Робот со стенками егэ информатика

Привет! Мы добрались до 18 задания из ЕГЭ по информатике 2021.

Это задание снова решается с помощью компьютера.

Восемнадцатое задание направлено на обработку вещественных чисел с помощью таблиц. Мы с вами будет использовать программу Excel от компании Microsoft.

Перейдём к к тренировке решения 18 задания из ЕГЭ по информатике 2021.

Задача (Стандартная)

Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монеты с собой; это также относится к начальной и конечной клетке маршрута Робота.

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1 8 8 4
10 1 1 3
1 3 12 2
2 3 5 6

Для указанных входных данных ответом должна быть пара чисел 35 и 15.

Решение:

Открываем файл к данной задачке.

В начале найдём максимальную сумму.

Выделяем область всех ячеек, где написаны числа, вырезаем её и вставляем на столбец правее. Это нужно для того, чтобы при составлении формулы решения не было ошибок.

ЕГЭ по информатике 2021 - задание 18 (Переносим на столбец вправо)

Обозначим мысленно ту область, где мы будем составлять наше решение, пропустив одну или две строчки снизу. По размеру область будет такая же.

ЕГЭ по информатике 2021 - задание 18 (Область решения)

В каждой ячейке этой области будет лежать максимальная cумма, которую может собрать Робот, дойдя до этой клетки. Т.к. Робот идёт в верхнюю правую клетку, то, соответственно, в ячейке K12 будет находится нужный нам ответ.

Наш Робот идёт из левой нижней клетки. Поэтому формулу, решающую эту задачу, составим сначала для ячейки B21.

Кликаем на ячейку B21 и пишем формулу:

=МАКС(A21;B22)+B10

ЕГЭ по информатике 2021 - задание 18 (Пишем формулу)

Примечание: Чтобы в ячейке начать писать формулу, нужно поставить знак «=».

В любую ячейку нашей области можно попасть либо слева, либо снизу (Т.к. составляем формулу для любой ячейки, то не играет роли, что в данная ячейка угловая). Поэтому для ячейки B21 мы берём предыдущий результат — либо из левой ячейки, либо из правой ячейки, в зависимости от того, где собранная сумма больше.

Эту роль исполняет функция МАКС(). Она помогает выбрать откуда нужно идти, чтобы сумма всегда была максимальна.

Плюс, мы должны добавить сумму для данной ячейки к максимальной сумме предыдущей клетки. Поэтому в формулу дописываем ячейку B10

После того, как составили формулу для одной ячейки B21, можно распространить формулу на всю область.

Подносим мышку к правому нижнему углу. Как только появился чёрный крестик, кликаем левую кнопку мыши, и тянем вверх на 10 строчек вверх.

ЕГЭ по информатике 2021 - задание 18 (Распространяем формулу)

После того, как столбец готов, выделяем этот столбец, и аналогично, распространяем его на всё пространство.

ЕГЭ по информатике 2021 - задание 18 (Распространяем формулу 2)

В итоге получается такая картина:

ЕГЭ по информатике 2021 - задание 18 (Максимальное значение)

Видим, что в ячейке K12 значение 1298. Это значение нам и нужно.

Аналогичным образом ищется минимальное значение, только в формуле вместо функции МАКС будет использоваться функция МИН.

Минимальное значение получилось 589.

Ответ: 1298589

Посмотрим ещё одну интересную задачу из примерны задач ЕГЭ по информатике нового образца 2021.

Задача (со стенками)

Квадрат разлинован на N × N клеток (1 < N < 30). Исполнитель Робот может
перемещаться по клеткам, выполняя за одно перемещение одну из двух
команд: вправо или вниз. По команде вправо Робот перемещается
в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю.
Квадрат ограничен внешними стенами. Между соседними клетками квадрата
также могут быть внутренние стены. Сквозь стену Робот пройти не может.
Перед каждым запуском Робота в каждой клетке квадрата лежит монета
достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой;
это также относится к начальной и конечной клеткам маршрута Робота.
Определите максимальную и минимальную денежные суммы, которые
может собрать Робот, пройдя из левой верхней клетки в правую нижнюю.
В ответе укажите два числа – сначала максимальную сумму, затем
минимальную.

Исходные данные представляют собой электронную таблицу размером
N × N, каждая ячейка которой соответствует клетке квадрата. Внутренние
и внешние стены обозначены утолщенными линиями.

Пример входных данных:

1 8 8 4
10 1 1 3
1 3 12 2
2 3 5 6

Для указанных входных данных ответом должна быть пара чисел

Решение:

Открываем файл в программе Excel.

Выделим все ячейки с числами, нажмём «вырезать», используя контекстное меню. Вставим данные на 1 столбец вправо. Это делаем потому, что будем использовать для решения формулу, которая будет обращаться к ячейке слева.

Мысленно представим пространство на 1 строчку ниже, чем область, где находятся числа. Это пространство будет таким же по размерам, как и область с числами. В этом пространстве и будет наше решение.

ЕГЭ по информатике демоверсия 2022 - задание 18 (Решение)

Отметим особым цветом те ячейки, которые «спрятаны» от движения Робота стенками.

ЕГЭ по информатике демоверсия 2022 - задание 18 (Решение со стенками)

Для этих ячеек будем составлять другие формулы, в отличии от обычных ячеек.

Цвет ячейки можно поменять, нажав на кнопку «Цвет заливки» на главной вкладке программы.

Т.к. Робот направляется из левой верхней ячейки, то мы сначала и напишем формулу для этой ячейки. Пишем для ячейки B22:

=МАКС(B21;A22)+B1

Робот в любую ячейку может прийти либо сверху, либо слева. Для подсчёта максимального количества монет, мы должны выбрать максимальное предыдущее значение. Это и делаем формула. Плюс Робот должен взять монеты с текущей клетки.

Распространим формулу на всё пространство, не трогая закрашенные клетки.

ЕГЭ по информатике демоверсия 2022 - задание 18 (Распространяем формулу)

Получается такая картина:

ЕГЭ по информатике демоверсия 2022 - задание 18 (Распространяем формулу 2)

В ячейки для первой закрашенной области, Робот может попасть только сверху! Поэтому пишем формулу для ячейки H25:

=H24+H4

Распространяем формулу по всему закрашенному столбцу.

В ячейки для второй закрашенной области, Робот может попасть только слева! Поэтому пишем формулу для ячейки М39:

=L39+M18

Распространяем формулу по всей закрашенной строчке.

В правом нижнем углу нашего рабочего пространства получается максимальное количество монет, которое может собрать Робот. В ячейке U41 получается число 721.

Чтобы получить минимальную возможную сумму, в главной формуле функцию МАКС нужно заменить на МИН!

Удобно воспользоваться автоматической заменой через Ctrl+F.

ЕГЭ по информатике демоверсия 2022 - задание 18 (автоматическая замена)

Минимальная сумма равна 640.

Ответ:

Задача (Два Робота)

Квадрат разлинован на N×N клеток (2 < N < 19). В каждой клетке лежат
монеты, количество которых соответствует записанному числу. Количество
монет не может быть меньше 1.

Два исполнителя – ВЕРХ и НИЗ – существуют на одинаковых полях. Первый
имеет две команды – вверх и вправо, второй – вниз и вправо, которые,
соответственно, перемещают исполнитель на одну клетку вверх, вниз или
вправо. Исполнитель ВЕРХ начинает движение в левой нижней ячейке,
исполнитель НИЗ – в левой верхней.

Откройте файл. Какой из исполнителей соберет большее количество монет в результате
своей работы, если известно, что каждый из них запрограммирован собрать
максимальное количество монет?

Исходные данные представляют собой электронную таблицу размером N×N,
каждая ячейка которой соответствует клетке квадрата.

Пример:

1 8 8 4 10
10 1 1 3 2
1 3 12 2 8
2 3 5 6 11
3 19 14 11 5

Для указанных входных данных ответом является комбинация из названия
исполнителя и количества собранных монет

ВЕРХ84

Решение:

Перенесём таблицу чисел на один столбец вправо.

Найдём, сколько соберёт монет исполнитель ВЕРХ.

Исполнитель «ВЕРХ» начинает идти с левой нижней клетки. Поэтому первую формулу мы зададим для клетки B27. Эта ячейка является нижней левой клеткой для области, где мы будем составлять решение.

Напишем в ячейке B27:

=МАКС(A27;B28)+B13

ЕГЭ по информатике 2021 - задание 18 (Исполнитель ВЕРХ)

Распространим формулу на всё пространство.

ЕГЭ по информатике 2021 - задание 18 (Исполнитель ВЕРХ, распространяем формулу)

Когда исполнитель пройдёт всё поле, в ячейке N15 будет находится ответ. Максимальное количество монет, которое может собрать исполнитель ВЕРХ будет 1743.

Теперь найдём максимальное количество монет, которое может собрать исполнитель НИЗ.

Решать будем аналогичным образом, удалив все следы от предыдущего исполнителя.

Т.к. исполнитель НИЗ стартует с левой верхней клетки, то мы сначала составим формулу для ячейки B15. Эта клетка олицетворяет левую верхнюю ячейку для области, где будет происходить решение.

=МАКС(B14;A15)+B1

ЕГЭ по информатике 2021 - задание 18 (Исполнитель НИЗ, составляем формулу)

В любую ячейку мы можем попасть либо сверху, либо слева. Это не относится к боковым и угловым ячейкам, но формула будет работать и для них.

При составлении максимальной суммы для любой ячейки, мы выбираем максимальное значение суммы из двух предыдущих ячеек + добавляем значение для этой ячейки.

Распространим формулу на всё пространство.

ЕГЭ по информатике 2021 - задание 18 (Исполнитель НИЗ, распространяем формулу)

В ячейке N27 будет максимальное значение для исполнителя НИЗ. Получилось 1686.

Видим, что у исполнителя ВЕРХ получилось собрать больше монет.

Ответ: ВЕРХ1743

Спасибо за ваши советы, не знаю как без них бы я готовился к экзамену, не сдавайтесь и продолжайте помогать нам, молодёжи, удачи!

На уроке рассмотрен материал для подготовки к ЕГЭ по информатике, разбор 18 задания. Объясняется тема об обработке числовой информации в электронных таблицах.

Содержание:

  • ЕГЭ по информатике 18 задание объяснение
  • Решение 18 задания ЕГЭ
    • Исполнитель Робот

18-е задание: «Обработка числовой информации в электронных таблицах»

Уровень сложности

— повышенный,

Требуется использование специализированного программного обеспечения

— да,

Максимальный балл

— 1,

Примерное время выполнения

— 6 минут.

  
Проверяемые элементы содержания: Умение обрабатывать вещественные выражения в электронных таблицах

Решение 18 задания ЕГЭ

Плейлист видеоразборов задания на YouTube:

Задание демонстрационного варианта 2022 года ФИПИ


Исполнитель Робот


18 задание. Демоверсия варианта ЕГЭ по информатике 2021, ФИПИ:

Задание выполняется с использованием прилагаемых файлов

  
Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.
Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю.
В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

Для указанных входных данных ответом должна быть пара чисел:

Ответ: 1204 | 502
Решение подобного задания смотрите в следующем ниже разборе.
📹 YouTube здесь

Видеорешение на RuTube здесь


18_1:

Задание выполняется с использованием прилагаемых файлов

  
Исходные данные записаны в файле (выше) в виде электронной таблицы прямоугольной формы.
Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой НИЖНЕЙ клетки в правую ВЕРХНЮЮ. В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

✍ Решение:

    ✎ Электронные таблицы:

  • Для решения будем использовать метод динамического программирования — решать будет с конца к началу.
  • Откройте файл электронной таблицы. Скопируем таблицу и вставим ее ниже — это будет шаблон для результирующей таблицы, полученной после решения задачи.
  • Выделите ячейки скопированной таблицы каким-либо цветом, для обозначения ее границ. Теперь удалите все значения в результирующей таблице:
  • решение 18 ЕГЭ

  • Так как задание решается с конца, то выделим последнюю ячейку, в которой окажется Робот — верхняя правая ячейка J12 результирующей таблицы. Робот просто соберет монету, которая находится в этой ячейке. Поэтому для ячейки возьмем значение из исходной таблицы. Введите формулу:
  • 18 задание с исполнителем Робот

    =J1
  • Попасть в данную ячейку J12 Робот мог, либо двигаясь из ячейки I12, либо из J13.
  • Рассмотрим ячейку I12. В ней Робот собирает монету, значение которой возьмем из исходной таблицы (ячейка I1). Ну и поскольку дальше он попадет только в ячейку J12, то необходимо прибавить значение этой ячейки. Поскольку значение уже просчитано для результирующей таблицы, то мы и будем его брать именно с результирующей таблицы. То есть введите формулу для ячейки I12:
  • электронные таблицы excel  в 18 задании егэ

    =I1+J12
  • Для всей верхней строки таблицы мы можем утверждать следующее: из любой ячейки Робот может двигаться только в соседнюю ячейку справа. То есть Робот будет собирать монету с текущей ячейки и при этом необходимо прибавлять значение соседней ячейки справа. То есть формула, которую мы ввели в ячейку I12, будет такой же и для всех оставшихся ячеек верхней строки.
  • Скопируйте формулу из ячейки I12 в диапазон ячеек A12:H12:
  • Определите максимальную и минимальную денежную сумму

  • Теперь перейдем к ячейке J13. Робот собирает монету с текущей ячейки (возьмём значение из ячейки исходной таблицы — J2) и добавим значение ячейки, в которую он пойдет дальше — ячейка J12 (берем значение из результирующей таблицы, поскольку оно уже просчитано):
  • 18 егэ

    =J2+J12
  • Для всех ячеек крайнего справа столбца таблицы можно утверждать: из каждой ячейки можно двигаться только в соседнюю ячейку сверху. То есть Робот будет собирать монету с текущей ячейки и нужно учесть, что он дальше попадает в ячейку сверху (необходимо прибавлять значение сверху из результирующей таблицы). То есть формула для ячейки J13 подходит для всех ячеек данного столбца.
  • Скопируйте формулу из ячейки J13 в диапазон ячеек J14:J21:
  • В ячейки I12 и J13 Робот мог попасть, также двигаясь из ячейки I13. Рассмотрим ее.
  • В ячейке I13 Робот собирает монету из текущей ячейки (берем значение из исходной таблицы — I2), и затем у него альтернатива движения: либо в ячейку I12, либо в J13. В задании необходимо найти, как максимальную, так и минимальную сумму монет. Найдем сначала максимальную. Для этого надо выбрать максимум из I12 и J13 и добавить к текущему значению. Введите формулу в I13:
  • =I2+МАКС(I12;J13)
  • Если проследовать логике движения Робота, то получается, что данная формула будет верной и для всех оставшихся ячеек таблицы. Скопируйте формулу из ячейки I13, использовав маркер копирования, во все оставшиеся ячейки таблицы:
  • Полученное значение в нижней левой ячейке таблицы, с которой начал свое путешествие Робот, — и есть результат.
  • Теперь найдем минимальную сумму. Для этого замените формулу ячейки I13 на =I2+МИН(I12;J13).
  • Скопируйте формулу в оставшийся диапазон ячеек. Значение, полученное в левой нижней ячейке — 522. Это и есть минимальная сумма монет.

Ответ: 1133 | 522


18_2:

Задание выполняется с использованием прилагаемых файлов

При попытке зайти на клетку со стеной Робот разрушается. Исходные данные записаны в файле в виде электронной таблицы прямоугольной формы. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю, не разрушившись. Известно, что такой путь существует. В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

✍ Решение:

    ✎ Электронные таблицы:

  • Для решения будем использовать метод динамического программирования — решать будет с конца к началу.
  • Откройте файл электронной таблицы. Скопируем таблицу и вставим ее ниже — это будет шаблон для результирующей таблицы, полученной после решения задачи.
  • Выделите ячейки скопированной таблицы каким-либо цветом, для обозначения ее границ. Теперь удалите все значения в результирующей таблице:
  • электронные таблицы

  • Так как задание решается с конца, то выделим последнюю ячейку, в которой окажется Робот — нижняя правая ячейка L25 результирующей таблицы. Робот просто соберет монету, которая находится в этой ячейке исходной таблицы — L12. Поэтому для ячейки возьмем значение из исходной таблицы. Введите формулу:
  • формула для L25:
    =L12
  • Попасть в данную ячейку L12 Робот мог, либо двигаясь из ячейки K12, либо из L11.
  • Рассмотрим ячейку К12. В ней Робот собирает монету, значение которой возьмем из исходной таблицы (ячейка K12). Ну и поскольку дальше он попадет только в ячейку L12, то необходимо прибавить значение этой ячейки.
  • Поскольку значение уже просчитано для результирующей таблицы, то мы и будем его брать именно с результирующей таблицы. Стену будем обозначать, как ячейку со значением 0. То есть введите формулу для ячейки K25:
  • =ЕСЛИ(И(L25>0;ИЛИ(K12<=100;K12>=500));K12+L25;0)

    Если выполняются одновременно два условия: L25>0 И либо K12<=100 либо K12>=500, то собираем монету с текущей ячейки (K12) и добавляем монету с L25, так как там нет стены (L25>0)

  • Для всей нижней строки таблицы мы можем утверждать следующее: из любой ячейки Робот может двигаться только в соседнюю ячейку справа. То есть Робот будет собирать монету с текущей ячейки и при это необходимо прибавлять значение соседней ячейки справа. То есть формула, которую мы ввели в ячейку K25 будет такой же и для всех оставшихся ячеек строки.
  • Скопируйте формулу из ячейки K25 в диапазон ячеек A25:J25.
  • Теперь перейдем к ячейке L24. Робот собирает монету с текущей ячейки (возьмём значение из ячейки исходной таблицы — L11) и добавим значение ячейки, в которую он пойдет дальше — ячейка L25 (берем значение из результирующей таблицы, поскольку оно уже просчитано):
  • =ЕСЛИ(И(L25>0;ИЛИ(L11<=100;L11>=500));L11+L25;0)

    Если выполняются одновременно два условия: L25>0 И либо L11<=100 либо L11>=500, то собираем монету с текущей ячейки (L11) и добавляем монету с L25, так как там нет стены (L25>0)

  • Скопируйте формулу из ячейки L24 в диапазон ячеек L14:L23.
  • В ячейке K24 Робот собирает монету из текущей ячейки (берем значение из исходной таблицы — K11), и затем у него альтернатива движения: либо в ячейку L24, либо в K25. В задании необходимо найти, как максимальную, так и минимальную сумму монет. Найдем сначала максимальную. Не забудем проверять значение каждой ячейки, нет ли там стены. Для этого введите формулу в K24:
  • =ЕСЛИ(И(K11>100;K11<500);0;ЕСЛИ(И(L24=0;K25=0);0;ЕСЛИ(L24=0;K11+K25;
    ЕСЛИ(K25=0;K11+L24;K11+МИН(L24;K25)))))

    Здесь логика формулы следующая: если текущее значение ячейки соответствует стене, то записываем 0; ИНАЧЕ — если обе ячейки, в которые может двигаться Робот, — стены, то записываем в текущую ячейку 0; ИНАЧЕ — если ячейка справа — стена, то двигаемся вниз, собирая по пути монеты; ИНАЧЕ — если ячейка снизу — стена, то двигаемся вправо, собирая по пути монеты; ИНАЧЕ — выбираем минимальное значение из соседних ячеек и собираем монеты.

  • Скопируйте формулу из ячейки K24, использовав маркер копирования, во все оставшиеся ячейки таблицы:
  • Полученное значение в нижней левой ячейке таблицы, с которой начал свое путешествие Робот, — и есть результат.
  • Теперь найдем минимальную сумму. Для этого измените формулу, заменив МАКС на МИН. И скопируйте снова данную формулу во всю оставшуюся таблицу.

  • Ответ: 1492 640


18_3:

Задание выполняется с использованием прилагаемых файлов

Робот может двигаться только вниз и вправо. Для сбора денег у Робота есть контейнеры вместимостью 8 монет каждый. С каждой клетки Робот забирает наибольшее количество контейнеров, полностью заполненных монетами. Если контейнер не заполнен до конца, а монеты в клетке кончились, робот высыпает из него монеты перед переходом в следующую клетку. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

✍ Решение:

    ✎ Электронные таблицы:

  • Для решения будем использовать метод динамического программирования — решать будет с конца к началу.
  • Откройте файл электронной таблицы. Скопируем таблицу и вставим ее ниже — это будет шаблон для результирующей таблицы, полученной после решения задачи.
  • Выделите ячейки скопированной таблицы каким-либо цветом, для обозначения ее границ. Теперь удалите все значения в результирующей таблице:
  • Так как задание решается с конца, то выделим последнюю ячейку, в которой окажется Робот — нижняя правая ячейка J21 результирующей таблицы. Робот просто соберет монеты, которые находится в этой ячейке исходной таблицы — J10, если наберется целое число контейнеров (значение кратное 8). Если целое число контейнеров не набирается, — то робот забирает только то, что набралось в контейнеры (8* ЧАСТНОЕ от деления монет на 8). Поэтому для ячейки возьмем значение из исходной таблицы, проверяя его на кратность 8. Введите формулу:
  • формула для J21:
    =ЕСЛИ(ОСТАТ(J10;8)=0;J10;8*ЧАСТНОЕ(J10;8))
  • Рассмотрим ячейку J20. В ней Робот собирает монету, значение которой возьмем из исходной таблицы (ячейка J9). При этом будем проверять значение на кратность 8 и действовать так же, как описано в предыдущем пункте. Ну и поскольку дальше Робот попадет только в ячейку J21, то необходимо прибавить значение этой ячейки.
  • формула для J20:
    =ЕСЛИ(ОСТАТ(J9;8)=0;J9+J21;8*ЧАСТНОЕ(J9;8)+J21)
  • Для всего крайнего справа столбца таблицы мы можем утверждать следующее: из любой ячейки Робот может двигаться только в соседнюю ячейку снизу. То есть Робот будет собирать монету с текущей ячейки и при это необходимо прибавлять значение соседней ячейки снизу. То есть формула, которую мы ввели в ячейку J20 будет такой же и для всех оставшихся ячеек столбца.
  • Скопируйте формулу из ячейки J20 в диапазон ячеек J12:J19.
  • Теперь перейдем к ячейке I21. Робот собирает монету с текущей ячейки (возьмём значение из ячейки исходной таблицы — I10). Проверим заполненность контейнеров, и добавим значение ячейки, в которую Робот пойдет дальше — ячейка J21 (берем значение из результирующей таблицы, поскольку оно уже просчитано):
  • формула для I21:
    =ЕСЛИ(ОСТАТ(I10;8)=0;I10+J21;8*ЧАСТНОЕ(I10;8)+J21)
  • Скопируйте формулу из ячейки I21 в диапазон ячеек A21:H21.
  • В ячейке I20 Робот собирает монету из текущей ячейки (берем значение из исходной таблицы — I9), проверяя заполненность контейнеров, и затем у него альтернатива движения: либо в ячейку J20, либо в I21. В задании необходимо найти, как максимальную, так и минимальную сумму монет. Найдем сначала максимальную. Не забудем проверять значение каждой ячейки на заполненность контейнеров. Для этого введите формулу в I20:
  • формула для I20:
    =ЕСЛИ(ОСТАТ(I9;8)=0;I9+МАКС(J20;I21);8*ЧАСТНОЕ(I9;8)+МАКС(J20;I21))
  • Скопируйте формулу из ячейки I20, использовав маркер копирования, во все оставшиеся ячейки таблицы.
  • Полученное значение в левой верхней ячейке таблицы, с которой начал свое путешествие Робот, — и есть результат.
  • Теперь найдем минимальную сумму. Для этого измените формулу, заменив МАКС на МИН. И скопируйте снова данную формулу во всю оставшуюся таблицу.
  • Ответ: 1144 448


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз  — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков  — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1 8 8 4
10 1 1 3
1 3 12 2
2 3 5 6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

Источник: Демонстрационная версия ЕГЭ−2021 по информатике


2

Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх  — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков  — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1 8 8 4
10 1 1 3
1 3 12 2
2 3 5 6

Для указанных входных данных ответом должна быть пара чисел 35 и 15.


3

Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз  — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков  — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1 8 8 4
10 1 1 3
1 3 12 2
2 3 5 6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.


4

Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх  — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков  — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1 8 8 4
10 1 1 3
1 3 12 2
2 3 5 6

Для указанных входных данных ответом должна быть пара чисел 35 и 15.


5

Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз  — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков  — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1 8 8 4
10 1 1 3
1 3 12 2
2 3 5 6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

Пройти тестирование по этим заданиям

Информатика 18 задание со стенами егэ

Е18.9. В любой клетке может быть яма (ямы обозначены значениями

В любой клетке может быть яма (ямы обозначены значениями меньше 0, но больше -400). Робот может двигаться только вниз или вправо. При попытке зайти на такую клетку Робот застревает в яме и не может двигаться дальше. Исходные данные записаны в файле в виде электронной таблицы прямоугольной формы. Определите максимальную и минимальную денежную сумму, которую может …

Е18.8. В любой клетке может быть стена (стены обозначены значениями

В любой клетке может быть стена (стены обозначены значениями больше 100, но меньше 500). Робот может двигаться только вниз или вправо. При попытке зайти на клетку со стеной Робот разрушается. Исходные данные записаны в файле в виде электронной таблицы прямоугольной формы. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней …

Е18.7. Необходимо переместить ладью в правый нижний угол так

Необходимо переместить ладью в правый нижний угол так. Дан квадрат 15×15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит ладья. За один ход ладья может переместиться в пределах квадрата на любое количество клеток вправо или вниз (влево и вверх ладья ходить не может). Необходимо переместить ладью в правый нижний …

Е18.6. Робот может брать монеты только с тех клеток, где количество монет чётно

Робот может брать монеты только с тех клеток, где количество монет чётно. Исходные данные для Робота записаны в файле в виде электронной таблицы прямоугольной формы. Робот может двигаться только вверх и вправо. Робот может брать монеты только с тех клеток, где количество монет чётно. Если количество монет нечётно, то Робот не берёт в этой клетке …

Е18.5. Какую максимальную длину может иметь выбранная последовательность?

Какую максимальную длину может иметь выбранная последовательность? Дана последовательность натуральных чисел. Из неё необходимо выбрать последовательность подряд идущих чисел так, чтобы каждое число было нечётным. Какую максимальную длину может иметь выбранная последовательность? Пример входных данных: 1 2 3 5 7 8 Для указанных входных данных ответом должно быть число 3 – максимальное количество подряд идущих …

Е18.4. каждое следующее число отличалось от предыдущего не более чем на 15

Каждое следующее число отличалось от предыдущего не более чем на 15 Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число отличалось от предыдущего не более чем на 15. Какую максимальную сумму могут иметь выбранные числа? В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана …

Е18.3. может быть стена (стены обозначены значениями больше 100, но меньше 500)

Может быть стена (стены обозначены значениями больше 100, но меньше 500) Исходные данные для Робота записаны в файле в виде электронной таблицы прямоугольной формы. Робот может двигаться только вверх и вправо. В любой клетке может быть стена (стены обозначены значениями больше 100, но меньше 500). При попытке зайти на клетку со стеной Робот разрушается. С …

Е18.2. чтобы каждое следующее число было меньше предыдущего

Чтобы каждое следующее число было меньше предыдущего Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число было меньше предыдущего. Какую максимальную сумму могут иметь выбранные числа? В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана в виде одного столбца электронной таблицы. Пример входных данных: …

Рубрика «ЕГЭ Задание 18»

В любой клетке может быть яма (ямы обозначены значениями меньше 0, но больше -400). Робот может двигаться только вниз или вправо. При попытке зайти на такую клетку Робот застревает в яме и не может двигаться дальше. Исходные данные записаны в файле в виде электронной таблицы прямоугольной формы. Определите максимальную и минимальную денежную сумму, которую может …

В любой клетке может быть стена (стены обозначены значениями больше 100, но меньше 500). Робот может двигаться только вниз или вправо. При попытке зайти на клетку со стеной Робот разрушается. Исходные данные записаны в файле в виде электронной таблицы прямоугольной формы. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней …

Какую максимальную длину может иметь выбранная последовательность.

Informatikaexpert. ru

12.02.2019 11:04:44

2019-02-12 11:04:44

Источники:

Http://informatikaexpert. ru/ege/ege-zadaniya/ege-zadanie-18/page/2/

Разбор 18 задания ЕГЭ 2018 по информатике и ИКТ из демонстрационного варианта » /> » /> .keyword { color: red; } Информатика 18 задание со стенами егэ

Разбор 18 задания ЕГЭ 2018 по информатике и ИКТ из демонстрационного варианта

Разбор 18 задания ЕГЭ 2018 по информатике и ИКТ из демонстрационного варианта

Разбор 18 задания ЕГЭ 2018 по информатике и ИКТ из демоверсии. Это задание повышенного уровня сложности. Примерное время выполнения задания 3 минуты.

Проверяемые элементы содержания:
— Знание основных понятий и законов математической логики.

Элементы содержания, проверяемые на ЕГЭ:
— высказывания,
— логические операции,
— кванторы,
— истинность высказывания.

Задание 18

Для какого наибольшего целого числа А формула

Тождественно истинна, то есть принимает значение 1 при любых целых неотрицательных x и y?

Разбор 18 задания ЕГЭ 2018 по информатике

Разделим наше выражение на 2 части:

B ⋀ C

Главное действие в исходном выражении — это коньюнкция. Конъюнкция истинна, когда все операнды истинны. Т. е. в задаче обе части B и C должны быть истинными.

Рассмотрим часть B:

Если в выражении (x ≤ 9), х > 9, то Часть В будет истинна независимо от А. Значит значение числа А влияет на решение только при выполнении условия:

X ≤ 9

Теперь для того чтобы в Части В, выражение было истинным, надо чтобы (x⋅x ≤ A) было истинным:

(импликация 1 → 1 = 1)

Таким образом получаем:

X ≤ 9
X 2 ≤ A

Но нам нам необходимо найти наибольшее возможное А, поэтому надо ограничить его значения сверху, а данная часть выражения ограничивает только снизу:

Возьмем наименьшее натуральное: x = 1, тогда A ≥ 1

Рассмотрим часть С:

Если выражение (y ≤ 9) действительно истинно (т. е. y ≤ 9), то Часть С будет истинна независимо от А. Значит значение числа А влияет на решение только при выполнении условия:

Y > 9

Теперь для того чтобы в Части C, выражение было истинным, надо чтобы (y⋅y ≤ A) было ложным:

(импликация 0 → 0 = 1)

Таким образом получаем:

Y > 9
Y 2 > A

Данная часть выражения ограничивает значения А сверху:

Возьмем наименьшее возможное по условию натуральное: y = 10, тогда A

Теперь для того чтобы в части В, выражение было истинным, надо чтобы x x A было истинным.

Infedu. ru

29.03.2019 23:27:41

2019-03-29 23:27:41

Источники:

Http://infedu. ru/2018/03/06/razbor-18-zadaniya-ege-2018-po-informatike-i-ikt-iz-demonstratsionnogo-varianta/

Выполнение и объяснение 18 задания ЕГЭ с электронными таблицами » /> » /> .keyword { color: red; } Информатика 18 задание со стенами егэ

Задание 18 ЕГЭ информатика по теме «Обработка числовой информации в электронных таблицах»

Задание 18 ЕГЭ информатика по теме «Обработка числовой информации в электронных таблицах»

На уроке рассмотрен материал для подготовки к ЕГЭ по информатике, разбор 18 задания. Объясняется тема об обработке числовой информации в электронных таблицах.

ЕГЭ по информатике 18 задание объяснение

18-е задание: «Обработка числовой информации в электронных таблицах»
Уровень сложности — повышенный,
Требуется использование специализированного программного обеспечения — да,
Максимальный балл — 1,
Примерное время выполнения — 6 минут.

Проверяемые элементы содержания: Умение обрабатывать вещественные выражения в электронных таблицах

Решение 18 задания ЕГЭ

Плейлист видеоразборов задания на YouTube:

Исполнитель Робот

Квадрат разлинован на N×N клеток ( 1 ). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: Вправо или Вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством От 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.
Определите Максимальную и Минимальную денежную сумму, которую может собрать Робот, пройдя Из левой верхней клетки в правую нижнюю.
В ответе укажите два числа – сначала Максимальную сумму, Затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Ответ: 1204 | 502
Решение подобного задания смотрите в следующем ниже разборе.

Видеорешение на RuTube здесь

Исходные данные записаны в файле (выше) в виде электронной таблицы прямоугольной формы.
Определите Максимальную и Минимальную денежную сумму, которую может собрать Робот, пройдя из Левой НИЖНЕЙ клетки в Правую ВЕРХНЮЮ. В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

    ✎ Электронные таблицы:

решение 18 егэ

18 задание с исполнителем робот

электронные таблицы excel в 18 задании егэ

определите максимальную и минимальную денежную сумму

18 егэ

Ответ: 1133 | 522

При попытке зайти на клетку со стеной Робот разрушается. Исходные данные записаны в файле в виде электронной таблицы прямоугольной формы. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя Из левой верхней клетки в правую нижнюю, не разрушившись. Известно, что такой путь существует. В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

    ✎ Электронные таблицы:

электронные таблицы

Если выполняются одновременно два условия: L25>0 И либо K12 либо K12>=500 , то собираем монету с текущей ячейки ( K12 ) и добавляем монету с L25 , так как там нет стены ( L25>0 )

Если выполняются одновременно два условия: L25>0 И либо L11 либо L11>=500 , то собираем монету с текущей ячейки ( L11 ) и добавляем монету с L25 , так как там нет стены ( L25>0 )

Здесь логика формулы следующая: если текущее значение ячейки соответствует стене, то записываем 0; ИНАЧЕ — если обе ячейки, в которые может двигаться Робот, — стены, то записываем в текущую ячейку 0; ИНАЧЕ — если ячейка справа — стена, то двигаемся вниз, собирая по пути монеты; ИНАЧЕ — если ячейка снизу — стена, то двигаемся вправо, собирая по пути монеты; ИНАЧЕ — выбираем минимальное значение из соседних ячеек и собираем монеты.

Робот может двигаться только вниз и вправо. Для сбора денег у Робота есть контейнеры вместимостью 8 монет каждый. С каждой клетки Робот забирает наибольшее количество контейнеров, полностью заполненных монетами. Если контейнер не заполнен до конца, а монеты в клетке кончились, робот высыпает из него монеты перед переходом в следующую клетку. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя Из левой верхней клетки в правую нижнюю. В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

Плейлист видеоразборов задания на YouTube:

Задание 18 ЕГЭ информатика по теме «Обработка числовой информации в электронных таблицах»

На уроке рассмотрен материал для подготовки к ЕГЭ по информатике, разбор 18 задания. Объясняется тема об обработке числовой информации в электронных таблицах.

18-е задание: «Обработка числовой информации в электронных таблицах»
Уровень сложности — повышенный,
Требуется использование специализированного программного обеспечения — да,
Максимальный балл — 1,
Примерное время выполнения — 6 минут.

Проверяемые элементы содержания: Умение обрабатывать вещественные выражения в электронных таблицах

Если выполняются одновременно два условия L25 0 И либо L11 либо L11 500 , то собираем монету с текущей ячейки L11 и добавляем монету с L25 , так как там нет стены L25 0.

Labs-org. ru

24.11.2018 5:27:49

2018-11-24 05:27:49

Источники:

Http://labs-org. ru/ege-18/

Е18.11. При попытке пересечь границы Робот разрушается.

При попытке пересечь границы Робот разрушается. Квадрат разлинован  на N x N клеток (1 < N < 20). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: влево или вверх. По команде влево Робот перемещается в соседнюю левую клетку, по команде вверх – в соседнюю верхнюю. При попытке пересечь границы …

Читать далее

Е18.10. При попытке пересечь границы (внутренние, обозначенные жирными линиями

При попытке пересечь границы (внутренние, обозначенные  жирными линиями, или границы квадрата) Робот разрушается. Квадрат разлинован на N x N клеток (1 < N < 20). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – …

Читать далее

Е18.9. В любой клетке может быть яма (ямы обозначены значениями

В любой клетке может быть яма (ямы обозначены значениями меньше 0, но больше -400). Робот может двигаться только вниз или вправо. При попытке зайти на такую клетку Робот застревает в яме и не может двигаться дальше. Исходные данные записаны в файле в виде электронной таблицы прямоугольной формы. Определите максимальную и минимальную денежную сумму, которую может …

Читать далее

Е18.8. В любой клетке может быть стена (стены обозначены значениями

В любой клетке может быть стена (стены обозначены значениями больше 100, но меньше 500). Робот может двигаться только вниз или вправо. При попытке зайти на клетку со стеной Робот разрушается. Исходные данные записаны в файле в виде электронной таблицы прямоугольной формы. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней …

Читать далее

Е18.7. Необходимо переместить ладью в правый нижний угол так

Необходимо переместить ладью в правый нижний угол так. Дан квадрат 15×15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит ладья. За один ход ладья может переместиться в пределах квадрата на любое количество клеток вправо или вниз (влево и вверх ладья ходить не может). Необходимо переместить ладью в правый нижний …

Читать далее

Е18.6. Робот может брать монеты только с тех клеток, где количество монет чётно

Робот может брать монеты только с тех клеток, где количество монет чётно. Исходные данные для Робота записаны в файле в виде электронной таблицы прямоугольной формы. Робот может двигаться только вверх и вправо. Робот может брать монеты только с тех клеток, где количество монет чётно. Если количество монет нечётно, то Робот не берёт в этой клетке …

Читать далее

Е18.5. Какую максимальную длину может иметь выбранная последовательность?

Какую максимальную длину может иметь выбранная последовательность? Дана последовательность натуральных чисел. Из неё необходимо выбрать последовательность подряд идущих чисел так, чтобы каждое число было нечётным. Какую максимальную длину может иметь выбранная последовательность? Пример входных данных: 1 2 3 5 7 8 Для указанных входных данных ответом должно быть число 3 – максимальное количество подряд идущих …

Читать далее

Е18.4. каждое следующее число отличалось от предыдущего не более чем на 15

каждое следующее число отличалось от предыдущего не более чем на 15 Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число отличалось от предыдущего не более чем на 15. Какую максимальную сумму могут иметь выбранные числа? В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана …

Читать далее

Е18.3. может быть стена (стены обозначены значениями больше 100, но меньше 500)

может быть стена (стены обозначены значениями больше 100, но меньше 500) Исходные данные для Робота записаны в файле в виде электронной таблицы прямоугольной формы. Робот может двигаться только вверх и вправо. В любой клетке может быть стена (стены обозначены значениями больше 100, но меньше 500). При попытке зайти на клетку со стеной Робот разрушается. С …

Читать далее

Е18.2. чтобы каждое следующее число было меньше предыдущего

чтобы каждое следующее число было меньше предыдущего Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число было меньше предыдущего. Какую максимальную сумму могут иметь выбранные числа? В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана в виде одного столбца электронной таблицы. Пример входных данных: …

Читать далее

За это задание ты можешь получить 1 балл. На решение дается около 3 минут. Уровень сложности: повышенный.
Средний процент выполнения: 32.2%
Ответом к заданию 18 по информатике может быть цифра (число) или слово.

Теория к 18 заданию: читать

Разбор сложных заданий в тг-канале

Задачи для практики

Задача 1

Квадрат разлинован на N*N клеток (1 < N <= 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. На поле могут быть стенки. При врезании в стенку робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата указана сумма монeт, которые может получить робот или которую роботу нужно отдать, от -100 до 100. Посетив клетку, Робот забирает или оставляет указанную сумму монет; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную денежную сумму, если робот может идти по любым клеткам, и максимальную сумму, если робот не может идти по клеткам с отрицательным значениям, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите разность между этими двумя числами.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 382 и 203. Тогда в ответе будет 179

Решение

Откроем файл электронной таблицы. Создайте новый лист и скопируйте в него таблицу.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке A2 новой таблицы мы запишем формулу: =A1+Лист1!A2 и скопируем её вниз до конца заполненной таблицы. В ячейке В1 запишем формулу =A1+Лист1!B1 и растянем до конца строки. Это нужно для подсчёта максимального значения если робот будет идти только по крайним полям.

В ячейке В2 запишем формулу =МАКС(A2;B1)+Лист1!B2, чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Растягиваем формулу на всю таблицу.

Скопируйте данный, где искали максимум, на новый лист.

На поле у нас есть отрицательные значения. Робот не может ходить по таким полям.

Изменим нашу формулу и добавим в неё условие, что если в поле отрицательное значение, то результат будет сильно маленьким (намного меньше -100) =МАКС(B1;A2)+ЕСЛИ(Лист1!B2>0;Лист1!B2;-10000000000) и растяните её на всё пространство вдоль стенки. В таком случае мы получим, что проход через эту клетку приведёт к отрицательному ответу. Поэтому мы не будем его учитывать.

Аналогично изменим и граничные значения. Для B1 запишем: =A1+ЕСЛИ(Лист1!B1>0;Лист1!B1;-10000000000), а для A2 запишем: =A1+ЕСЛИ(Лист1!A2>0;Лист1!A2;-10000000000)

Ответ получите в ячейке T20

Найдите разность между первым и вторым числом и запишите ёё в ответе.

Ответ: 233

Задача 2

Квадрат разлинован на N*N клеток (1 < N <= 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. На поле могут быть стенки. При врезании в стенку робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата указана сумма монeт, которые может получить робот или которую роботу нужно отдать, от -100 до 100. Посетив клетку, Робот забирает или оставляет указанную сумму монет; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную денежную сумму, если робот может идти по любым клеткам, и максимальную сумму, если робот не может идти по клеткам с отрицательным значениям, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела в порядке убывания.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 382203.

Решение

Откроем файл электронной таблицы. Создайте новый лист и скопируйте в него таблицу.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке A2 новой таблицы мы запишем формулу: =A1+Лист1!A2 и скопируем её вниз до конца заполненной таблицы. В ячейке В1 запишем формулу =A1+Лист1!B1 и растянем до конца строки. Это нужно для подсчёта максимального значения если робот будет идти только по крайним полям.

В ячейке В2 запишем формулу =МАКС(A2;B1)+Лист1!B2, чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Растягиваем формулу на всю таблицу.

Скопируйте данный, где искали максимум, на новый лист. Воспользуйтесь заменой (нажмите Ctrl+H) и замените МАКС на МИН. Полученный минимум будет в ячейке Т20

На поле у нас есть отрицательные значения. Робот не может ходить по таким полям.

Изменим нашу формулу и добавим в неё условие, что если в поле отрицательное значение, то результат будет сильно маленьким (намного меньше -100) =МАКС(B1;A2)+ЕСЛИ(Лист1!B2>0;Лист1!B2;-10000000000) и растяните её на всё пространство вдоль стенки. В таком случае мы получим, что проход через эту клетку приведёт к отрицательному ответу. Поэтому мы не будем

Ответ получите в ячейке T20

Запишите два числа в ответе.

Ответ: 21962168

Задача 3

Квадрат разлинован на N*N клеток (1 < N <= 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. На поле могут быть стенки. При врезании в стенку робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монeта достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 382203.

Решение

Откроем файл электронной таблицы. Создайте новый лист и скопируйте в него таблицу.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке A2 новой таблицы мы запишем формулу: =A1+Лист1!A2 и скопируем её вниз до конца заполненной таблицы. В ячейке В1 запишем формулу =A1+Лист1!B1 и растянем до конца строки. Это нужно для подсчёта максимального значения если робот будет идти только по крайним полям.

В ячейке В2 запишем формулу =МАКС(A2;B1)+Лист1!B2, чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Растягиваем формулу на всю таблицу.

На поле у нас были стенки, желательно их восстановить, чтобы они отображались после. В полях, в которые можно попасть через стенку нужно изменить формула, для них формула будет аналогичной формуле крайних полей.

Обратите внимание на угол. Мы не сможем в него попасть и не сможем взять значения из всего прямоугольника. Для ячейки H5 нужно записать формулу =H4+Лист1!H5 т.к. мы не сможем выйти из прямоугольной области, где был угол и растянем её вдоль прямоугольника. Для ячейки Е9 запишем формулу =D9+Лист1!E9 и тоже растянем её вдоль прямоугольника. Для ячейки I13 запишем формулу =H13+Лист1!I13 и растянем её вдоль стены.

Ответ получите в ячейке T20

Скопируйте данный, где искали максимум, на новый лист. Воспользуйтесь заменой (нажмите Ctrl+H) и замените МАКС на МИН. Полученный минимум будет в ячейке Т20

Запишите два числа в ответе.

Ответ: 27891268

Задача 4

Квадрат разлинован на N*N клеток (1 < N <= 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. На поле могут быть стенки. При врезании в стенку робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монeта достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела — сначала минимальную сумму , затем максимальную.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 382203.

Решение

Откроем файл электронной таблицы. Создайте новый лист и скопируйте в него таблицу.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке A2 новой таблицы мы запишем формулу: =A1+Лист1!A2 и скопируем её вниз до конца заполненной таблицы. В ячейке В1 запишем формулу =A1+Лист1!B1 и растянем до конца строки. Это нужно для подсчёта максимального значения если робот будет идти только по крайним полям.

В ячейке В2 запишем формулу =МАКС(A2;B1)+Лист1!B2, чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Растягиваем формулу на всю таблицу.

На поле у нас были стенки, желательно их восстановить, чтобы они отображались после. В полях, в которые можно попасть через стенку нужно изменить формулу, для них формула будет аналогичной формуле крайних полей.

В ячейку С3 запишите формулу =C2+Лист1!C3 и растяните её на всё пространство вдоль стенки. Аналогично сделайте для ячейки Q16. В ячейку G6 запишите формулу ==F6+Лист1!G6 и растяните её вправо, вдоль стены.

Ответ получите в ячейке T20

Скопируйте данный, где искали максимум, на новый лист. Воспользуйтесь заменой (нажмите Ctrl+H) и замените МАКС на МИН. Полученный минимум будет в ячейке Т20

Запишите два числа в ответе. СНАЧАЛА МИНИМУМ

Ответ: 13932788

Задача 5

Квадрат разлинован на N*N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит моента достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 382203.

Решение

Откроем файл электронной таблицы. В свободной области начертим две таблицы того же размера, что и исходная (в нашем случае это размер 16*16). В одной из таблиц (например, таблица с ячейками R1:AG16) мы будем считать максимальное значение; в другой таблице (например, в таблице с ячейками R18:AG33) мы будем считать минимальное значение.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке R1 запишем число 65, которое мы перенесли из исходной таблицы. В ячейке S1 запишем формулу =R1+B1, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вправо. Тянем за правый нижний угол ячейки S1 до ячейки AG1 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вправо. В ячейке R2 запишем формулу =R1+A2, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вниз. Тянем за правый нижний угол ячейки R2 до ячейки R16 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вниз.

В ячейке S2 запишем формулу =B2+МАКС(S1;R2), чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Тянем за правый нижний угол ячейки S2 до ячейки AG2 включительно, а затем тянем за правый нижний угол ячейки AG2 до ячейки AG16 включительно, чтобы посчитать максимальное количество монет, которое Робот соберёт, когда дойдёт до конечной клетки. В ячейке AG16 получится число 2361, которое пойдёт в ответ.

Аналогичным образом заполняем таблицу с ячейками R18:AG33, но вместо формулы =B2+МАКС(S18;R19) записываем формулу =B2+МИН(S18;R19, чтобы посчитать минимальное количество монет, которое может собрать Робот на каждой клетке. В ячейке AG33 получится число 1088, которое пойдёт в ответ.

В ответ мы записываем без пробелов сначала максимальное количество монет, а потом минимальное. Получается ответ 23611088.

Ответ: 23611088

Задача 6

Квадрат разлинован на N*N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит моента достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 382203.

Решение

Откроем файл электронной таблицы. В свободной области начертим две таблицы того же размера, что и исходная (в нашем случае это размер 15*15). В одной из таблиц (например, таблица с ячейками Q1:AE15) мы будем считать максимальное значение; в другой таблице (например, в таблице с ячейками Q17:AE31) мы будем считать минимальное значение.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке Q1 запишем число 28, которое мы перенесли из исходной таблицы. В ячейке R1 запишем формулу =Q1+B1, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вправо. Тянем за правый нижний угол ячейки R1 до ячейки AE1 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вправо. В ячейке Q2 запишем формулу =Q1+A2, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вниз. Тянем за правый нижний угол ячейки P2 до ячейки P14 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вниз.

В ячейке R2 запишем формулу =B2+МАКС(R1;Q2), чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Тянем за правый нижний угол ячейки R2 до ячейки AE2 включительно, а затем тянем за правый нижний угол ячейки AE2 до ячейки AE15 включительно, чтобы посчитать максимальное количество монет, которое Робот соберёт, когда дойдёт до конечной клетки. В ячейке AE15 получится число 2057, которое пойдёт в ответ.

Аналогичным образом заполняем таблицу с ячейками Q17:AE31, но вместо формулы =B2+МАКС(R17;Q18) записываем формулу =B2+МИН(R17;Q18), чтобы посчитать минимальное количество монет, которое может собрать Робот на каждой клетке. В ячейке AE31 получится число 699, которое пойдёт в ответ.

В ответ мы записываем без пробелов сначала максимальное количество монет, а потом минимальное. Получается ответ 2057699.

Ответ: 2057699

Задача 7

Квадрат разлинован на N*N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит моента достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 382203.

Решение

Откроем файл электронной таблицы. В свободной области начертим две таблицы того же размера, что и исходная (в нашем случае это размер 14*14). В одной из таблиц (например, таблица с ячейками P1:AC14) мы будем считать максимальное значение; в другой таблице (например, в таблице с ячейками P16:AC29) мы будем считать минимальное значение.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке P1 запишем число 43, которое мы перенесли из исходной таблицы. В ячейке Q1 запишем формулу =P1+B1, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вправо. Тянем за правый нижний угол ячейки Q1 до ячейки AC1 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вправо. В ячейке P2 запишем формулу =P1+A2, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вниз. Тянем за правый нижний угол ячейки P2 до ячейки P14 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вниз.

В ячейке Q2 запишем формулу =B2+МАКС(Q1;P2), чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Тянем за правый нижний угол ячейки Q2 до ячейки AC2 включительно, а затем тянем за правый нижний угол ячейки AC2 до ячейки AC14 включительно, чтобы посчитать максимальное количество монет, которое Робот соберёт, когда дойдёт до конечной клетки. В ячейке AC14 получится число 1865, которое пойдёт в ответ.

Аналогичным образом заполняем таблицу с ячейками P16:AC29, но вместо формулы =B2+МАКС(Q16;P17) записываем формулу =B2+МИН(Q16;P17), чтобы посчитать минимальное количество монет, которое может собрать Робот на каждой клетке. В ячейке AC29 получится число 954, которое пойдёт в ответ.

В ответ мы записываем без пробелов сначала максимальное количество монет, а потом минимальное. Получается ответ 1865954.

Ответ: 1865954

Задача 8

Квадрат разлинован на N*N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит моента достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 382203.

Решение

Откроем файл электронной таблицы. В свободной области начертим две таблицы того же размера, что и исходная (в нашем случае это размер 13*13). В одной из таблиц (например, таблица с ячейками O1:AA13) мы будем считать максимальное значение; в другой таблице (например, в таблице с ячейками O15:AA27) мы будем считать минимальное значение.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке O1 запишем число 45, которое мы перенесли из исходной таблицы. В ячейке P1 запишем формулу =O1+B1, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вправо. Тянем за правый нижний угол ячейки P1 до ячейки AA1 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вправо. В ячейке O2 запишем формулу =O1+A2, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вниз. Тянем за правый нижний угол ячейки O2 до ячейки O13 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вниз.

В ячейке P2 запишем формулу =B2+МАКС(P1;O2), чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Тянем за правый нижний угол ячейки P2 до ячейки AA2 включительно, а затем тянем за правый нижний угол ячейки AA2 до ячейки AA13 включительно, чтобы посчитать максимальное количество монет, которое Робот соберёт, когда дойдёт до конечной клетки. В ячейке Y12 получится число 1619, которое пойдёт в ответ.

Аналогичным образом заполняем таблицу с ячейками O15:AA27, но вместо формулы =B2+МАКС(P15;O16) записываем формулу =B2+МИН(P15;O16), чтобы посчитать минимальное количество монет, которое может собрать Робот на каждой клетке. В ячейке AA27 получится число 871, которое пойдёт в ответ.

В ответ мы записываем без пробелов сначала максимальное количество монет, а потом минимальное. Получается ответ 1619871.

Ответ: 1619871

Задача 9

Квадрат разлинован на N*N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит моента достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 459203.

Решение

Откроем файл электронной таблицы. В свободной области начертим две таблицы того же размера, что и исходная (в нашем случае это размер 11*11). В одной из таблиц (например, таблица с ячейками M1:W11) мы будем считать максимальное значение; в другой таблице (например, в таблице с ячейками M13:W23) мы будем считать минимальное значение.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке M1 запишем число 94, которое мы перенесли из исходной таблицы. В ячейке N1 запишем формулу =M1+B1, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вправо. Тянем за правый нижний угол ячейки N1 до ячейки W1 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вправо. В ячейке M2 запишем формулу =M1+A2, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вниз. Тянем за правый нижний угол ячейки M2 до ячейки M11 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вниз.

В ячейке N2 запишем формулу =B2+МАКС(N1;M2), чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Тянем за правый нижний угол ячейки N2 до ячейки W2 включительно, а затем тянем за правый нижний угол ячейки W2 до ячейки W11 включительно, чтобы посчитать максимальное количество монет, которое Робот соберёт, когда дойдёт до конечной клетки. В ячейке W11 получится число 1713, которое пойдёт в ответ.

Аналогичным образом заполняем таблицу с ячейками M13:W23, но вместо формулы =B2+МАКС(N13;M14) записываем формулу =B2+МИН(N13;M14), чтобы посчитать минимальное количество монет, которое может собрать Робот на каждой клетке. В ячейке W23 получится число 1023, которое пойдёт в ответ.

В ответ мы записываем без пробелов сначала максимальное количество монет, а потом минимальное. Получается ответ 17131023.

Ответ: 17131023

Задача 10

Квадрат разлинован на N*N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит моента достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 382203.

Решение

Откроем файл электронной таблицы. В свободной области начертим две таблицы того же размера, что и исходная (в нашем случае это размер 10*10). В одной из таблиц (например, таблица с ячейками L1:U10) мы будем считать максимальное значение; в другой таблице (например, в таблице с ячейками L12:U21) мы будем считать минимальное значение.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке L1 запишем число 100, которое мы перенесли из исходной таблицы. В ячейке M1 запишем формулу =L1+B1, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вправо. Тянем за правый нижний угол ячейки M1 до ячейки U1 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вправо. В ячейке L2 запишем формулу =L1+A2, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вниз. Тянем за правый нижний угол ячейки L2 до ячейки L10 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вниз.

В ячейке M2 запишем формулу =B2+МАКС(M1;L2), чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Тянем за правый нижний угол ячейки M2 до ячейки U2 включительно, а затем тянем за правый нижний угол ячейки U2 до ячейки U10 включительно, чтобы посчитать максимальное количество монет, которое Робот соберёт, когда дойдёт до конечной клетки. В ячейке U10 получится число 1308, которое пойдёт в ответ.

Аналогичным образом заполняем таблицу с ячейками L12:U21, но вместо формулы =B2+МАКС(M12;L13) записываем формулу =B2+МИН(M12;L13), чтобы посчитать минимальное количество монет, которое может собрать Робот на каждой клетке. В ячейке U21 получится число 644, которое пойдёт в ответ.

В ответ мы записываем без пробелов сначала максимальное количество монет, а потом минимальное. Получается ответ 1308644.

Ответ: 1308644

Задача 11

Квадрат разлинован на N*N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит моента достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 382203.

Решение

Откроем файл электронной таблицы. В свободной области начертим две таблицы того же размера, что и исходная (в нашем случае это размер 8*8). В одной из таблиц (например, таблица с ячейками J1:Q8) мы будем считать максимальное значение; в другой таблице (например, в таблице с ячейками J10:Q17) мы будем считать минимальное значение.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке J1 запишем число 23, которое мы перенесли из исходной таблицы. В ячейке K1 запишем формулу =J1+B1, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вправо. Тянем за правый нижний угол ячейки J1 до ячейки Q1 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вправо. В ячейке J2 запишем формулу =J1+A2, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вниз. Тянем за правый нижний угол ячейки J2 до ячейки J8 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вниз.

В ячейке K2 запишем формулу =B2+МАКС(K1;J2), чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Тянем за правый нижний угол ячейки K2 до ячейки Q2 включительно, а затем тянем за правый нижний угол ячейки Q2 до ячейки Q8 включительно, чтобы посчитать максимальное количество монет, которое Робот соберёт, когда дойдёт до конечной клетки. В ячейке Q8 получится число 978, которое пойдёт в ответ.

Аналогичным образом заполняем таблицу с ячейками J10:Q17, но вместо формулы =B2+МАКС(K10;J11) записываем формулу =B2+МИН(K10;J11), чтобы посчитать минимальное количество монет, которое может собрать Робот на каждой клетке. В ячейке Q17 получится число 434, которое пойдёт в ответ.

В ответ мы записываем без пробелов сначала максимальное количество монет, а потом минимальное. Получается ответ 978434.

Ответ: 978434

Задача 12

Квадрат разлинован на N*N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит моента достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 382203.

Решение

Откроем файл электронной таблицы. В свободной области начертим две таблицы того же размера, что и исходная (в нашем случае это размер 8*8). В одной из таблиц (например, таблица с ячейками J1:Q8) мы будем считать максимальное значение; в другой таблице (например, в таблице с ячейками J10:Q17) мы будем считать минимальное значение.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке J1 запишем число 8, которое мы перенесли из исходной таблицы. В ячейке K1 запишем формулу =J1+B1, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вправо. Тянем за правый нижний угол ячейки J1 до ячейки Q1 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вправо. В ячейке J2 запишем формулу =J1+A2, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вниз. Тянем за правый нижний угол ячейки J2 до ячейки J8 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вниз.

В ячейке K2 запишем формулу =B2+МАКС(K1;J2), чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Тянем за правый нижний угол ячейки K2 до ячейки Q2 включительно, а затем тянем за правый нижний угол ячейки Q2 до ячейки Q8 включительно, чтобы посчитать максимальное количество монет, которое Робот соберёт, когда дойдёт до конечной клетки. В ячейке Q8 получится число 850, которое пойдёт в ответ.

Аналогичным образом заполняем таблицу с ячейками J10:Q17, но вместо формулы =B2+МАКС(K10;J11) записываем формулу =B2+МИН(K10;J11), чтобы посчитать минимальное количество монет, которое может собрать Робот на каждой клетке. В ячейке Q17 получится число 432, которое пойдёт в ответ.

В ответ мы записываем без пробелов сначала максимальное количество монет, а потом минимальное. Получается ответ 850432.

Ответ: 850432

Задача 13

Квадрат разлинован на N*N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит моента достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 382203.

Решение

Откроем файл электронной таблицы. В свободной области начертим две таблицы того же размера, что и исходная (в нашем случае это размер 7*7). В одной из таблиц (например, таблица с ячейками I1:O7) мы будем считать максимальное значение; в другой таблице (например, в таблице с ячейками I9:O15) мы будем считать минимальное значение.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке I1 запишем число 19, которое мы перенесли из исходной таблицы. В ячейке J1 запишем формулу =I1+B1, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вправо. Тянем за правый нижний угол ячейки J1 до ячейки O1 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вправо. В ячейке I2 запишем формулу =I1+A2, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вниз. Тянем за правый нижний угол ячейки J2 до ячейки L1 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вниз.

В ячейке J2 запишем формулу =B2+МАКС(J1;I2), чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Тянем за правый нижний угол ячейки J2 до ячейки O2 включительно, а затем тянем за правый нижний угол ячейки O2 до ячейки O7 включительно, чтобы посчитать максимальное количество монет, которое Робот соберёт, когда дойдёт до конечной клетки. В ячейке O7 получится число 806, которое пойдёт в ответ.

Аналогичным образом заполняем таблицу с ячейками I9:O15, но вместо формулы =B2+МАКС(J9;I10) записываем формулу =B2+МИН(J9;I10), чтобы посчитать минимальное количество монет, которое может собрать Робот на каждой клетке. В ячейке O15 получится число 403, которое пойдёт в ответ.

В ответ мы записываем без пробелов сначала максимальное количество монет, а потом минимальное. Получается ответ 806403.

Ответ: 806376

Задача 14

Квадрат разлинован на N*N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит моента достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N*N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

51 21 93 48
57 43 97 51
63 16 31 16
10 57 64 25

Для указанных входных данных ответом будет пара чисел 382203.

Решение

Откроем файл электронной таблицы. В свободной области начертим две таблицы того же размера, что и исходная (в нашем случае это размер 5*5). В одной из таблиц (например, таблица с ячейками H1:L5) мы будем считать максимальное значение; в другой таблице (например, в таблице с ячейками H7:L11) мы будем считать минимальное значение.

Для решения данной задачи мы воспользуемся методом динамического программирования, чтобы найти значения в каждой ячейке. Сначала работаем в таблице, в которой посчитаем максимальную сумму. В ячейке H1 запишем число 19, которое мы перенесли из исходной таблицы. В ячейке I1 запишем формулу =H1+B1, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вправо. Тянем за правый нижний угол ячейки I1 до ячейки L1 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вправо. В ячейке H2 запишем формулу =H1+A2, чтобы посчитать, какую сумму монет соберёт Робот, если сделает шаг вниз. Тянем за правый нижний угол ячейки H2 до ячейки L1 включительно, чтобы посчитать, сколько Робот соберёт монет, если пойдёт до упора вниз.

В ячейке I2 запишем формулу =B2+МАКС(I1;H2), чтобы посчитать максимальное количество монет, которое Робот может собрать, когда дойдёт до этой ячейки. Тянем за правый нижний угол ячейки I2 до ячейки L2 включительно, а затем тянем за правый нижний угол ячейки L2 до ячейки L5 включительно, чтобы посчитать максимальное количество монет, которое Робот соберёт, когда дойдёт до конечной клетки. В ячейке L5 получится число 496, которое пойдёт в ответ.

Аналогичным образом заполняем таблицу с ячейками H7:L11, но вместо формулы =B2+МАКС(I7;H8) записываем формулу =B2+МИН(I7;H8), чтобы посчитать минимальное количество монет, которое может собрать Робот на каждой клетке. В ячейке L11 получится число 336, которое пойдёт в ответ.

В ответ мы записываем без пробелов сначала максимальное количество монет, а потом минимальное. Получается ответ 496336.

Ответ: 496336

Рекомендуемые курсы подготовки

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Робот сборщик монет егэ как решать
  • Робот сборщик монет егэ информатика как решить
  • Робот пылесос сочинение на английском
  • Робот исполнитель информатика егэ
  • Робкое сердце паустовский сочинение егэ

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии