q – выражения с переменной x (h>0; h≠1; f>0, g>0), a
фиксированное число (
a>0; a≠1)

 

Схема

1. Найти ОДЗ неравенства

2. Подобрать нужное
рационализирующее выражение

3. Решить неравенство, полученное в
п.2

4. Найти пересечение множеств п 2 и
п. 3

5.
Записать ответ

Интернет-ресурсы для подготовки к профильному
ЕГЭ по математике

1.       alexlarin.net
— каждую неделю публикуются качественные пробники.

2.       ege.sdamgia.ru
— лучший онлайн-тренажёр с решениями заданий.

3.       yandex.ru/tutor/
— Яндекс.Репетитор — тренировочные варианты онлайн.

4.       alleng.org/edu/math3.htm
— книги в pdf формате.

5.       berdov.com/ege/
— хорошие пробники, много нестандартных и сложных заданий.

6.       4ege.ru/video-matematika/50912…
— видеокурс с теорией и практикой.

7.       https://math100.ru/ege/ege-profil/-
задание ЕГЭ в pdf формате, с ответами.

8.       https://www.mathm.ru- задания разделены
по темам и уровням сложности

Шпаргалка для подготовки к ЕГЭ по математике

(профильный уровень) по теме:

Логарифмы.

Уравнения. Неравенства

3621

На ЕГЭ по профильной математике с собой можно взять только черные гелевые ручки и линейку. На экзамене профильного уровня, в отличие от базового, не выдаются справочные материалы – выпускникам не предоставляются формулы, необходимые для решения задач. Исключение составляют лишь 5 формул по тригонометрии, но, естественно, они не помогут набрать максимальные баллы, если экзаменуемые не будут знать об остальных важных сведениях и математических свойствах.

Содержание

Формулы для ЕГЭ по профильной математике. Алгебра

Формулы сокращенного умножения

Квадрат суммы: (a + b)² = a² + 2ab + b²

Квадрат разности: (a – b)² = a² – 2ab + b²

Разность квадратов: a² – b² = (a + b)(a – b)

Сумма кубов: a³ + b³ = (a + b)(a² – ab + b²)

Разность кубов: a³ – b³ = (a – b)(a² + ab + b²)

Прогрессия

Арифметическая

Геометрическая

Таблица степеней

Скриншот 11-11-2022 034403

Свойства степеней

Скриншот 11-11-2022 034826

Таблица квадратов

Скриншот 11-11-2022 035150

Интенсивы по подготовке к региональному этапу ВсОШ

Все, что нужно знать
для победы, за 7 дней!

Свойства корней

Скриншот 11-11-2022 035515

Тригонометрия

Таблица значений тригонометрических функций

Скриншот 11-11-2022 035849

Тригонометрическая окружность

Скриншот 11-11-2022 040226

Тригонометрические формулы

Скриншот 11-11-2022 040507

Обратные тригонометрические функции

Преобразование суммы и разности в произведение

Регулярные курсы по подготовке к олимпиадам и ЕГЭ

Поступаем в вуз мечты без проблем!

Вероятность

Вероятность события А: m – благоприятные, n – общее число событий

 P(A) = m/n

События А и В происходят одновременно: A · B

Независимые события: P(A · B) = P(A) · P(B)

Зависимые события: P(A · B) = P(A) · P(B | A)

Происходит или А, или В: A + B

Несовместные события: P(A + B) = P(A) + P(B)

Совместные события: P(A + B) = P(A) + P(B) – P(A · B)

Свойства модуля

Производные

Основные правила дифференцирования

Таблица производных

Первообразные

Логарифмы

Квадратные уравнения

Дискриминант

Теорема Виета

Разложение на множители

3528

Формулы для ЕГЭ по профильной математике. Геометрия

Планиметрия

Треугольник

Следствие из теоремы косинусов:

Длина биссектрисы (через угол):

Длина биссектрисы (через отрезки):

Прямоугольный треугольник

24 декабря – 20 января

5-11 классы

Онлайн-олимпиада Коалиции

Равносторонний треугольник

Аргументы для итогового сочинения

Подборка лучших аргументов

Равносторонний шестиугольник

Площадь внутреннего треугольника:

Площадь внутреннего прямоугольника:

Ромб

Трапеция

Произвольный четырёхугольник

Окружность

Стереометрия

27f77fef-868e-4746-af5a-ff3f5d564738

Выводы

Не заучивайте формулы без осознания того, откуда берутся числа. Как можно чаще применяйте формулы при решении задач, тренируйте гибкость мышления, чтобы на ЕГЭ по профильной математике справиться со всеми заданиями.

А чтобы в разы повысить шансы на успех и разобраться в тонкостях непростой науки, можно обратиться за помощью к преподавателю онлайн-курса по подготовке к ЕГЭ.

Поделиться в социальных сетях

Какими формулами вам приходится пользоваться чаще всего?

Межтекстовые Отзывы

Посмотреть все комментарии

Читайте также

Факт 1.
(bullet) Логарифм по основанию (a) от (b) – это число (t), которое показывает, в какую степень нужно возвести (a), чтобы получить (b).
Ограничения: числа (a) и (b) такие, что (a>0, ane 1, b>0).
[Large{{color{blue}{log_a{b}=tquadLeftrightarrowquad
a^t=b }}}]

Т.к. мы имеем право возводить в любую степень, то (tin
mathbb{R})
.
Таким образом, верно основное логарифмическое тождество [{Large{a^{log_ab}=b}}]
(bullet) Справедливы следующие формулы: [{large{begin{array}{|ll|l|}
hline qquad qquad qquad qquad {small{text{Формулы}}}
&& qquad qquad{small{text{Ограничения}}}\
&&\
hline textbf{(1)} log_a1=0&&a>0, ane 1\
&&\
textbf{(2)} log_aa=1 &&a>0, ane 1\
&&\
textbf{(3)} log_{a}{b^m}=mlog_a|b|&(m —
{small{text{четн.}}})&a>0, ane 1, bne 0\
&&\
textbf{(4)}log_{a}{b^m}=mlog_ab& (m —
{small{text{нечетн.}}})&a>0, ane 1, b>0\
&&\
textbf{(5)} log_{a^n}{b}=frac 1nlog_{|a|}b&(n —
{small{text{четн.}}})&ane 0, ane 1, b>0\
&&\
textbf{(6)}log_{a^n}b=frac1nlog_ab&(n —
{small{text{нечетн.}}})&a>0, ane 1, b>0\
&&\
textbf{(7)} log_a{bc}=log_a|b|+log_a|c|&&a>0, ane 1, bcne 0\
&&\
textbf{(8)}
log_a{dfrac bc}=log_a|b|-log_a|c|&&a>0, ane 1,bcne 0 \
&&\
textbf{(9)}
a^{log_ab}=b &&a>0, ane 1, b>0\
&&\
textbf{(10)}c^{log_ab}=b^{log_ac}&&a>0, ane 1, b>0, c>0\
&&\
textbf{(11)} log_abcdot log_bc=log_ac && a>0, ane 1,b>0, bne 1, c>0\
&&\
textbf{(11′}) log_bc=dfrac{log_ac}{log_ab}&&a>0, ane 1,b>0, bne 1, c>0\
&&\
&&\
{small{text{ЧАСТНЫЕ СЛУЧАИ:}}}&& \
textbf{(12)} log_abcdot log_ba=1 && a>0, ane 1, b>0, bne 1\
&&\
textbf{(12′}) log_ab=dfrac1{log_ba}&&a>0, ane 1, b>0, bne 1\
&&\ hline
end{array}}}]

Заметим, что при выполнении ограничений данные формулы верны в обе стороны!

18
Фев 2013

Категория: Справочные материалы

Логарифм. Определение. Свойства логарифмов

2013-02-18
2021-06-18


Логарифм числа b по основанию a определяется как показатель степени, в которую нужно возвести основание a, чтобы получить число b.

Обозначение log_a b читается как логарифм b по основанию a.

Например, log_28=3, так как 2^3=8  (2 – основание степени, 3 – показатель степени)


ЛОГАРИФМЫ

;Large{log_{a}b=cLeftrightarrow a^{c}=b;}; 

ОСНОВНОЕ ТОЖДЕСТВО  

;Large{a^{log_{a}b;}=b};

СВОЙСТВА 

log_{a}a=1,   log_{a}1=0

log_ax+log_ay=log_axy

 log_ax-log_ay=log_afrac{x}{y}

 log_{a} x^{n}=n:log_{a}x  

log_{{a}^{p}}x=frac{1}{p}log_{a}x

 log_abcdot log_bc=log_ac  


Свойства, тождество, определение выполняются при a>0,; aneq1,; c>0,; b>0,; bneq1,; x>0,; y>0


Чаще всего используют логарифмы

– с основанием e (натуральный логарифм), кратко –  log_ea=ln a;

– с основанием 10 (десятичный логарифм), кратко –  log_{10}a=lg a. 


Автор: egeMax |

комментариев 14
| Метки: Логарифмы, шпаргалки-таблицы

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Все формулы которые нужны на егэ по математике 2022 профильный уровень
  • Все формулы которые нужны для егэ по математике профильный уровень
  • Все формулы которые нужно знать на егэ по профильной математике
  • Все формулы которые нужно знать для егэ по физике
  • Все формулы которые надо знать для егэ по математике профиль

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии