Задание 3. Теория вероятностей на ЕГЭ по математике.
Мы начнем с простых задач и основных понятий теории вероятностей.
Случайным называется событие, которое нельзя точно предсказать заранее. Оно может либо произойти, либо нет.
Вы выиграли в лотерею — случайное событие. Пригласили друзей отпраздновать выигрыш, а они по дороге к вам застряли в лифте — тоже случайное событие. Правда, мастер оказался поблизости и освободил всю компанию через десять минут — и это тоже можно считать счастливой случайностью…
Наша жизнь полна случайных событий. О каждом из них можно сказать, что оно произойдет с некоторой вероятностью. Скорее всего, вы интуитивно знакомы с этим понятием. Теперь мы дадим математическое определение вероятности.
Начнем с самого простого примера. Вы бросаете монетку. Орел или решка?
Такое действие, которое может привести к одному из нескольких результатов, в теории вероятностей называют испытанием.
Орел и решка — два возможных исхода испытания.
Орел выпадет в одном случае из двух возможных. Говорят, что вероятность того, что монетка упадет орлом, равна .
Бросим игральную кость. У кубика шесть граней, поэтому возможных исходов тоже шесть.
Например, вы загадали, что выпадет три очка. Это один исход из шести возможных. В теории вероятностей он будет называться благоприятным исходом.
Вероятность выпадения тройки равна (один благоприятный исход из шести возможных).
Вероятность четверки — тоже .
А вот вероятность появления семерки равна нулю. Ведь грани с семью точками на кубике нет.
Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.
Очевидно, что вероятность не может быть больше единицы.
Вот другой пример. В пакете яблок, из них
— красные, остальные — зеленые. Ни формой, ни размером яблоки не отличаются. Вы запускаете в пакет руку и наугад вынимаете яблоко. Вероятность вытащить красное яблоко равна
, а зеленое —
.
Вероятность достать красное или зеленое яблоко равна .
БЕСПЛАТНЫЙ МИНИ-КУРС ПО ТЕОРВЕРУ
Определение вероятности. Простые задачи из вариантов ЕГЭ.
Разберем задачи по теории вероятностей, входящие в сборники для подготовки к ЕГЭ.
В фирме такси в данный момент свободно
машин:
красных,
желтых и
зеленых. По вызову выехала одна из машин, случайно оказавшихся ближе всего к заказчице. Найдите вероятность того, что к ней приедет желтое такси.
Всего имеется машин, то есть к заказчице приедет одна из пятнадцати. Желтых — девять, и значит, вероятность приезда именно желтой машины равна
, то есть
.
В сборнике билетов по биологии всего
билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет. Найдите вероятность того, что в этом билете не будет вопроса о грибах.
Очевидно, вероятность вытащить билет без вопроса о грибах равна , то есть
.
Родительский комитет закупил
пазлов для подарков детям на окончание учебного года, из них
с картинами известных художников и
с изображениями животных. Подарки распределяются случайным образом. Найдите вероятность того, что Вовочке достанется пазл с животным.
Задача решается аналогично.
Ответ: .
В чемпионате по гимнастике участвуют
спортсменок:
— из России,
— из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая последней, окажется из Китая.
Давайте представим, что все спортсменки одновременно подошли к шляпе и вытянули из нее бумажки с номерами. Кому-то из них достанется двадцатый номер. Вероятность того, что его вытянет китайская спортсменка, равен (поскольку из Китая —
спортсменок). Ответ:
.
Ученика попросили назвать число от
до
. Какова вероятность того, что он назовет число кратное пяти?
Каждое пятое число из данного множества делится на . Значит, вероятность равна
.
Брошена игральная кость. Найдите вероятность того, что выпадет нечетное число очков.
— нечетные числа;
— четные. Вероятность нечетного числа очков равна
.
Ответ: .
Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»?
Заметим, что задачу можно сформулировать по-другому: бросили три монеты одновременно. На решение это не повлияет.
Как вы думаете, сколько здесь возможных исходов?
Бросаем монету. У этого действия два возможных исхода: орел и решка.
Две монеты — уже четыре исхода:
орел | орел |
орел | решка |
решка | орел |
решка | решка |
Три монеты? Правильно, исходов, так как
.
Вот они:
орел | орел | орел |
орел | орел | решка |
орел | решка | орел |
решка | орел | орел |
орел | решка | решка |
решка | орел | решка |
решка | решка | орел |
решка | решка | решка |
Два орла и одна решка выпадают в трех случаях из восьми.
Ответ: .
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет
очков. Результат округлите до сотых.
Бросаем первую кость — шесть исходов. И для каждого из них возможны еще шесть — когда мы бросаем вторую кость.
Получаем, что у данного действия — бросания двух игральных костей — всего возможных исходов, так как
.
А теперь — благоприятные исходы:
Вероятность выпадения восьми очков равна .
Стрелок попадает в цель с вероятностью
. Найдите вероятность того, что он попадёт в цель четыре выстрела подряд.
Если вероятность попадания равна — следовательно, вероятность промаха
. Рассуждаем так же, как и в предыдущей задаче. Вероятность двух попадания подряд равна
. А вероятность четырех попаданий подряд равна
.
Лень разбираться самому?
Присоединяйся к мини-курсу по теории вероятностей
ПОДРОБНЕЕ
Вероятность: логика перебора.
В кармане у Пети было
монеты по
рублей и
монеты по
рублей. Петя не глядя переложил какие-то
монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.
Мы знаем, что вероятность события равна отношению числа благоприятных исходов к общему числу исходов. Но как посчитать все эти исходы?
Можно, конечно, обозначить пятирублевые монеты цифрами , а десятирублевые цифрами
— а затем посчитать, сколькими способами можно выбрать три элемента из набора
.
Однако есть более простое решение:
Кодируем монеты числами: ,
(это пятирублёвые),
(это десятирублёвые). Условие задачи можно теперь сформулировать так:
Есть шесть фишек с номерами от до
. Сколькими способами можно разложить их по двум карманам поровну, так чтобы фишки с номерами
и
не оказались вместе?
Давайте запишем, что у нас в первом кармане.
Для этого составим все возможные комбинации из набора . Набор из трёх фишек будет трёхзначным числом. Очевидно, что в наших условиях
и
— это один и тот же набор фишек. Чтобы ничего не пропустить и не повториться, располагаем соответствующие трехзначные числа по возрастанию:
…
А дальше? Мы же говорили, что располагаем числа по возрастанию. Значит, следующее — , а затем:
.
Все! Мы перебрали все возможные комбинации, начинающиеся на . Продолжаем:
.
Всего возможных исходов.
У нас есть условие — фишки с номерами и
не должны оказаться вместе. Это значит, например, что комбинация
нам не подходит — она означает, что фишки
и
обе оказались не в первом, а во втором кармане. Благоприятные для нас исходы — такие, где есть либо только
, либо только
. Вот они:
134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256 – всего благоприятных исходов.
Тогда искомая вероятность равна .
Ответ: .
Сумма событий, произведение событий и их комбинации
Вероятность того, что новый электрический чайник прослужит больше года, равна 0,93. Вероятность того, что он прослужит больше двух лет, равна 0,87. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Проработав год, чайник может либо сломаться на второй год, либо благополучно служить и после 2 лет работы.
Пусть – вероятность того, что чайник прослужил больше года.
– вероятность того, что он сломается на второй год,
– вероятность того, что он прослужит больше двух лет.
Очевидно,
Тогда
Ответ: 0,06.
События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.
Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.
Вероятность суммы несовместных событий равна сумме их вероятностей.
В нашей задаче события «чайник сломался на второй год работы» и «чайник работает больше двух лет» — несовместные. Чайник или сломался, или остается в рабочем состоянии.
На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может. На каждом разветвлении паук выбирает путь, по которому ещё не полз. Считая выбор дальнейшего пути случайным, определите, с какой вероятностью паук выйдет через выход А.
Пронумеруем развилки, на которых паук может случайным образом свернуть в ту или другую сторону.
Он может либо выйти в выход D, и вероятность этого события равна Либо уйти дальше в лабиринт. На второй развилке он может либо свернуть в тупик, либо выйти в выход В (с вероятностью
На каждой развилке вероятность свернуть в ту или другую сторону равна
а поскольку развилок пять, вероятность выбраться через выход А равна
то есть 0,03125.
События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.
В нашей задаче так и есть: неразумный паук сворачивает налево или направо случайным образом, независимо от того, что он делал до этого.
Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.
(А) Два грузовика, работая совместно, вывозят снег с улицы Нижняя Подгорная, причем первый грузовик должен сделать три рейса с грузом снега, а второй — два. Вероятность застрять с грузом снега при подъеме в горку равна 0,2 для первого грузовика и 0,25 — для второго. С какой вероятностью грузовики вывезут снег с улицы Нижняя Подгорная, ни разу не застряв на горке?
Вероятность для первого грузовика благополучно одолеть горку Для второго
Поскольку первый грузовик должен сделать 3 рейса, а второй – два, грузовики ни разу не застрянут на горке с вероятностью
Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Нарисуем все возможные исходы ситуации. Покупатель пришел в магазин, который принадлежит агрофирме, и купил яйцо. Надо найти вероятность того, что это яйцо из первого хозяйства.
Яйца могут быть только или из первого домашнего хозяйства, или из второго, причем эти два события несовместны. Других яиц в этот магазин не поступает.
Пусть вероятность того, что купленное яйцо из первого хозяйства, равна . Тогда вероятность того, что яйцо из второго хозяйства (противоположного события), равна
.
Яйца могут быть высшей категории и не высшей.
В первом хозяйстве 40% яиц имеют высшую категорию, а 60% — не высшую. Это значит, что случайно выбранное яйцо из первого хозяйства с вероятностью 40% будет высшей категории.
Во втором хозяйстве 20% яиц высшей категории, а 80% — не высшей.
Пусть случайно выбранное в магазине яйцо — из первого хозяйства и высшей категории. Вероятность этого события равна произведению вероятностей:
Вероятность того, что яйцо из второго хозяйства и высшей категории, равна
Если мы сложим эти две вероятности, мы получим вероятность того, что яйцо имеет высшую категорию. По условию, высшую категорию имеют 35% яиц, значит, эта вероятность равна 0,35.
Мы получили уравнение:
Решаем это уравнение и находим, что – вероятность того, что яйцо, купленное у этой агрофирмы, оказалось из первого хозяйства.
Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.
С чем пришел пациент в клинику? – С подозрением на гепатит. Возможно, он действительно болен гепатитом, а возможно, у его плохого самочувствия другая причина. Может быть, он просто съел что-нибудь. Вероятность того, что он болен гепатитом, равна 0,05 (то есть 5%). Вероятность того, что он здоров, равна 0,95 (то есть 95%).
Пациенту делают анализ. Покажем на схеме все возможные исходы:
Если он болен гепатитом, анализ дает положительный результат с вероятностью 0,9. То есть анализ покажет: «есть гепатит».
Заметим, что анализ не во всех случаях выявляет гепатит у того, кто действительно им болен. С вероятностью 0,1 анализ не распознает гепатит у больного.
Более того. Анализ может ошибочно дать положительный результат у того, кто не болеет гепатитом. Вероятность такого ложного положительного результата 0,01. Тогда с вероятностью 0,99 анализ даст отрицательный результат, если человек здоров.
Найдем вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.
Благоприятные для этой ситуации исходы: человек болен, и анализ положительный (вероятность одновременного наступления этих двух событий равна ), или человек здоров, и анализ ложный положительный (вероятность одновременного наступления этих двух событий равна
). Так как события «человек болен» и «человек не болен» несовместны, то вероятность того, что результат анализа будет положительным, равна
Ответ: 0,0545.
Чтобы поступить в институт на специальность «Лингвистика», абитуриент З. должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание.
Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5.
Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.
Заметим, что в задаче не спрашивается, будет ли абитуриент по фамилии З. учиться и лингвистике, и коммерции сразу и получать два диплома. Здесь надо найти вероятность того, что З. сможет поступить хотя бы на одну из двух данных специальностей – то есть наберет необходимое количество баллов.
Для того чтобы поступить хотя бы на одну из двух специальностей, З. должен набрать не менее 70 баллов по математике. И по русскому. И еще – обществознание или иностранный.
Вероятность набрать 70 баллов по математике для него равна 0,6.
Вероятность набрать баллы по математике и русскому равна
Разберемся с иностранным и обществознанием. Нам подходят варианты, когда абитуриент набрал баллы по обществознанию, по иностранному или по обоим. Не подходит вариант, когда ни по языку, ни по «обществу» он не набрал баллов. Значит, вероятность сдать обществознание или иностранный не ниже чем на 70 баллов равна
В результате вероятность сдать математику, русский и обществознание или иностранный равна Это ответ.
Чтобы полностью освоить тему, смотрите видеокурс по теории вероятностей. Это бесплатно.
Еще задачи ЕГЭ по теме «Теория вероятностей».
Смотрите также: парадокс Монти Холла.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 3. Теория вероятностей на ЕГЭ по математике.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).
Зачем нужна теория вероятности
Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.
Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.
В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.
Основные понятия теории вероятности
Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.
Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.
Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.
События А и В называется несовместными, если они не могут произойти одновременно.
Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом
.
Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом
.
Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.
- Вероятность принимает значения на отрезке от 0 до 1, т.е.
.
- Вероятность невозможного события равна 0, т.е.
.
- Вероятность достоверного события равна 1, т.e.
.
- Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е.
.
Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные
из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле
. Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.
Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов
.
Ответ получаем по формуле .
Пример задачи из ЕГЭ по математике по определению вероятности
На столе лежат 20 пирожков – 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?
Решение.
Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А – это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:
Ответ: 0,4
Независимые, противоположные и произвольные события
Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.
События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.
Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .
Теоремы сложения и умножения вероятностей, формулы
Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е.
.
Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае
.
Последние 2 утверждения называются теоремами сложения и умножения вероятностей.
Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.
Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается “шесть факториал”.
В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае
.
Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .
В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам
В нашем случае .
И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из
элементов по
элементам:
В нашем случае .
Примеры решения задач из ЕГЭ по математике на определение вероятности
Задача 1. Из сборника под ред. Ященко.
На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.
Решение:
.
Ответ: 0,3.
Задача 2. Из сборника под ред. Ященко.
В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.
Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:
Ответ: 0,98.
Задача 3.
Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.
Решение:
Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие “У. верно решит ровно 9 задач” входит в условие “У. верно решит больше 8 задач”, но не относится к условию “У. верно решит больше 9 задач”.
Однако, условие “У. верно решит больше 9 задач” содержится в условии “У. верно решит больше 8 задач”. Таким образом, если мы обозначим события: “У. верно решит ровно 9 задач” – через А, “У. верно решит больше 8 задач” – через B, “У. верно решит больше 9 задач” через С. То решение будет выглядеть следующим образом:
.
Ответ: 0,06.
Задача 4.
На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение.
Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме “Тригонометрия”, либо к теме “Внешние углы”. По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:
Ответ: 0,35.
Задача 5.
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Решение:
Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.
Тогда укажем варианты таких событий. Примем обозначения: – лампочка горит,
– лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события “лампочка перегорела”, “лампочка горит”, “лампочка горит”:
, где вероятность события “лампочка горит” подсчитывается как вероятность события, противоположного событию “лампочка не горит”, а именно:
.
Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .
Ответ: 0,975608.
Еще одну задачку вы можете посмотреть на рисунке:
Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.
Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!
Основные понятия
Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.
Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.
Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».
Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Реши домашку по математике на 5.
Подробные решения помогут разобраться в самой сложной теме.
Событие и виды событий
Событие — это базовое понятие теории вероятности. События бывают достоверными, невозможными и случайными.
-
Достоверным является событие, которое в результате испытания обязательно произойдет. Например, камень упадет вниз.
-
Невозможным является событие, которое заведомо не произойдет в результате испытания. Например, камень при падении улетит вверх.
-
Случайным называется событие, которое в результате испытания может произойти, а может не произойти. Например, из колоды карт вытащили туза.
Обычно события обозначают большими латинскими буквами. Например, А — событие, при котором из колоды вытащили туза, D — событие, при котором из колоды вытащили семерку.
Несовместными называются события, в которых появление одного из событий исключает появление другого (при условии одного и того же испытания). Простейшим примером несовместных событий является пара противоположных событий. Событие, противоположное данному, обычно обозначается той же латинской буквой с черточкой вверху. Например:
-
A0 — в результате броска монеты выпадет орел;
-
Ā0 — в результате броска монеты выпадет решка.
Полная группа событий — это множество несовместных событий, среди которых в результате отдельно взятого испытания обязательно появится одно из этих событий.
Алгебра событий
Операция сложения событий означает логическую связку ИЛИ, а операция умножения событий — логическую связку И.
Сложение событий
Суммой двух событий A и B называется событие A+B, которое состоит в том, что наступит или событие A, или событие B, или оба события одновременно. В том случае, если события несовместны, последний вариант отпадает, то есть может наступить или событие A, или событие B.
Правило распространяется и на большее количество слагаемых, например, событие A1 + A2 + A3 + A4 + A5 состоит в том, что произойдет хотя бы одно из событий A1, A2, A3, A4, A5, а если события несовместны — то одно и только одно событие из этой суммы: или событие A1, или событие A2, или событие A3, или событие A4, или событие A5.
Примеров масса:
-
Событие
(при броске игральной кости не выпадет 5 очков) состоит в том, что выпадет или 1, или 2, или 3, или 4, или 6 очков.
-
Событие B1, 2 = B1 + B2 (выпадет не более двух очков) состоит в том, что появится 1 или 2 очка.
-
Событие BЧ = B2 + B4 + B6 (будет чётное число очков) состоит в том, что выпадет или 2 , или 4 , или 6 очков.
Умножение событий
Произведением двух событий A И B называют событие AB, которое состоит в совместном появлении этих событий. Иными словами, умножение AB означает, что при некоторых обстоятельствах наступит и событие A, и событие B. Аналогичное утверждение справедливо и для большего количества событий: например, произведение A1A2A3 … A10 подразумевает, что при определенных условиях произойдет и событие A1, и событие A2, и событие A3,…, и событие A10.
Рассмотрим испытание, в котором подбрасываются две монеты, и следующие события:
-
A1 — на 1-й монете выпадет орел;
-
Ā1 — на 1-й монете выпадет решка;
-
A2 — на 2-й монете выпадет орел;
-
Ā2 — на 2-й монете выпадет решка.
Тогда:
-
событие A1A1 состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет орел;
-
событие Ā2Ā2 состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет решка;
-
событие A1Ā2 состоит в том, что на 1-й монете выпадет орел и на 2-й монете решка;
-
событие Ā1A2 состоит в том, что на 1-й монете выпадет решка и на 2-й монете орел.
Классическое определение и формула вероятности
Вероятностью события A в некотором испытании называют отношение:
Свойства вероятности:
-
Вероятность достоверного события равна единице.
-
Вероятность невозможного события равна нулю.
-
Вероятность случайного события есть положительное число, заключенное между нулем и единицей.
Таким образом, вероятность любого события удовлетворяет двойному неравенству 0 ≤ P(A) ≤ 1.
Как решать задачи по теории вероятности
Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?
Как рассуждаем:
Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:
P = 0/15 = 0
Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.
Ответ: 0.
Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?
Как рассуждаем:
Вспоминаем основную формулу теории вероятности, которую мы привели выше. Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).
Следовательно:
Ответ: 0,25.
Вероятностью события $А$ называется отношение числа благоприятных для $А$ исходов к числу всех
равновозможных исходов
$P(A)={m}/{n}$, где $n$ – общее количество возможных исходов, а $m$ – количество исходов, благоприятствующих событию
$А$.
Вероятность события — это число из отрезка $[0; 1]$
В фирме такси в наличии $50$ легковых автомобилей. $35$ из них чёрные, остальные — жёлтые.
Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета.
Решение:
Найдем количество желтых автомобилей:
$50-35=15$
Всего имеется $50$ автомобилей, то есть на вызов приедет одна из пятидесяти. Желтых автомобилей $15$,
следовательно, вероятность приезда именно желтого автомобиля равна ${15}/{50}={3}/{10}=0,3$
Ответ:$0,3$
Противоположные события
Два события называются противоположными, если в данном испытании они несовместимы и одно из них обязательно
происходит. Вероятности противоположных событий в сумме дают 1.Событие, противоположное событию $А$, записывают
${(А)}↖{-}$.
$Р(А)+Р{(А)}↖{-}=1$
Независимые события
Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.
Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:
$Р(А·В)=Р(А)·Р(В)$
Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.
Решения:
Вероятность $Р(А)$ — выиграет первый билет.
Вероятность $Р(В)$ — выиграет второй билет.
События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей
$Р(А·В)=Р(А)·Р(В)$
$Р=0,15·0,12=0,018$
Ответ: $0,018$
Несовместные события
Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)
Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:
$Р(А+В)=Р(А)+Р(В)$
На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение:
Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:
$Р(А+В)=Р(А)+Р(В)$
$Р = 0,3+0,18=0,48$
Ответ: $0,48$
Совместные события
Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же
испытании. В противном случае события называются несовместными.
Вероятность суммы двух совместных событий $A$ и $B$ равна сумме вероятностей этих событий минус
вероятность их произведения:
$Р(А+В)=Р(А)+Р(В)-Р(А·В)$
В холле кинотеатра два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится
кофе, равна $0,6$. Вероятность того, что кофе закончится в обоих автоматах, равна $0,32$. Найдите вероятность того,
что к концу дня кофе закончится хотя бы в одном из автоматов.
Решение:
Обозначим события, пусть:
$А$ = кофе закончится в первом автомате,
$В$ = кофе закончится во втором автомате.
Тогда,
$A·B =$ кофе закончится в обоих автоматах,
$A + B =$ кофе закончится хотя бы в одном автомате.
По условию, $P(A) = P(B) = 0,6; P(A·B) = 0,32$.
События $A$ и $B$ совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий,
уменьшенной на вероятность их произведения:
$P(A + B) = P(A) + P(B) − P(A·B) = 0,6 + 0,6 − 0,32 = 0,88$
Ответ: $0,88$
Случайности не случайны… Всё решает вероятность событий!
В ЕГЭ по математике целых два задания на теорию вероятностей, поэтому стоит уделить ей в два раза больше внимания! Первое решается по основной формуле вероятности, а вот над вторым придётся подумать и вспомнить, какие бывают события.
Мы структурировали типы задач, которые могут попасться на экзамене, и сделали эту полезную шпаргалку с формулами и теорией — сохраняйте карточки, чтобы подготовка к ЕГЭ по математике была ещё продуктивнее.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!
Скачать материал
Скачать материал
- Сейчас обучается 96 человек из 32 регионов
- Сейчас обучается 91 человек из 37 регионов
- Курс добавлен 16.12.2022
- Сейчас обучается 20 человек из 14 регионов
Описание презентации по отдельным слайдам:
-
1 слайд
Подготовка к ЕГЭ
Теория вероятности -
2 слайд
Подготовка к ЕГЭ
Решение задач по теории вероятности
В10 -
3 слайд
Справочный материал
Элементарные события (исходы) – простейшие события, которыми может окончится случайный опыт.
Сумма вероятностей всех элементарных событий равна 1.
Р(А) равна сумме вероятностей элементарных событий, благоприятствующих этому событию.
(объединение) – событие, состоящее из элементарных исходов, благоприятствующих хотя бы одному из событий А,В
(пересечение) – событие, состоящее из элементарных исходов, благоприятствующих обоим событиям А и В.
А
называется противоположным событию А, если состоит из тех и только тех элементарных исходов, которые не входят в А.
Несовместные события – это события, которые не наступают в одном опыте. -
4 слайд
Вероятности противоположных событий:
Формула сложения вероятностей:
Формула сложения для несовместных событий:
Формула умножения вероятностей:
Условная вероятность В при условии, что А наступило
Формула вероятности k успехов в серии из n испытаний Бернулли:
р – вероятность успеха, q=1-p вероятность неудачи в одном испытании -
5 слайд
Схема решения задач:
Определить, в чем состоит случайный эксперимент и какие у него элементарные события. Убедиться, что они равновероятны.
Найти общее число элементарных событий (N)
Определить, какие элементарные события благоприятствуют событию А, и найти их число N(A).
Найти вероятность события А по формуле -
6 слайд
Задача 1. Вася, Петя, Коля и Леша бросили жребий – кому начинать игру. Найдите вероятность того, что игру будет начинать Петя.
Решение:
Случайный эксперимент – бросание жребия.
Элементарное событие – участник, который выиграл жребий.
Число элементарных событий: N=4
Событие А = {жребий выиграл Петя}, N(A)=1
Ответ: 0,25 -
7 слайд
Реши самостоятельно!
Дежурные по классу Алексей, Иван, Татьяна и Ольга бросают жребий — кому стирать с доски. Найдите вероятность того, что стирать с доски достанется одной из девочек.Алексей
Иван
Татьяна
Ольга
Ответ: 0,5 -
8 слайд
Реши самостоятельно!
Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?10, 11, 12, 13, 14, 15, 16, 17, 18, 19
Ответ: 0,3 -
9 слайд
Реши самостоятельно!
Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнет игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза.Ответ: 0,375
О – орел (первый)
Р – решка (второй) -
10 слайд
Задача 2. Игральный кубик бросили один раз. Какова вероятность того, что выпало число очков, большее чем 4.
Решение:
Случайный эксперимент – бросание кубика.
Элементарное событие – число на выпавшей грани.
Ответ:1/3
Всего граней:
1, 2, 3, 4, 5, 6
Элементарные события:
N=6
N(A)=2 -
11 слайд
Реши самостоятельно!
В случайном эксперименте игральный кубик бросают один раз. Найдите вероятность того, что выпадет число, меньшее чем 4.Ответ: 0,5
1, 2, 3, 4, 5, 6 -
12 слайд
Реши самостоятельно!
В случайном эксперименте игральный кубик бросают один раз. Найдите вероятность того, что выпадет четное число.Ответ: 0,5
1, 2, 3, 4, 5, 6 -
13 слайд
Реши самостоятельно!
В случайном эксперименте игральный кубик бросают один раз. Найдите вероятность того, что выпадет число, отличающееся от числа 3 на единицу.Ответ: 1/3
1, 2, 3, 4, 5, 6 -
14 слайд
Задача 3. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
Решение:
орел — О
решка — Р
Возможные исходы события:
О
Р
О
О
О
Р
Р
Р
N=4
N(A)=2
Ответ:0,5
4 исхода -
15 слайд
Реши самостоятельно!
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что наступит исход ОР (в первый раз выпадет ОРЕЛ, во второй -РЕШКА)
Ответ: 0,25 -
16 слайд
Реши самостоятельно!
Монету бросают дважды. Найдите вероятность того, что выпадет хотя бы один ОРЕЛ.
Ответ: 0,25 -
17 слайд
Задача 4. В случайном эксперименте бросают два игральных кубика. Найдите вероятность того, что в сумме выпадет 8 очков.
Множество элементарных исходов:
Решение:
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12
N=36
A= {сумма равна 8}
N(А)=5
Ответ:5/36 -
18 слайд
Реши самостоятельно!
Игральный кубик бросают дважды. Найдите вероятность того, что первый раз выпадет число 6.Ответ: 1/6
Всего вариантов 36
Комбинаций с первой «6»
61,62,63,64,65,66 -
19 слайд
Реши самостоятельно!
Игральный кубик бросают дважды. Найдите вероятность того, что первый раз и во второй раз выпадет одинаковое число очков.Ответ: 1/6
-
20 слайд
Реши самостоятельно!
Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию А={сумма очков равна 5}Ответ: 4
-
21 слайд
Реши самостоятельно!
Игральный кубик бросают дважды. Какая сумма очков наиболее вероятна?Ответ: 7
-
22 слайд
Решение:
О
О
О
О
О
О
Р
Р
Р
Р
Р
Р
Р
Р
Р
Р
Р
Р
О
О
О
О
О
О
Множество элементарных исходов:
N=8
A= {орел выпал ровно 2 }
N(А)=3
Ответ: 0,375
8 исходов
Задача 5. В случайном эксперименте монету бросили три раза. Какова вероятность того, что орел выпал ровно два раза. -
23 слайд
Монету бросают три раза. Какова вероятность того, что результаты двух первых бросков будут одинаковы?
Реши самостоятельно!
Ответ: 0,5 -
24 слайд
Монету бросают три раза. Найдите вероятность того, что результаты первого и последнего броска различны.
Реши самостоятельно!
Ответ: 0,5 -
25 слайд
Монету бросают четыре раза. Найдите вероятность того, что орел выпадет ровно три раза.
Реши самостоятельно!
Ответ: 0,25 -
26 слайд
Задача 6. В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 – из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции.
Решение:
Всего спортсменов: N= 4 + 7 + 9 + 5 = 25
A= {последний из Швеции}
N=25
N(А)=9
Ответ: 0,36 -
27 слайд
Решение:
N= 1000
A= {аккумулятор исправен}
N(A)= 1000 – 6 = 994
Ответ: 0,994
Задача 7. В среднем из 1000 аккумуляторов, поступивших в продажу, 6 неисправны. Найдите вероятность того, что купленный аккумулятор окажется исправным. -
28 слайд
Задача 8. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США , остальные из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.
Решение:
Определите N
Определите N(A)
Реши самостоятельно
Проверка:
N = 20N(A)= 20 – 8 – 7 = 5
Ответ: 0,25
A= {первой будет спортсменка из Китая} -
29 слайд
2 способ: использование формулы сложения вероятностей несовместных событий
R={первая из России}
A={первая из США}
C={Первая из Китая}
P(R) + P(A) + P(C) = 1
P(C) = 1 — P(R) — P(A) -
30 слайд
Задача 9. В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на 4 группы по 4 команды в каждой. В ящике вперемешку лежат карточки с номерами групп:
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.
Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе.
Решение:
Множество элементарных событий: N=16
A={команда России во второй группе}
С номером «2» четыре карточки: N(A)=4
Ответ: 0,25 -
31 слайд
В группе туристов 24 человека. С помощью жребия они выбирают трех человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдет в магазин?
Реши самостоятельно!
Ответ: 0,125 -
32 слайд
В чемпионате по прыжкам в воду участвуют 7 спортсменов из России, 6 из Китая, 3 из Кореи, 4 из Японии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что первым будет выступать спортсмен из России.
Реши самостоятельно!
Ответ: 0,35 -
33 слайд
В некотором городе из 5000 появившихся на свет младенцев оказалось 2512 мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных.
Реши самостоятельно!
Ответ: 0,498
5000 – 2512 = 2488 -
34 слайд
Задача 10. Вероятность того, что шариковая ручка пишет плохо (или не пишет) равна 0,1. Покупатель в магазине выбирает одну такую ручку. Найдите вероятность того, что ручка пишет хорошо.
Решение:
A={ручка пишет хорошо}
Противоположное событие:
Ответ: 0,9 -
35 слайд
Задача 11. На экзамене по геометрии школьнику достается один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение:
А={вопрос на тему «Вписанная окружность»}
B={вопрос на тему «Параллелограмм»}
События А и В несовместны, т.к. нет вопросов относящихся к двум темам одновременно
С={вопрос по одной из этих тем}
Р(С)=Р(А) + Р(В)
Р(С)=0,2 + 0,15=0,35
Ответ: 0,35 -
36 слайд
А={кофе закончится в первом автомате}
B={кофе закончится во втором автомате}
Р(А)=Р(В)=0,3
По формуле сложения вероятностей:
Ответ: 0,52
Решение:
Задача 12. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах. -
37 слайд
Задача 13. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся. Результат округлите до сотых.
Решение:
Вероятность попадания = 0,8
Вероятность промаха = 1 — 0,8 = 0,2
А={попал, попал, попал, промахнулся, промахнулся}
По формуле умножения вероятностей
Р(А)= 0,8 ∙ 0,8 ∙ 0,8 ∙ 0,2 ∙ 0,2
Р(А)= 0,512 ∙ 0,04 = 0,02048 ≈ 0,02
Ответ: 0,02 -
38 слайд
Задача 14. В магазине стоят два платежных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
Решение:
По формуле умножения вероятностей:
А={хотя бы один автомат исправен}
Ответ: 0,9975 -
39 слайд
Источник материала:
ЕГЭ 2012. Математика. Задача В10. Рабочая тетрадь
Авторы: И.Р.Высоцкий, И.В.Ященко
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
6 153 354 материала в базе
- Выберите категорию:
- Выберите учебник и тему
- Выберите класс:
-
Тип материала:
-
Все материалы
-
Статьи
-
Научные работы
-
Видеоуроки
-
Презентации
-
Конспекты
-
Тесты
-
Рабочие программы
-
Другие методич. материалы
-
Найти материалы
Другие материалы
- 08.11.2021
- 190
- 1
- 08.11.2021
- 403
- 3
- 08.11.2021
- 112
- 0
Рейтинг:
5 из 5
- 08.11.2021
- 284
- 7
- 08.11.2021
- 185
- 2
- 08.11.2021
- 966
- 18
Вам будут интересны эти курсы:
-
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
-
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
-
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
-
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
-
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
-
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
-
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
-
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
-
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
-
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
-
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
-
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
-
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Теория вероятностей для сдачи ОГЭ и ЕГЭ
Справится с задачей по теории вероятности можно запросто, если знаешь формулу нахождения вероятности и если повезет с задачей. Пока практика показывает, что на экзамене даются задачи проще, чем на пробнике.
К таким простым задачам будем относить задачи из разряда «на тарелке лежат столько-то пирожков, найти вероятность, что попадется пирожок с вишней», с кубиками/монетками и задачки на подобие «найти вероятность того, что ручка не пишет, если вероятность того, что она пишет равна 0,6».
Все остальные типы задач будем считать сложными, т.к. не каждый сможет к ним подступиться без определенных знаний.
Начнем разбор задач с формулы нахождения вероятности:
P=m:n, где P – вероятность какого-либо события, m – благоприятные события (то, что нас спрашивают в вопросе), n – всевозможные события.
Разберемся с поиском благоприятных событий на примере.
#1.
Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию А=«сумма очков равна 10»?
Задаем себе вопрос: в каких случаях сумма очков будет равна 10?
1 кубик | 2 кубик | |
1 | 4 | 6 |
2 | 5 | 5 |
3 | 6 | 4 |
Это и есть все благоприятные события. Итого, их 3.
Ответ: 3.
Ну и теперь рассмотрим несколько простейших задач.
Простейшие задачи на нахождение вероятности.
#2.
На тарелке лежат 15 пирожков. Из них 4 с вишней, 5 с яблоком, остальные с абрикосом. Вова наугад берет пирожок. Найдите вероятность того, что ему попадется пирожок с абрикосом.
Благоприятные события – это пирожки с абрикосом. Их в тарелке 15-4-5=6.
Всевозможные события – это все пирожки. Их 15.
Вероятность=Благоприятные : Всевозможные, т.е.
P=6:15=0,4.
!!! Обратите внимание на то, что вероятность не может быть больше 1! Это связано с тем, что 100%-ая вероятность равна 1.
Ответ: 0,4.
#3.
На научной конференции будут выступать 3 докладчика из Германии, 2 из России и 5 из Японии. Найдите вероятность того, что последним будет выступать докладчик из России, если порядок выступления определяется жребием.
Благоприятные события – это российские докладчики. Их 2.
Всевозможные события – это все прибывшие докладчики. Их 3+2+5=10.
P=2:10=0,2
Ответ: 0,2
#4.
Из слова «МАТЕМАТИКА» случайным образом выбирается одна буква. Найдите вероятность того, что эта буква окажется гласной.
Благоприятные события – это гласные буквы. Их 5.
Всевозможные события – это все буквы в слове. Их 10.
Р=5:10=0,5
Ответ: 0,5
#5.
Из класса, в котором учатся 12 мальчиков и 8 девочек, выбирают по жребию одного дежурного. Найдите вероятность того, что дежурным окажется мальчик.
Благоприятные события – это все мальчики. Их 12.
Всевозможные события – все дети в классе. Их 12+8=20.
Р=12:20=0,6
Ответ: 0,6
#6.
В партии из 1000 компьютеров оказалось 5 бракованных. Какова вероятность купить исправный компьютер?
Благоприятные события – это исправные компьютеры. Их 1000-5=995.
Всевозможные события – это все компьютеры. Их 1000.
Р=995:1000=0,995
Ответ: 0,995
#7.
В урне лежат 3 белых, 2 желтых и 5 красных шаров. Найдите вероятность того, что извлеченный наугад шар будет красного цвета.
Благоприятные события – это красные шарики. Их 5.
Всевозможные события – это все шарики. Их 3+2+5=10.
Р=5:10=0,5
Ответ: 0,5
#8.
В каждой пятой банке кофе есть приз. Призы распределены случайно. Галя покупает банку кофе в надежде выиграть приз. Найдите вероятность того, что Галя не найдет приз.
Благоприятные события – это банки, в которых нет приза. Их 4.
Всевозможные события – это все банки. Их 5.
P=4:5=0,8
Ответ: 0,8.
Из простых задач остались самые элементарные.
Мы уже знаем, что если какое-либо событие происходит стопроцентно, то его вероятность обозначают за 1.
Если вероятность выпадения снега 50%, то логично предположить, что вероятность того, что снег не выпадет равна так же 50%. Избавимся от процентов. Вероятность выпадения снега равна 0,5, вероятность невыпадения – 0,5. В сумме эти два числа равны 1.
Если вероятность того, что при письме карандаш сломается равна 0,24, то, чтобы найти вероятность того, что он не сломается, надо из 1 вычесть 0,24. Получится 0,76.
#9.
Вероятность того, что новая шариковая ручка пишет плохо (или не пишет), равна 0,06. Покупатель в магазине выбирает одну шариковую ручку. Найдите вероятность того, что ручка пишет хорошо.
Р=1-0,06=0,94
Ответ: 0,94.
Задачи с кубиками.
Следующий тип простых задач – это задачи с кубиками.
У кубика, как известно, 6 сторон. Значит, при подбрасывании одного кубика, всевозможных событий у нас будет 6. А при подбрасывании двух кубиков? Можно, конечно, расписать все варианты, но если кубиков не два, а три/четыре/пять? Всё время экзамена уйдет на это.
Нужно запомнить, что если количество сторон кубика возвести в степень, равную количеству кубиков, то мы получим число всевозможных событий.
6количество кубиков=всевозможные события
Для нахождения благоприятных событий такой формулы нет, поэтому разминаем мозг и ищем все самостоятельно.
#10.
В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 10 очков. Результат округлите до сотых.
Найдем благоприятные события. В каких случаях сумма очков будет равна 10? Распишем, главное, ничего не забыть.
1 кубик | 2 кубик | 3 кубик | |
1 | 1 | 3 | 6 |
2 | 1 | 4 | 5 |
3 | 1 | 5 | 4 |
4 | 1 | 6 | 3 |
5 | 2 | 2 | 6 |
6 | 2 | 3 | 5 |
7 | 2 | 4 | 4 |
8 | 2 | 5 | 3 |
9 | 2 | 6 | 2 |
10 | 3 | 1 | 6 |
11 | 3 | 2 | 5 |
12 | 3 | 3 | 4 |
13 | 3 | 4 | 3 |
14 | 3 | 5 | 2 |
15 | 3 | 6 | 1 |
16 | 4 | 1 | 5 |
17 | 4 | 2 | 4 |
18 | 4 |
3 |
3 |
19 | 4 | 4 | 2 |
20 | 4 | 5 | 1 |
21 | 5 | 1 | 4 |
22 | 5 | 2 | 3 |
23 | 5 | 3 | 2 |
24 | 5 | 4 | 1 |
25 | 6 | 1 | 3 |
26 | 6 | 2 | 2 |
27 | 6 | 3 | 1 |
Итого, благоприятных событий 27, а всевозможных – 63=216.
Р=27:216=0,125. Округляем до сотых – 0,13.
Ответ: 0,13.
#11.
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка. Результат округлите до сотых.
С двумя кубиками совсем просто.
Всевозможных событий — 62=36
Благоприятных событий — 3 (в сумме выйдет 4, если выпадут 1 и 3, или 3 и 1, или 2 и 2)
Р=3:36=0,08333
Ответ: 0,08
Задачи с монетами.
Задачи с монетками похожи на задачки с кубиками, но придется все всевозможные варианты выписать, чтобы найти благоприятные. Не уверены, что выписали всё? По аналогии с кубиками, можно сделать проверку: количество сторон монеты возвести в степень, равную количеству монеток.
2количество монет=всевозможные события
#12.
Одновременно бросают две монеты. Найдите вероятность, что на обеих монетах выпадет орел.
О – орел, Р — решка
Благоприятных – 1
Всевозможных – 4
Р=1:4=0,25
Ответ: 0,25
#13.
Одновременно бросают три монеты. Найдите вероятность, что на выпадут два орла и одна решка.
Всевозможных событий у нас 23=8. Выпишем их.
О | О | О |
О | О | Р |
О | Р | О |
О | Р | Р |
Р | О | О |
Р | О | Р |
Р | Р | О |
Р | Р | Р |
Благоприятных событий 3.
Р=3:8=0,375
Ответ: 0,375.
На этом приятности заканчиваются, и начинаются неприятности.
Задачи на нахождение вероятности совместных и несовместных событий.
В предыдущих задачах события были случайными. Но еще есть такие виды событий как совместные и несовместные. Из названий понятно, что совместные события могут происходить одновременно, а несовместные нет. Например, к совместным событиям относятся снег с дождем, т.е. одновременно идет снег И дождь; к несовместным событиям относятся наступление дня и наступление ночи, т.к. в природе может быть ИЛИ день, ИЛИ ночь. Что-то одно.
Союзы и/или я выделила не просто так. В информатике есть тема «Логические операции». Правда не могу сказать, в каких классах ее изучают. Определенно в старших. В этой теме есть такие понятия как логическое сложение и логическое умножение. Так вот. Союз И отвечает за логическое умножение, а союз ИЛИ – за логическое сложение.
О чем это говорит? Если в задаче нам даны вероятности совместных событий, то их необходимо умножать. Если даны вероятности несовместных событий, то их будем складывать.
И – умножаем
ИЛИ — складываем
#14.
В уличном фонаре три лампы. Вероятность перегорания лампы в течении года равно 0,8. Найдите вероятность того, что в течении года хотя бы одна лампа не перегорит.
Начинаем рассуждать. Если лампа перегорает с вероятностью 0,8, то она не перегорает с вероятностью 1-0,8=0,2.
Возможны несколько случаев.
1) 1 лампа остается И 2 лампы перегорают. Вероятность такого расклада равна 0,2*0,8*0,8=0,128. Причем остаться гореть может первая лампа, вторая ИЛИ третья. Т.е. первый случай разбивается еще на три таких же. Учитывая этот факт, вероятность того, что одна лампа не перегорит, равна 0,128*3=0,384.
2) 2 лампы остаются И 1 перегорает. Этот случай так же разбивается на три. Найдем вероятность: (0,2*0,2*0,8)*3=0,096.
3) 3 лампы остаются гореть. И первая, и вторая, и третья. Вероятность данного события равна 0,2*0,2*0,2=0,008.
Что получаем на выходе? Произойти может или первый случай, или второй, или третий. Найдем вероятность:
Р=0,384+0,096+0,008=0,488
И решим задачу вторым способом. Более коротким.
Вероятность того, что все лампы перегорят (и первая, и вторая, и третья) равна 0,8*0,8*0,8=0,512
Т.к. нас интересует противоположный результат, то вероятность того, что в течении года хотя бы одна лампа не перегорит равна 1-0,512=0,488
Ответ: 0,488
#15.
Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.
Вероятность ничьей = 1-0,4-0,4=0,2.
Команду ожидают две игры. За эти игры она должна набрать 4 очка. Это возможно осуществить тремя способами. Либо они одерживают победу в обоих играх, либо одерживают победу в первой игре и играют вничью во второй, либо играют вничью в первой игре и побеждают во второй. Расставим союзы и/или, чтобы составить полноценную формулу:
(победа и победа) или (победа и ничья) или (ничья и победа)
Заменяем союзы на знаки и получим, что вероятность того, что команда попадет в следующий тур равна 0,4*0,4+0,4*0,2+0,2*0,4=0,32.
Ответ: 0,32.
Успехов в учебе!
Автор статьи, но не задач: Васильева Анна