Робот исполнитель информатика егэ


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Система команд исполнителя РОБОТ, «живущего» в прямоугольном лабиринте на клетчатой плоскости, включает в себя 4 команды-приказа и 4 команды проверки условия. Команды-приказы: вверх, вниз, влево, вправо. При выполнении любой из этих команд РОБОТ перемещается на одну клетку соответственно: вверх ↑, вниз ↓, влево ←, вправо →. Если РОБОТ начнёт движение в сторону находящейся рядом с ним стены, то он разрушится, и программа прервётся.

Другие 4 команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится РОБОТ: сверху свободно, снизу свободно, слева свободно, справа свободно. Цикл

ПОКА условие

последовательность команд

КОНЕЦ ПОКА

выполняется, пока условие истинно. В конструкции

ЕСЛИ условие

ТО команда1

ИНАЧЕ команда2

КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно). В конструкциях ПОКА и ЕСЛИ условие может содержать команды проверки, а также слова И, ИЛИ, НЕ.

Сколько клеток лабиринта соответствуют требованию, что, начав движение в ней и выполнив предложенную программу, РОБОТ уцелеет и остановится в закрашенной клетке (клетка F6)?

НАЧАЛО

ПОКА <снизу свободно ИЛИ справа свободно>

ПОКА <справа свободно>

вправо

КОНЕЦ ПОКА

ЕСЛИ <снизу свободно>

ТО вниз

КОНЕЦ ЕСЛИ

КОНЕЦ ПОКА

КОНЕЦ


2

Система команд исполнителя РОБОТ, «живущего» в прямоугольном лабиринте на клетчатой плоскости, включает в себя 4 команды-приказа и 4 команды проверки условия.

Команды-приказы:

При выполнении любой из этих команд РОБОТ перемещается на одну клетку соответственно: вверх ↑, вниз ↓, влево ←, вправо →.

Если РОБОТ начнёт движение в сторону находящейся рядом с ним стены, то он разрушится, и программа прервётся.

Другие 4 команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится РОБОТ:

сверху свободно снизу свободно слева свободно справа свободно

Цикл

ПОКА < условие >

последовательность команд

КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

ЕСЛИ < условие >

ТО команда1

ИНАЧЕ команда2

КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

Сколько клеток лабиринта соответствуют требованию, что, начав движение в ней и выполнив предложенную программу, РОБОТ уцелеет и остановится в закрашенной клетке (клетка А1)?

НАЧАЛО

ПОКА < слева свободно ИЛИ сверху свободно >

ЕСЛИ < слева свободно >

ТО влево

ИНАЧЕ вверх

КОНЕЦ ЕСЛИ

КОНЕЦ ПОКА

КОНЕЦ

Источник: Демонстрационная версия ЕГЭ—2013 по информатике.


3

Система команд исполнителя РОБОТ, «живущего» в прямоугольном лабиринте на клетчатой плоскости, состоит из 8 команд. Четыре команды — это команды-приказы:

При выполнении любой из этих команд РОБОТ перемещается на одну клетку соответственно: вверх uparrow, вниз downarrow, влево leftarrow, вправо arrow.

Четыре команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится РОБОТ:

сверху свободно снизу свободно слева свободно справа свободно

Цикл

ПОКА условие

последовательность команд

КОНЕЦ ПОКА

выполняется, пока условие истинно

В конструкции

ЕСЛИ условие

ТО команда1

ИНАЧЕ команда2

КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

В конструкциях ПОКА и ЕСЛИ условие может содержать команды проверки, а также слова И, ИЛИ, НЕ, обозначающие логические операции. Если РОБОТ начнёт движение в сторону находящейся рядом с ним стены, то он разрушится и программа прервётся.

Сколько клеток лабиринта соответствуют требованию, что, начав движение в ней и выполнив предложенную программу, РОБОТ уцелеет и остановится в закрашенной клетке (клетка F6)?

НАЧАЛО

ПОКА снизу свободно ИЛИ справа свободно

ЕСЛИ снизу свободно

ТО

вниз

КОНЕЦ ЕСЛИ

ЕСЛИ справа свободно

ТО

вправо

КОНЕЦ ЕСЛИ

КОНЕЦ ПОКА

КОНЕЦ


4

Система команд исполнителя РОБОТ, «живущего» в прямоугольном лабиринте на клетчатой плоскости, состоит из 8 команд. Четыре команды — это команды-приказы:

При выполнении любой из этих команд РОБОТ перемещается на одну клетку соответственно: вверх uparrow, вниз downarrow, влево leftarrow, вправо arrow.

Четыре команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится РОБОТ:

сверху свободно снизу свободно слева свободно справа свободно

Цикл

ПОКА условие

последовательность команд

КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

ЕСЛИ условие

ТО команда1

ИНАЧЕ команда2

КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно)

В конструкциях ПОКА и ЕСЛИ условие может содержать команды проверки, а также слова И, ИЛИ, НЕ, обозначающие логические операции.

Если РОБОТ начнёт движение в сторону находящейся рядом с ним стены, то он разрушится и программа прервётся.

Сколько клеток лабиринта соответствуют требованию, что, начав движение в ней и выполнив предложенную программу, РОБОТ уцелеет и остановится в закрашенной клетке (клетка F6)?

НАЧАЛО

ПОКА снизу свободно ИЛИ справа свободно

ПОКА справа свободно

вправо

КОНЕЦ ПОКА

ЕСЛИ снизу свободнo

ТО

вниз

КОНЕЦ ЕСЛИ

КОНЕЦ ПОКА

КОНЕЦ


5

Система команд исполнителя РОБОТ, «живущего» в прямоугольном лабиринте на клетчатой плоскости, состоит из 8 команд. Четыре команды — это команды-приказы:

При выполнении любой из этих команд РОБОТ перемещается на одну клетку соответственно: вверх uparrow, вниз downarrow, влево leftarrow, вправо arrow.

Четыре команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится РОБОТ:

сверху свободно снизу свободно слева свободно справа свободно

Цикл

ПОКА условие

последовательность команд

КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

ЕСЛИ условие

ТО команда 1

ИНАЧЕ команда2

КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно)

В конструкциях ПОКА и ЕСЛИ условие может содержать команды проверки, а также слова И, ИЛИ, НЕ, обозначающие логические операции.

Если РОБОТ начнёт движение в сторону находящейся рядом с ним стены, то он разрушится и программа прервётся.

Сколько клеток лабиринта соответствуют требованию, что, начав движение в данной клетке и выполнив предложенную программу, РОБОТ уцелеет и остановится в закрашенной клетке (клетка F6)?

НАЧАЛО

    ПОКА снизу свободно ИЛИ справа свободно

        ПОКА снизу свободно

            вниз

        КОНЕЦ ПОКА

    ЕСЛИ справа свободно ТО

        вправо

    КОНЕЦ ЕСЛИ

    КОНЕЦ ПОКА

КОНЕЦ

Пройти тестирование по этим заданиям

На уроке рассмотрен материал для подготовки к ЕГЭ по информатике, разбор 18 задания. Объясняется тема об обработке числовой информации в электронных таблицах.

Содержание:

  • ЕГЭ по информатике 18 задание объяснение
  • Решение 18 задания ЕГЭ
    • Исполнитель Робот

18-е задание: «Обработка числовой информации в электронных таблицах»

Уровень сложности

— повышенный,

Требуется использование специализированного программного обеспечения

— да,

Максимальный балл

— 1,

Примерное время выполнения

— 6 минут.

  
Проверяемые элементы содержания: Умение обрабатывать вещественные выражения в электронных таблицах

Решение 18 задания ЕГЭ

Плейлист видеоразборов задания на YouTube:

Задание демонстрационного варианта 2022 года ФИПИ


Исполнитель Робот


18 задание. Демоверсия варианта ЕГЭ по информатике 2021, ФИПИ:

Задание выполняется с использованием прилагаемых файлов

  
Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.
Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю.
В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

Для указанных входных данных ответом должна быть пара чисел:

Ответ: 1204 | 502
Решение подобного задания смотрите в следующем ниже разборе.
📹 YouTube здесь

Видеорешение на RuTube здесь


18_1:

Задание выполняется с использованием прилагаемых файлов

  
Исходные данные записаны в файле (выше) в виде электронной таблицы прямоугольной формы.
Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой НИЖНЕЙ клетки в правую ВЕРХНЮЮ. В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

✍ Решение:

    ✎ Электронные таблицы:

  • Для решения будем использовать метод динамического программирования — решать будет с конца к началу.
  • Откройте файл электронной таблицы. Скопируем таблицу и вставим ее ниже — это будет шаблон для результирующей таблицы, полученной после решения задачи.
  • Выделите ячейки скопированной таблицы каким-либо цветом, для обозначения ее границ. Теперь удалите все значения в результирующей таблице:
  • решение 18 ЕГЭ

  • Так как задание решается с конца, то выделим последнюю ячейку, в которой окажется Робот — верхняя правая ячейка J12 результирующей таблицы. Робот просто соберет монету, которая находится в этой ячейке. Поэтому для ячейки возьмем значение из исходной таблицы. Введите формулу:
  • 18 задание с исполнителем Робот

    =J1
  • Попасть в данную ячейку J12 Робот мог, либо двигаясь из ячейки I12, либо из J13.
  • Рассмотрим ячейку I12. В ней Робот собирает монету, значение которой возьмем из исходной таблицы (ячейка I1). Ну и поскольку дальше он попадет только в ячейку J12, то необходимо прибавить значение этой ячейки. Поскольку значение уже просчитано для результирующей таблицы, то мы и будем его брать именно с результирующей таблицы. То есть введите формулу для ячейки I12:
  • электронные таблицы excel  в 18 задании егэ

    =I1+J12
  • Для всей верхней строки таблицы мы можем утверждать следующее: из любой ячейки Робот может двигаться только в соседнюю ячейку справа. То есть Робот будет собирать монету с текущей ячейки и при этом необходимо прибавлять значение соседней ячейки справа. То есть формула, которую мы ввели в ячейку I12, будет такой же и для всех оставшихся ячеек верхней строки.
  • Скопируйте формулу из ячейки I12 в диапазон ячеек A12:H12:
  • Определите максимальную и минимальную денежную сумму

  • Теперь перейдем к ячейке J13. Робот собирает монету с текущей ячейки (возьмём значение из ячейки исходной таблицы — J2) и добавим значение ячейки, в которую он пойдет дальше — ячейка J12 (берем значение из результирующей таблицы, поскольку оно уже просчитано):
  • 18 егэ

    =J2+J12
  • Для всех ячеек крайнего справа столбца таблицы можно утверждать: из каждой ячейки можно двигаться только в соседнюю ячейку сверху. То есть Робот будет собирать монету с текущей ячейки и нужно учесть, что он дальше попадает в ячейку сверху (необходимо прибавлять значение сверху из результирующей таблицы). То есть формула для ячейки J13 подходит для всех ячеек данного столбца.
  • Скопируйте формулу из ячейки J13 в диапазон ячеек J14:J21:
  • В ячейки I12 и J13 Робот мог попасть, также двигаясь из ячейки I13. Рассмотрим ее.
  • В ячейке I13 Робот собирает монету из текущей ячейки (берем значение из исходной таблицы — I2), и затем у него альтернатива движения: либо в ячейку I12, либо в J13. В задании необходимо найти, как максимальную, так и минимальную сумму монет. Найдем сначала максимальную. Для этого надо выбрать максимум из I12 и J13 и добавить к текущему значению. Введите формулу в I13:
  • =I2+МАКС(I12;J13)
  • Если проследовать логике движения Робота, то получается, что данная формула будет верной и для всех оставшихся ячеек таблицы. Скопируйте формулу из ячейки I13, использовав маркер копирования, во все оставшиеся ячейки таблицы:
  • Полученное значение в нижней левой ячейке таблицы, с которой начал свое путешествие Робот, — и есть результат.
  • Теперь найдем минимальную сумму. Для этого замените формулу ячейки I13 на =I2+МИН(I12;J13).
  • Скопируйте формулу в оставшийся диапазон ячеек. Значение, полученное в левой нижней ячейке — 522. Это и есть минимальная сумма монет.

Ответ: 1133 | 522


18_2:

Задание выполняется с использованием прилагаемых файлов

При попытке зайти на клетку со стеной Робот разрушается. Исходные данные записаны в файле в виде электронной таблицы прямоугольной формы. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю, не разрушившись. Известно, что такой путь существует. В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

✍ Решение:

    ✎ Электронные таблицы:

  • Для решения будем использовать метод динамического программирования — решать будет с конца к началу.
  • Откройте файл электронной таблицы. Скопируем таблицу и вставим ее ниже — это будет шаблон для результирующей таблицы, полученной после решения задачи.
  • Выделите ячейки скопированной таблицы каким-либо цветом, для обозначения ее границ. Теперь удалите все значения в результирующей таблице:
  • электронные таблицы

  • Так как задание решается с конца, то выделим последнюю ячейку, в которой окажется Робот — нижняя правая ячейка L25 результирующей таблицы. Робот просто соберет монету, которая находится в этой ячейке исходной таблицы — L12. Поэтому для ячейки возьмем значение из исходной таблицы. Введите формулу:
  • формула для L25:
    =L12
  • Попасть в данную ячейку L12 Робот мог, либо двигаясь из ячейки K12, либо из L11.
  • Рассмотрим ячейку К12. В ней Робот собирает монету, значение которой возьмем из исходной таблицы (ячейка K12). Ну и поскольку дальше он попадет только в ячейку L12, то необходимо прибавить значение этой ячейки.
  • Поскольку значение уже просчитано для результирующей таблицы, то мы и будем его брать именно с результирующей таблицы. Стену будем обозначать, как ячейку со значением 0. То есть введите формулу для ячейки K25:
  • =ЕСЛИ(И(L25>0;ИЛИ(K12<=100;K12>=500));K12+L25;0)

    Если выполняются одновременно два условия: L25>0 И либо K12<=100 либо K12>=500, то собираем монету с текущей ячейки (K12) и добавляем монету с L25, так как там нет стены (L25>0)

  • Для всей нижней строки таблицы мы можем утверждать следующее: из любой ячейки Робот может двигаться только в соседнюю ячейку справа. То есть Робот будет собирать монету с текущей ячейки и при это необходимо прибавлять значение соседней ячейки справа. То есть формула, которую мы ввели в ячейку K25 будет такой же и для всех оставшихся ячеек строки.
  • Скопируйте формулу из ячейки K25 в диапазон ячеек A25:J25.
  • Теперь перейдем к ячейке L24. Робот собирает монету с текущей ячейки (возьмём значение из ячейки исходной таблицы — L11) и добавим значение ячейки, в которую он пойдет дальше — ячейка L25 (берем значение из результирующей таблицы, поскольку оно уже просчитано):
  • =ЕСЛИ(И(L25>0;ИЛИ(L11<=100;L11>=500));L11+L25;0)

    Если выполняются одновременно два условия: L25>0 И либо L11<=100 либо L11>=500, то собираем монету с текущей ячейки (L11) и добавляем монету с L25, так как там нет стены (L25>0)

  • Скопируйте формулу из ячейки L24 в диапазон ячеек L14:L23.
  • В ячейке K24 Робот собирает монету из текущей ячейки (берем значение из исходной таблицы — K11), и затем у него альтернатива движения: либо в ячейку L24, либо в K25. В задании необходимо найти, как максимальную, так и минимальную сумму монет. Найдем сначала максимальную. Не забудем проверять значение каждой ячейки, нет ли там стены. Для этого введите формулу в K24:
  • =ЕСЛИ(И(K11>100;K11<500);0;ЕСЛИ(И(L24=0;K25=0);0;ЕСЛИ(L24=0;K11+K25;
    ЕСЛИ(K25=0;K11+L24;K11+МИН(L24;K25)))))

    Здесь логика формулы следующая: если текущее значение ячейки соответствует стене, то записываем 0; ИНАЧЕ — если обе ячейки, в которые может двигаться Робот, — стены, то записываем в текущую ячейку 0; ИНАЧЕ — если ячейка справа — стена, то двигаемся вниз, собирая по пути монеты; ИНАЧЕ — если ячейка снизу — стена, то двигаемся вправо, собирая по пути монеты; ИНАЧЕ — выбираем минимальное значение из соседних ячеек и собираем монеты.

  • Скопируйте формулу из ячейки K24, использовав маркер копирования, во все оставшиеся ячейки таблицы:
  • Полученное значение в нижней левой ячейке таблицы, с которой начал свое путешествие Робот, — и есть результат.
  • Теперь найдем минимальную сумму. Для этого измените формулу, заменив МАКС на МИН. И скопируйте снова данную формулу во всю оставшуюся таблицу.

  • Ответ: 1492 640


18_3:

Задание выполняется с использованием прилагаемых файлов

Робот может двигаться только вниз и вправо. Для сбора денег у Робота есть контейнеры вместимостью 8 монет каждый. С каждой клетки Робот забирает наибольшее количество контейнеров, полностью заполненных монетами. Если контейнер не заполнен до конца, а монеты в клетке кончились, робот высыпает из него монеты перед переходом в следующую клетку. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

✍ Решение:

    ✎ Электронные таблицы:

  • Для решения будем использовать метод динамического программирования — решать будет с конца к началу.
  • Откройте файл электронной таблицы. Скопируем таблицу и вставим ее ниже — это будет шаблон для результирующей таблицы, полученной после решения задачи.
  • Выделите ячейки скопированной таблицы каким-либо цветом, для обозначения ее границ. Теперь удалите все значения в результирующей таблице:
  • Так как задание решается с конца, то выделим последнюю ячейку, в которой окажется Робот — нижняя правая ячейка J21 результирующей таблицы. Робот просто соберет монеты, которые находится в этой ячейке исходной таблицы — J10, если наберется целое число контейнеров (значение кратное 8). Если целое число контейнеров не набирается, — то робот забирает только то, что набралось в контейнеры (8* ЧАСТНОЕ от деления монет на 8). Поэтому для ячейки возьмем значение из исходной таблицы, проверяя его на кратность 8. Введите формулу:
  • формула для J21:
    =ЕСЛИ(ОСТАТ(J10;8)=0;J10;8*ЧАСТНОЕ(J10;8))
  • Рассмотрим ячейку J20. В ней Робот собирает монету, значение которой возьмем из исходной таблицы (ячейка J9). При этом будем проверять значение на кратность 8 и действовать так же, как описано в предыдущем пункте. Ну и поскольку дальше Робот попадет только в ячейку J21, то необходимо прибавить значение этой ячейки.
  • формула для J20:
    =ЕСЛИ(ОСТАТ(J9;8)=0;J9+J21;8*ЧАСТНОЕ(J9;8)+J21)
  • Для всего крайнего справа столбца таблицы мы можем утверждать следующее: из любой ячейки Робот может двигаться только в соседнюю ячейку снизу. То есть Робот будет собирать монету с текущей ячейки и при это необходимо прибавлять значение соседней ячейки снизу. То есть формула, которую мы ввели в ячейку J20 будет такой же и для всех оставшихся ячеек столбца.
  • Скопируйте формулу из ячейки J20 в диапазон ячеек J12:J19.
  • Теперь перейдем к ячейке I21. Робот собирает монету с текущей ячейки (возьмём значение из ячейки исходной таблицы — I10). Проверим заполненность контейнеров, и добавим значение ячейки, в которую Робот пойдет дальше — ячейка J21 (берем значение из результирующей таблицы, поскольку оно уже просчитано):
  • формула для I21:
    =ЕСЛИ(ОСТАТ(I10;8)=0;I10+J21;8*ЧАСТНОЕ(I10;8)+J21)
  • Скопируйте формулу из ячейки I21 в диапазон ячеек A21:H21.
  • В ячейке I20 Робот собирает монету из текущей ячейки (берем значение из исходной таблицы — I9), проверяя заполненность контейнеров, и затем у него альтернатива движения: либо в ячейку J20, либо в I21. В задании необходимо найти, как максимальную, так и минимальную сумму монет. Найдем сначала максимальную. Не забудем проверять значение каждой ячейки на заполненность контейнеров. Для этого введите формулу в I20:
  • формула для I20:
    =ЕСЛИ(ОСТАТ(I9;8)=0;I9+МАКС(J20;I21);8*ЧАСТНОЕ(I9;8)+МАКС(J20;I21))
  • Скопируйте формулу из ячейки I20, использовав маркер копирования, во все оставшиеся ячейки таблицы.
  • Полученное значение в левой верхней ячейке таблицы, с которой начал свое путешествие Робот, — и есть результат.
  • Теперь найдем минимальную сумму. Для этого измените формулу, заменив МАКС на МИН. И скопируйте снова данную формулу во всю оставшуюся таблицу.
  • Ответ: 1144 448

12 задание ЕГЭ по информатике обычно решает только половина выпускников. Оно правда такое сложное? Нет, если заранее изучить каждый из трех прототипов. Из этой статьи вы узнаете, как справиться с Редактором, Роботом и Чертежником — и как можно сделать это еще проще, используя программирование.

12 задание ЕГЭ по информатике

Прототипы задания 12 и их сложности

12 задание ЕГЭ по информатике относится к повышенному уровню сложности. На экзамене за него можно получить один первичный балл.

Это задание — часть блога «Алгоритмизация». Чтобы решить его, нужно уметь работать с алгоритмами и анализировать их. В этом задании могут встретиться три прототипа заданий: Редактор, Робот и Чертежник. Причем Редактор встречается на экзамене в последнее время чаще других прототипов.

Редактор — это прототип на работу с цепочками цифр или букв. Нам дают алгоритм и строку, содержащую некоторое количество знаков. Нужно узнать, какая строка получится после выполнения программы или посчитать количество символов в строке. 

Если решать подобные задания аналитически, нужно искать закономерности изменения цепочки, чтобы получить ответ. Именно в этом и заключается сложность задания, ведь не все могут правильно найти нужную закономерность. 

Робот — прототип на работу с клетчатой плоскостью и алгоритмом. Вам дают алгоритм и плоскость, содержащую 36 клеток. Нужно найти количество клеток, удовлетворяющее определенному условию. Сложность в том, что ученики начинают проверять все 36 клеток. Делать это не нужно, если проанализировать алгоритм из условия.

Чертежник — прототип на работу с алгоритмом, где исполнитель перемещается по координатной плоскости. Чаще всего в таких заданиях в алгоритме есть пропуски в командах. Нужно найти наибольшее количество повторений цикла. Сложностей обычно здесь не так много, основная — невнимательность при выполнении вычислений.

Самостоятельно подготовиться к ЕГЭ непросто. На то, чтобы разобраться со всеми темами, понадобится много времени. Но и это не решит проблему! Например, если вы запомнили какое-то решение из интернета, а оно оказалось неправильным, можно на пустом месте потерять баллы. Если хотите научиться решать все задания ЕГЭ по информатике, обратите внимание на онлайн-курсы MAXIMUM! Наши специалисты уже проанализировали сотни вариантов ЕГЭ и подготовили для вас вас максимально полезные занятия.

Приходите к нам на консультацию — вы сможете пройти диагностику по выбранным предметам ЕГЭ, поставить цели и составить стратегию подготовки, чтобы получить на экзамене высокие баллы. Все это абсолютно бесплатно!

Редактор — как решать?

Задания с прототипом «Редактор» можно решать как аналитически, так и с помощью компьютера, если у вас все хорошо с программированием. Мы рассмотрим с вами оба способа решения и убедимся, что они дают одинаковые ответы.

Пример 1 (Редактор)

Исполнитель Редактор получает на вход строку цифр и преобразовывает ее.

Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А) заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б) нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

12 задание ЕГЭ по информатике

Какая строка получится в результате применения приведенной ниже программы к строке, состоящей из 88 идущих подряд цифр 4? В ответе запишите полученную строку.

12 задание ЕГЭ по информатике

Аналитическое решение

Алгоритм сначала заменяет в цепочке цифр все четверки на единицы. Потом начинает заменять назад единицы на четверки, но как только в цепочке образуются 3 четверки, алгоритм заменяет их на единицу. Порядок замены имеет значение при поиске ответа, поэтому его нужно обязательно учитывать. Также важно, что замена выполняется всегда в начале цепочки.

Сначала уберем по возможности все четверки из цепочки.

88 / 3 = 29 и 1 в остатке. 

Получается, что из цепочки уйдет 29 блоков по 3 четверки и образуется 29 единиц, 1 четверка останется в цепочке в самом конце.

Теперь будем последовательно убирать единицы из цепочки.

29 “1” + 1 “4”

1 “4” + 27 “1” + 1 “4”

2 “4” + 25 “1” + 1 “4”

3 “4” + 23 “1” + 1 “4”

24 “1” + 1 “4”

Как только в цепочке появились 3 четверки, алгоритм заменил их назад на единицу. Суммарно из цепочки ушло 5 единиц. Это действие будет повторяться циклически, поэтому можно посчитать, сколько блоков по 5 единиц уйдет из цепочки.

29 / 5 = 5 и 4 в остатке

Получается, что в цепочке останется 4 единицы и 1 четверка.

11114 → 4114 → 444 → 1

В итоге в цепочке останется только единица.

Решение с помощью компьютера 

В самом задании у нас уже написана программа. Остается перевести ее на конкретный язык программирования. Напишем программу на Python.

Она будет выглядеть следующим образом:

12 задание ЕГЭ по информатике

Создаем строку, содержащую 88 четверок. Далее запускаем цикл, который будет проверять, есть ли в строке 3 четверки или 2 единицы. Пропиваем условие и замену в строке. Важно в методе replace() указать третий параметр, который отмечает, сколько замен нужно выполнить. По умолчанию replace() сразу заменит все цифры в строке, а нам нужно выполнять замены по одной.

При запуске данной программы мы также получим ответ 1.

Ответ: 1

Пример 2 (Редактор)

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А)  заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б)     нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

На вход приведенной ниже программе поступает строка, начинающаяся с символа «>», а затем содержащая 25 цифр 1, 45 цифр 2 и 10 цифр 3, расположенных в произвольном порядке.

Определите сумму числовых значений цифр строки, получившейся в результате выполнения программы.

Так, например, если результат работы программы представлял бы собой строку, состоящую из 50 цифр 4, то верным ответом было бы число 200.

12 задание ЕГЭ по информатике

Аналитическое решение 

Цифры 1, 2 и 3 находятся в строке в произвольном порядке. Все, что нам нужно сделать, чтобы получить ответ — это понять, сколько цифр образовалось в результате замен. 

Каждую единицу алгоритм заменит на тройку. Если изначально было 25 единиц, то в результате замен образуется 25 троек, и их сумма будет равна 25 * 3 = 75.

Каждую двойку алгоритм заменит на 2 единицы. Изначально было 45 двоек, значит, в результате замен образуется 90 единиц. Их сумма будет равна 90.

Каждую тройку алгоритм заменит на 2 тройки. Было 10 троек, станет 20. Сумма составит 20 * 3 = 60.

Итоговая сумма всех цифр цепочки будет равна 75 + 90 + 60 = 225.

Решение с помощью компьютера

Перенесем алгоритм на язык программирования Python.

Получаем следующую программу:

Сначала мы задали строку, содержащую знак “>” и нужное количество всех цифр. Далее в цикле проверяем наличие знака “>” и цифр и выполняем замену. Как только программа вышла из цикла, считаем количество единиц, двоек и троек в строке — и находим сумму. При запуске программы также получается ответ 225.

В данном задании написание программы может занять больше времени, чем аналитическое решение. Поэтому всегда оценивайте временные затраты на написание кода.

Ответ: 225

Робот — как решать?

Второй прототип, который включает в себя 12 задание ЕГЭ по информатике — Робот. Этот прототип точно придётся решать аналитически, поэтому давайте разбираться, как сделать это с минимальными затратами времени.

Пример 3 (Робот)

Система команд исполнителя РОБОТ, «живущего» в прямоугольном лабиринте на клетчатой плоскости, включает в себя 4 команды-приказа и 4 команды проверки условия. 

Команды-приказы: вверх, вниз, влево, вправо

При выполнении любой из этих команд РОБОТ перемещается на одну клетку соответственно: вверх ↑, вниз ↓, влево ←, вправо →.

Если РОБОТ начнёт движение в сторону находящейся рядом с ним стены, то он разрушится, и программа прервется.

Другие 4 команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится РОБОТ: сверху свободно, снизу свободно, слева свободно, справа свободно

Цикл

ПОКА < условие > команда

Выполняется, пока условие истинно, иначе происходит переход на следующую строку.

Если РОБОТ начнет движение в сторону стены, то он разрушится, и программа прервется. 

Сколько клеток лабиринта соответствуют требованию, что, выполнив предложенную программу, РОБОТ уцелеет и остановится в той же клетке, с которой он начал движение?

НАЧАЛО

ПОКА < снизу свободно > вправо

ПОКА < справа свободно > вверх

ПОКА < сверху свободно > влево

ПОКА < слева свободно > вниз

КОНЕЦ

12 задание ЕГЭ по информатике

Решение

Чтобы не проверять все 36 клеток плоскости, нужно проанализировать программу. В алгоритме 4 цикла, но нам важен только последний. Робот будет выполнять действия и остановится только в той клетке плоскости, где слева есть стена, так как в последнем цикле мы проверяем именно это условие. Поэтому необходимо проверить только те клетки, где слева есть стена. В остальных клетках плоскости Робот просто не сможет остановиться, поэтому и начинать движение из них мы тоже не будем.

12 задание ЕГЭ по информатике

Проверяем по алгоритму 12 отмеченных клеток. 

Из всех отмеченных клеток нам подойдет только клетка В5. Если начать движение из нее, Робот вернется в эту же точку. Остальные клетки не подойдут, так как Робот либо разобьется, либо остановится в другой клетке.

Ответ: 1

Прототип Чертежник — как решать?

Последний прототип, который составители включили в 12 задание ЕГЭ по информатике — это Чертежник. Здесь при решении важно правильно составить систему уравнений и найти наибольший/наименьший делитель двух чисел. Посмотрим, как это сделать.

Пример 4 (Чертежник)

Исполнитель Чертёжник перемещается на координатной плоскости, оставляя след в виде линии. Чертёжник может выполнять команду сместиться на (a, b), где a, b – целые числа. Эта команда перемещает Чертёжника из точки с координатами (x, y) в точку с координатами (x + a, y + b).

Например, если Чертёжник находится в точке с координатами (4, 2), то команда сместиться на (2, −3) переместит Чертёжника в точку (6, −1).

Цикл

ПОВТОРИ число РАЗ

последовательность команд

КОНЕЦ ПОВТОРИ

означает, что последовательность команд будет выполнена указанное число раз (число должно быть натуральным).

Чертёжнику был дан для исполнения следующий алгоритм (количество повторений и величины смещения в первой из повторяемых команд неизвестны):

В результате выполнения этого алгоритма Чертёжник возвращается в исходную точку. Какое наибольшее число повторений могло быть указано в конструкции «ПОВТОРИ … РАЗ»?

Решение

Чтобы решить это задание, необходимо обозначить неизвестными пропуски в алгоритме.

12 задание ЕГЭ по информатике

Далее составим систему уравнений. Нам известно, как перемещался Чертежник, и сказано, что он вернулся в начальную точку. Получается, его перемещение равно 0.

Теперь мы можем найти n — наибольшее количество повторений цикла. Число n должно быть делителем как 24, так и 16, то есть нам нужно найти НОД(24, 16). Он равен 8. Это и будет ответом к заданию.

Ответ: 8

Что нужно запомнить?

  1. Если вам попадется Редактор, можете написать программу, которая найдет ответ вместо вас. Но всегда рассчитывайте, что будет рациональнее: аналитическое решение или компьютерное. Если останется время, можно проверить себя вторым способом.
  2. Решая задание с Роботом, не нужно проверять все клетки — это долго. Проанализируйте алгоритм и проверяйте только те клетки, которые действительно могут подойти под условия.
  3. Чтобы разобраться с Чертежником, внимательно составляйте систему уравнений. Ищите НОД, если нужно найти наибольшее количество повторений цикла. 
  4. Если в конце экзамена осталось время, вернитесь к заданию и проверьте его — ребята часто теряют баллы из-за невнимательности. Особенно рекомендую перепроверить Робота — решите его заново. 

Теперь вы знаете, как решать 12 задание ЕГЭ по информатике! Обязательно прочитайте наш гайд по этому экзамену, если хотите разобраться с остальными темами и заданиями. Там вы найдете структуру экзамена, актуальные прототипы, тематические блоки и лайфхаки от наших преподавателей. Желаем удачи в подготовке 🙂

Исполнитель Робот

Исполнитель РОБОТ является «старейшим» исполнителем, алгоритм для которого предлагается выполнить выпускникам в задаче №14 экзаменационной работы по информатике и ИКТ.

Рассмотрим отдельные элементы содержания задания, необходимые для понимания работы алгоритма.

Исполнитель РОБОТ перемещается по прямоугольному лабиринту, начерченному на плоскости, разбитой на клетки. Система команд исполнителя РОБОТ содержит восемь команд:

  • команды-приказы: вверх, вниз, влево, вправо. При выполнении любой из этих команд РОБОТ перемещается на одну клетку в зависимости от команды.
  • четыре команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится РОБОТ: сверху свободно, снизу свободно, слева свободно, справа свободно.

Задача №14. Сколько клеток лабиринта (смотри Рис.1) соответствуют требованию, что, начав движение в этой клетке и выполнив предложенную программу, РОБОТ уцелеет и остановится в той же клетке, с которой он начал движение?

  • НАЧАЛО
  •  ПОКА <справа свободно> вверх
  •  ПОКА <сверху свободно> влево
  •  ПОКА <слева свободно> вниз
  •  ПОКА <снизу свободно> вправо
  • КОНЕЦ

Решение.

Для возвращения робота в исходную клетку необходимо, чтобы его траектория представляла собой прямоугольник, или отрезок – горизонтальный либо вертикальный.
Рассмотрим возможные случаи и выясним необходимые условия для возвращения робота в исходную клетку.

Первый случай. Прямоугольная траектория:

  • Очевидно, четыре стенки должны ограничивать движение робота в следующем порядке: сначала справа, затем сверху, потом слева и наконец снизу (смотри Рис. 2)

Второй случай. Линейная траектория:

  • (а) горизонтальная линия: робот должен двигаться сначала налево, а затем направо. Анализ программы показывает, что в этом случае не должны выполняться две инструкции — «ПОКА <справа свободно> вверх» и «ПОКА <слева свободно> вниз». Значит, клетчатая плоскость должна содержать соответствующие ограничения справа и слева (смотри Рис. 3)
  • (б) вертикальная линия: робот должен двигаться сначала вниз, потом вверх. Аналогично предыдущим рассуждениям, имеем: не должны выполняться две инструкции — «ПОКА <сверху свободно> влево» и «ПОКА <снизу свободно> вправо. Поэтому, на клетчатой плоскости должны быть соответствующие ограничения сверху и снизу (смотри Рис. 4)

Поле робота

Нетрудно заметить, что во всех перечисленных случаях искомая клетка имеет ограничение снизу. Отметим такие клетки-кандидаты (смотри Рис.5).

Дальнейший анализ лабиринта, в котором движется робот, показывает, что первому случаю удовлетворяет клетка С4, второму случаю (а) – клетки E2, B2 и, наконец, второму случаю (б) отвечает клетка D5 (смотри Рис. 6).

Ответ. 4

Смотрите также варианты задачи №14 ЕГЭ по информатике и ИКТ, с другими исполнителями:

  • Исполнитель Чертежник
  • Исполнитель Редактор

Продолжаем подготовку к ЕГЭ по информатике нового формата 2021, и сегодня тренируемся решать 12 задание.

12 задание из ЕГЭ по информатике 2021 проверят умение управлять исполнителями команд (Роботом, Машинкой, Корабликом, Редактором и т.д.).

Давайте посмотрим, как его решать.

Задача (Редактор)

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочку цифр.

А) заменить(v, w)

Эта команда заменяет в строке первое слева вхождение цепочки v на w. Например, выполнение команды заменить(222, 34) преобразует строку 77222277 в строку 7734277.

Если в строке нет вхождений цепочки v, то выполнение команды заменить(v, w) не меняет эту строку.

Б) нашлось(v)

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

Цикл

ПОКА условие
    последовательность команд
КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

ЕСЛИ условие
    ТО команда1
    ИНАЧЕ команда2
КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 90 идущих подряд цифр 3 и в конце одной цифры 1 ? В ответе запишите полученную строку.

НАЧАЛО
ПОКА нашлось(331) ИЛИ нашлось(166)
    ЕСЛИ нашлось(331)
        ТО заменить(331, 16)
        ИНАЧЕ заменить(166,31)
    КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ

Решение:

В подобных задачах из ЕГЭ по информатике даются все те команды управления, которые присутствуют в большинстве языках программирования (циклы, условия).

На вход программе подаётся строка:

ЕГЭ по информатике 2021 - задание 12 (строка цифр)

Рассмотрим нашу программу более подробно.

ЕГЭ по информатике 2021 - задание 12 (строка цифр алгоритм)

Сформулируем словами алгоритм: Проверяем есть ли в строке подстрока 331 или 166. Пока есть та или иная подстрока (или обе вместе), работаем в цикле. Внутри цикла ищем подстроку 331. Если она есть, то заменяем 331 на 16, но если нет подстроки 331, а мы всё равно находимся в цикле, то значит есть подстрока 166. Мы её должны заменить на 31. И так будет происходить, пока хотя бы одна из подстрок 331 или 166 будут присутствовать в основной строке.

ЕГЭ по информатике 2021 - задание 12 (преобразование строки)

Пока есть сочетание 331, эта подстрока будет заменяться на 16. Т.е. каждые две цифры 3 заменяются на одну 6, а единица так и остаётся одной единицей.

Изначально было 90 троек. Они превратятся в 45 шестёрок.

ЕГЭ по информатике 2021 - задание 12 (преобразование строки 2)

После этого начнёт работать вторая ветка условия — ИНАЧЕ. И будет выполняться команда заменить(166,31).

ЕГЭ по информатике 2021 - задание 12 (преобразование строки 2)

На рисунке видно, что т.к. нету больше подстроки 331, то Редактор заменит 166 на 31. Во второй строчке так же нету подстроки 331, снова будет заменена подстрока 166 на 31. В третьей строке уже появляется 331,
это значит, что условие пойдёт по основной ветке, а не по ветке ИНАЧЕ, следовательно, выполнится снова команда заменить(331, 16).

Мы пришли к ситуации, когда была строка, где первая стояла единица, а после неё шло 45 шестёрок. А после определённого преобразования снова идёт единица, а затем уже 42 шестёрки. Т.е. 3 шестёрки просто исчезли в результате преобразования. Если продолжит Редактор выполнять программу, то снова исчезнут 3 шестёрки и т.д.

Рассмотрим ситуацию когда останется 1 и последние три шестёрки.

ЕГЭ по информатике 2021 - задание 12 (строка цифр - финальное преобразование)

В результате останется строка 316, где нет ни 331, ни 166, значит, цикл завершит свою работу, а 316 будет ответом!

Ответ: 316

Разберём ещё один пример с исполнителем Редактором. Задачи со строками очень часто встречаются в последние время в подобных заданиях на реальном ЕГЭ по информатике.

Задача (ЕГЭ по информатике, 2020, Москва)

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки символов.

заменить(v, w)
нашлось(v)

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор.

Дана программа для Редактора:

НАЧАЛО

    ПОКА нашлось(49) ИЛИ нашлось(97) ИЛИ нашлось(47)
        
        ЕСЛИ нашлось(47)
        ТО заменить(47, 74)
        КОНЕЦ ЕСЛИ

        ЕСЛИ нашлось(97)
        ТО заменить(97, 79)
        КОНЕЦ ЕСЛИ

        ЕСЛИ нашлось(49)
        ТО заменить(49, 94)
        КОНЕЦ ЕСЛИ

    КОНЕЦ ПОКА

КОНЕЦ

На приведённой ниже программе поступает строка, содержащая 40 цифр 7, 40 цифр 9 и 50 цифр 4, расположенных в произвольном порядке. Запишите без разделителей символы, которые имеют порядковые номера 25, 71, 105 в получившийся строке.

Решение:

В этой задаче цикл будет работать пока хотя бы одно сочетание 49, 97, 47 встречается в строке. Внутри цикла идут три равноправных условия. Эти условия «отлавливают» три выше перечисленные сочетания цифр и меняют цифры местами.

Видим, что если стоит 7 (семёрка) с любой цифрой (кроме себя), то в результате работы программы, 7 (семёрка) всегда окажется слева:

97 -> 79
47 -> 74

Если стоят вместе 4 и 9, то слева всегда оказывается 9:

49 -> 94

Таким образом, после выполнения всей программы строка будет выглядеть:

ЕГЭ по информатике - задание 12 (строка после выполнения программы)

Пример, если бы каждая цифра встречалась 3 раза:

479449797
749494779
794497479
794974479
799744479
797944749
779947494
779974944
779799444
777999444

Здесь были преобразованы строки цифр по описанным выше правилам (Т.е. если встречается нужное сочетание цифр, они меняются местами). Каждая новая строчка — это новое прохождение цикла. За один проход цикла может меняться только один раз каждое сочетание цифр.

Тогда в нашей финальной строке на 25 месте будет цифра 7, на 71 месте 9, на 105 месте цифра 4.

Ответ: 794

Задача (Робот)

Система команд исполнителя РОБОТ, «живущего» в прямоугольном лабиринте на клетчатой плоскости, состоит из 8 команд. Четыре команды — это команды-приказы:

При выполнении любой из этих команд РОБОТ перемещается на одну клетку соответственно: вверх , вниз , влево , вправо .

Четыре команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится РОБОТ:

сверху свободно снизу свободно слева свободно справа свободно

Цикл
   ПОКА условие
       последовательность команд
   КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
    ТО команда1
    ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно)

В конструкциях ПОКА и ЕСЛИ условие может содержать команды проверки, а также слова И, ИЛИ, НЕ, обозначающие логические операции.

Если РОБОТ начнёт движение в сторону находящейся рядом с ним стены, то он разрушится и программа прервётся.

Сколько клеток лабиринта соответствуют требованию, что, начав движение в ней и выполнив предложенную программу, РОБОТ уцелеет и остановится в закрашенной клетке (клетка F6)?

НАЧАЛО
  ПОКА снизу свободно ИЛИ справа свободно
    ПОКА справа свободно
        вправо
    КОНЕЦ ПОКА
    ЕСЛИ снизу свободнo
        ТО вниз
    КОНЕЦ ЕСЛИ
  КОНЕЦ ПОКА
КОНЕЦ
ЕГЭ по информатике 2021 - задание 12 (Лабиринт, где живёт Робот)

Решение:

Проанализируем внимательно программу для Робота.

В программе есть главный цикл, внутри цикла проверяется сначала возможность двигаться вправо. Если есть такая возможность, робот будет двигаться до упора с помощью ещё одного цикла. Потом после того как больше нет возможности двигаться вправо, с помощью основного цикла и записанного условия будет перемещаться вниз, пока есть такая возможность.

Если нет возможности двигаться ни вправо, ни вниз, то Робот завершает программу.

Поняв этот алгоритм не сложно отметить те клетки, стартовав с которых, Робот остановится на клетке F6.

ЕГЭ по информатике 2021 - задание 12 (клетки лабиринта соответствуют требованию)

Ещё раз, Робот до упору будет двигаться вправо, потом до упору вниз, насколько это возможно. Вот алгоритм в двух словах.

Важно в этих задачах простыми словами сформулировать алгоритм, чтобы можно было проверять целые блоки лабиринта.

Количество клеток, удовлетворяющие условию будет 21.

Ответ: 21

12 Задание из ЕГЭ по информатике 2021 выглядит обычно объёмным, но на деле описываются обычные конструкции (Циклы и условия), которые есть в большинстве языках программирования.

Задача (Чертёжник)

Исполнитель Чертёжник перемещается на координатной плоскости, оставляя след в виде линии. Чертёжник может выполнить команду сместиться на(a, b), где a, b — целые числа. Эта команда перемещает Чертёжника из точки с координатами (x, y) в точку с координатами (x + a, y + b).

Например, если Чертёжник находится в точке с координатами (4, 2), то команда сместиться на(2, -3) переместит Чертёжника в точку (6, -1).

Цикл

ПОВТОРИ число РАЗ
последовательность команд
КОНЕЦ ПОВТОРИ

означает, что последовательность команд будет выполнена указанное число раз (число должно быть натуральным).

Чертёжнику был дан для исполнения следующий алгоритм (число повторений и величины смещения в первой из повторяемых команд неизвестны):

НАЧАЛО
сместиться на(8, -60)
  ПОВТОРИ ... РАЗ
    сместиться на(..., ...)
    сместиться на(4, -6)
  КОНЕЦ ПОВТОРИ
сместиться на(-35, -3)
КОНЕЦ

В результате выполнения этого алгоритма Чертёжник возвращается в исходную точку. Какое наибольшие число повторений могло быть указано в конструкции «ПОВТОРИ … РАЗ» ?

Решение:

Эта задача похоже на задачу Кузнечик, которую рассматривали в 5 задании.

Напишем для переменной x уравнение.

8 + n * x + n * 4 — 35 = 0

Всё выражение приравниваем к нулю, т.к. Чертёжник возвращается в исходную точку, т.е. как ни ходил Чертёжник, он никуда в итоге не сдвинулся.

n — положительное целое число, количество повторений.

x — целое число, смещение по координате x.

n * x + n * 4 = 27

n * ( x + 4 ) = 27

Нужно подобрать x и n, чтобы равенство было верным.

Число n может быть 27, 9, 3, 1. Нам нужно выбрать число n, как можно больше.

Проверим число 27! Тогда выражение x + 4 = 1 => x = -3. Теперь нужно проверить это число для координаты y.

-60 + n * yn * 6 — 3 = 0

27 * y27 * 6 = 63

27 * ( y — 6 ) = 63

Видим, что нельзя подобрать такое целое число для 27, чтобы при умножении получалось 63.

Проверим число 9! Тогда выражение x + 4 = 3 => x = -1. Теперь нужно проверить это число для координаты y.

-60 + n * yn * 6 — 3 = 0

9 * y9 * 6 = 63

9 * ( y — 6 ) = 63

Видим, что можно подобрать такое целое число для 9, чтобы при умножении получалось 63. Это число 7. Значит, y — 6 = 7 => y = 13

Мы подобрали все нужные числа и нашли наибольшее число n=9.

Ответ: 9

Последняя на сегодня репетиционная задача 12 задания ЕГЭ по информатике 2021.

Задача (Кораблик)

Исполнитель КОРАБЛИК «живет» в ограниченном прямоугольном водоеме-лабиринте, разделенном на клетки и изображенном на рисунке (вид сверху). Серые клетки — скалистые берега, светлые — свободное пространство, безопасное для передвижения КОРАБЛИКА. По краю водоема-лабиринта также находятся скалы с нанесенными на них номерами и буквами для удобства идентификации клеток.

ЕГЭ по информатике 2021 - задание 12 (Исполнитель Кораблик)

Система команд исполнителя КОРАБЛИК:

вверх, вниз, влево, вправо

При выполнении любой из этих команд КОРАБЛИК перемещается на одну клетку соответственно (по отношению к наблюдателю): вверх ↑, вниз ↓, влево ←, вправо →. Четыре команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится КОРАБЛИК (также по отношению к наблюдателю):

сверху свободно

снизу свободно
слева свободно
справа свободно

Цикл

ПОКА <условие> команда

выполняется, пока условие истинно, иначе происходит переход на следующую строку.
При попытке передвижения на любую серую клетку КОРАБЛИК разбивается о скалы.

Сколько клеток приведенного лабиринта соответствуют требованию, что, стартовав в ней и выполнив предложенную ниже программу, КОРАБЛИК не разобьется?

 
НАЧАЛО
  ПОКА <сверху свободно> вверх
  ПОКА <слева свободно> влево
  вверх
  вправо
КОНЕЦ

Решение:

Кораблик разбивается нарвавшись на серую клетку.

Сформулируем в простом виде алгоритм программы: Сначала идём вверх до упора, потом влево до упора. Потом ещё один раз вверх и один раз вправо.

Последние две команды выполняются без какой-либо проверки, это и есть слабое место программы, где Кораблик может разбиться.

ЕГЭ по информатике 2021 - задание 12 (Исполнитель Кораблик, анализируем область)

На рисунке показано область, где ни одна клетка не подходит, т.к. Кораблик разобьётся в клетках отмеченные красным цветом.

ЕГЭ по информатике 2021 - задание 12 (Исполнитель Кораблик, анализируем область 2)

На этом рисунке жёлтым цветом отмечены клетки, которые подходят, и стартовав из этих клеток, Кораблик попадёт в одну из зелёных клеток, где выполнить последние команды вверх и вправо, Кораблик останется целым. Клетка С8 отмечена и жёлтым и зелёным цветом.

Остальные же клетки нам не подходят. Кораблик, стартовав с них, попадёт на одну из красных клеток, где он разобьётся, выполняя последние две команды вверх, влево. Клетка I5 окрашена и красным, и жёлтым цветом.

ЕГЭ по информатике 2021 - задание 12 (Исполнитель Кораблик, анализируем область 3)

Посчитаем жёлтые клетки. Всего получилось 17 клеток.

Ответ: 17

Успешной подготовки к ЕГЭ по информатике!

В решение заданий демо-версии используется язык программирования Python.

Задание 1. Анализ информационных моделей

На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта D в пункт В и из пункта F в пункт A. В ответе запишите целое число.

На графе расставим веса вершин.
Мы видим, что вершина В уникальна, имеет вес 2 и связана с двумя «тройками по весу».
Из таблицы видим, В это 4, далее видим, что «тройки по весу» это вершины 2 и 7. 
7 вершина связана кроме В, еще с двумя «тройками по весу», значит D это 7, а F это 2. 

Далее 2 и 7 вершины ведут нас к 5, значит А это 5, оставшаяся «тройка» это вершина Е под номером 6.
Рассуждая дальше видим, что С это 1, G это 2.

Сумма дорог BD + AF = 53 + 5 = 58

 

Ответ: 58 

Задание 2.  Построение таблиц истинности логических выражений

Миша заполнял таблицу истинности логической функции F 

F= ¬(y → x) v (z→ w) v ¬z , но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z. 

Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z. В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно. 

Пример. Функция задана выражением ¬x v y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид. В этом случае первому столбцу соответствует переменная y, а второму столбцу – переменная x. В ответе следует написать yx. 

¬(y → x) v (z→ w) v ¬z=0. Следовательно y → x =1, z→ w=0,  z=1. Значит третий столбец z. z→ w=0, значит w=0, и это может быть только 4 столбец. y → x =1, следовательно из второй строки мы видим, что первый столбец может быть только у, а второй х.

y  x  z w
0 0 1 0
0 1 1 0
1 1 1 0

Решение на Python

  Ответ: YXZW 

Задание выполняется с использованием прилагаемых файлов

Задание 3.  Базы данных. Файловая система 

В прикрепленном файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в
магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня.

На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите общий вес
(в кг) крахмала картофельного, поступившего в магазины Заречного района
за период с 1 по 8 июня включительно. В ответе запишите только число.

На третьем листе книги применим фильтр по району и получим ID четырех магазинов. 

На втором листе применим фильтр по товару и получим ID товара.

На первом листе применим фильтры по ID товара и ID магазинов и типу операции. Все даты попадают в интервал от 1 до 8 июня. Получим:

Поступило в продажу 710 упаковок. В упаковке 0,5 кг. Получим 355 кг.

Ответ: 355 

Задание 4.  Кодирование и декодирование информации

По каналу связи передаются сообщения, содержащие только буквы из набора: А, З, К, Н, Ч. Для передачи используется двоичный код,удовлетворяющий прямому условию Фано, согласно которому никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений.

Кодовые слова для некоторых букв известны: Н – 1111, З – 110. Для трёх оставшихся букв А, К и Ч кодовые слова неизвестны. Какое количество двоичных знаков потребуется для кодирования слова КАЗАЧКА, если известно, что оно закодировано минимально возможным количеством двоичных знаков?

 

Ответ: 14

Задание 5.  Анализ и построение алгоритмов для исполнителей

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему
новое число R следующим образом.

1. Строится двоичная запись числа N.
2. Далее эта запись обрабатывается по следующему правилу:
а) если сумма цифр в двоичной записи числа чётная, то к этой записи справа дописывается 0, а затем два левых разряда заменяются на 10;
б) если сумма цифр в двоичной записи числа нечётная, то к этой записи справа дописывается 1, а затем два левых разряда заменяются на 11. 

Полученная таким образом запись является двоичной записью искомого числа R.Например, для исходного числа 610 = 1102 результатом является число
10002 = 810, а для исходного числа 410 = 1002 результатом является число 11012 = 1310.
Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее 40. В ответе запишите это число в десятичной системе счисления.

Минимальное R, большее 40, это 41.
В результате выполнения алгоритма число R должно либо начинаться на 10 и оканчиваться 0, либо начинаться на 11 и оканчиваться 1.
Из чисел, больших 41, это 42, 44, 46, 49, и т.д.
Мы должны найти минимальное N, из которого данное число получено.
Поскольку первые цифры заменялись, то мы видим, что данные числа могли быть получены из чисел 29, 30, 23, 16. 
Из которых 16 минимальное, и меньше уже быть не может.

ИЛИ программное решение

Ответ: 16

 

Задание 6.  Определение результатов работы простейших алгоритмов

Исполнитель Черепаха действует на плоскости с декартовой системой координат.
В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды:
Вперёд n (где n–целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке.
Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. 

Черепахе был дан для исполнения следующий алгоритм:
Повтори 7 [Вперёд 10 Направо 120].
Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.


  ИЛИ

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 5 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n– целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n– целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m– целое число), вызывающая изменение направления движения на m градусов против часовой стрелки. 

Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз.

Черепахе был дан для исполнения следующий алгоритм:
Повтори 2 [Вперёд 10 Направо 90 Вперёд 20 Направо 90]
Поднять хвост
Вперёд 3 Направо 90 Вперёд 5 Налево 90
Опустить хвост
Повтори 2 [Вперёд 70 Направо 90 Вперёд 80 Направо 90]

Определите, сколько точек с целочисленными координатами будут находиться внутри пересечения фигур, ограниченных заданными алгоритмом линиями, включая точки на границах этого пересечения. 

Сначала нужно построить фигуру. 
Это можно сделать к примеру, на тетрадном листе, при помощи библиотеки Turtle или в Excel.

 

Далее мы находим уравнения прямых, которыми ограничена фигура и решаем
систему уравнений программно.

ИЛИ
Фигуру можно построить программно или к примеру, в Excel.
Далее анализируем и считаем точки.

Ответ: 1 задание  — 38, 2 задание — 128

Задание 7.  Кодирование и декодирование информации. Передача информации

Музыкальный фрагмент был записан в формате моно, оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла – 28 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате стерео (двухканальная запись) и оцифрован с разрешением в 3,5 раза выше и частотой дискретизации в 2 раза меньше, чем в первый раз. Сжатие данных не производилось. Укажите размер полученного при повторной записи файла в Мбайт. В ответе запишите только целое число, единицу измерения писать не нужно.

I = ν ⋅ i ⋅ t ⋅ k, где ν — частота дискретизации (Гц),

 i — разрешение (бит), t — время (с), k — количество дорожек (1 -моно, 2- стерео, 4 — квадро)

I1 = ν ⋅ i ⋅ t 
I2 = ν/2 ⋅ 3,5 ⋅ i ⋅ t ⋅ 2 = 3,5 ⋅ I1

I2 = 3,5 · 28 = 98 

 Ответ: 98

Задание 8. Перебор слов и системы счисления

Определите количество пятизначных чисел, записанных в восьмеричной системе счисления, в записи которых только одна цифра 6, при этом никакая нечётная цифра не стоит рядом с цифрой 6.

* * * * * — пятизначное число
В восьмеричной системе счисления в алфавите 8 цифр: 0..7.
Первая цифра 0 быть не может.
Цифра 6 — одна, при этом стоит рядом только с четными цифрами — 0, 2 или 4.
Получим:

6 * * * * — вариантов 3 ⋅ 7 ⋅ 7 ⋅ 7 = 1029
* 6 * * * — вариантов 2 ⋅ 3 ⋅ 7 ⋅ 7 = 294
* * 6 * * — вариантов 6 ⋅ 3 ⋅ 3 ⋅ 7 = 378
* * * 6 * — вариантов 6 ⋅ 7 ⋅ 3 ⋅ 3 = 378
* * * * 6 — вариантов 6 ⋅ 7 ⋅ 7 ⋅ 3 = 882

Ответ: 2961

Задание выполняется с использованием прилагаемых файлов

Задание 9. Работа с таблицами

Файл с данными

Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– в строке только одно число повторяется дважды;
– среднее арифметическое неповторяющихся чисел строки не больше суммы повторяющихся чисел.
В ответе запишите только число.

Для решения этой задачи понадобится 10 вспомогательных столбцов. Сначала мы посчитаем количество повторяющихся чисел в каждой строке.

Затем сумму каждой строки диапазона H:M. Если повторений нет, то эта сумма равна 6.

  Далее мы найдем среднее арифметическое неповторяющихся значений.

Затем найдем сумму повторяющихся значений.

Затем проверим соблюдение двух условий. И подсчитаем количество строк, в которых соблюдаются оба условия.

Ответ: 2241

Задание выполняется с использованием прилагаемых файлов

Задание 10. Поиск символов в текстовом редакторе

Файл с данными

Текст произведения Льва Николаевича Толстого «Севастопольские рассказы» представлен в виде файлов различных форматов. Откройте один из файлов и определите, сколько раз встречается в тексте отдельное слово «теперь» со строчной буквы. Другие формы этого слова учитывать не следует.
В ответе запишите только число.

В текстовом редакторе используем инструмент найти (по умолчанию он не учитывает регистр, в расширенном поиске есть кнопка больше, где можно проверить настройки). Ищем слово целиком. Ставим галочку учитывать регистр. Слово теперь со строчной буквы встречается 45 раз.

Ответ: 45

Задание 11. Вычисление количества информации

При регистрации в компьютерной системе каждому объекту присваивается идентификатор, состоящий из 250 символов и содержащий только десятичные цифры и символы из 1650-символьного специального алфавита. В базе данных для хранения каждого идентификатора отведено одинаковое и минимально возможное целое число байт. При этом используется посимвольное кодирование идентификаторов, все символы кодируются одинаковым и минимально возможным количеством бит. Определите объём памяти (в Кбайт), необходимый для хранения 65 536 идентификаторов. В ответе запишите только целое число – количество Кбайт.

 

I = K · i,    N = 2 i

ID : ****….**** – всего 250 различных символов в наборе

N = 10 + 1650 = 1660,  1024<1660<2048, 2048 = 211, значит  для кодирования одного символа нужно 11 бит.

IID = 250 · 11 = 2750 бит = 343,75 байт ≈ 344 байт – отводится на идентификатор целое число байт

I65536 = 65536 ⋅ 344 = 22544384 байта = 22016 Кбайт– всего

Ответ: 22016

Задание 12. Выполнение алгоритмов для исполнителей

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А) заменить (v, w). Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. 
Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б) нашлось (v). Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

 Цикл
    ПОКА условие
        последовательность команд
    КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

    ЕСЛИ условие
        ТО команда 1
    КОНЕЦ ЕСЛИ

выполняется команда 1 (если условие истинно).

В конструкции

    ЕСЛИ условие
        ТО команда 1
        ИНАЧЕ команда 2
    КОНЕЦ ЕСЛИ

выполняется команда 1 (если условие истинно) или команда 2 (если условие ложно).

Дана программа для Редактора:
НАЧАЛО
     ПОКА нашлось (>1) ИЛИ нашлось (>2) ИЛИ нашлось (>0)
          ЕСЛИ нашлось (>1)
              ТО заменить (>1, 22>)
          КОНЕЦ ЕСЛИ
          ЕСЛИ нашлось (>2)
              ТО заменить (>2, 2>)
          КОНЕЦ ЕСЛИ
          ЕСЛИ нашлось (>0)
              ТО заменить (>0, 1>)
          КОНЕЦ ЕСЛИ
     КОНЕЦ ПОКА
КОНЕЦ
На вход приведённой выше программе поступает строка, начинающаяся с символа «>», а затем содержащая 39 цифр «0», n цифр «1» и 39 цифр «2», расположенных в произвольном порядке. Определите наименьшее значение n, при котором сумма числовых значений цифр строки, получившейся в результате выполнения программы, является простым числом.

def pr(n): #функция определяет простое ли число
    for i in range(2,int(n**0.5)+1):
        if (n%i) == 0:
            return False
    return True   

for n in range(100): #перебираем n
    s=’>’ + 39*’0′ + n*’1′ + 39*’2′
    while ‘>1’ in s or ‘>2’ in s or ‘>0’ in s:
        if ‘>1’ in s:
            s=s.replace(‘>1′,’22>’,1)

        if ‘>2’ in s:
            s=s.replace(‘>2′,’2>’,1)

        if ‘>0’ in s:
            s=s.replace(‘>0′,’1>’,1)

    sum_s = 0
    for i in s[:-1]: #считаем сумму цифр в строке
        sum_s += int(i)
    if pr(sum_s): #проверяем на простоту
        print(n)
        break

Ответ: 5

Задание 13. Поиск путей в графе

На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой.
Определите количество различных путей ненулевой длины, которые начинаются и заканчиваются в городе Е, не содержат этот город в качестве промежуточного пункта и проходят через промежуточные города не более одного раза.

Начнем подсчет из вершины Е налево через В и возвращаемся в Е через Л.

 

Ответ: 21

Задание 14. Кодирование чисел. Системы счисления

Операнды арифметического выражения записаны в системе счисления с основанием 15. 
123
x515 + 1x23315
В записи чисел переменной x обозначена неизвестная цифра из алфавита 15-ричной системы счисления. Определите наименьшее значение x, при котором значение данного арифметического выражения кратно 14. Для найденного значения x вычислите частное от деления значения арифметического выражения на 14 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.

for x in range(15):
    s1=’123’+ str(x) +’5′
    s2=’1’+ str(x) +’233′
    n= int(s1,15)+ int(s2,15)

    if n%14 == 0:
        print(n//14)
        break

Ответ: 8767

Задание 15. Преобразование логических выражений

На числовой прямой даны два отрезка: D = [17; 58] и C = [29; 80]. Укажите наименьшую возможную длину такого отрезка A, для которого логическое выражение
(x ∈ D) → ((¬(x ∈ C) & ¬(x ∈ A)) → ¬(x ∈ D)) истинно (т.е. принимает значение 1) при любом значении переменной х.

  def deli(n,m):
    if n%m == 0:
        return True

for A in range(1,1000):
    Ok = True
    for x in range(1,10000):
        Ok*=( (not(deli(x,2)) or (not(deli(x,3)))) or ((x+A)>=100) )

    if Ok:
        print(A)
        break

Ответ: 94

Задание 16. Рекурсивные алгоритмы

Алгоритм вычисления значения функции F(n), где n – натуральное число,
задан следующими соотношениями:
F(n) = 1 при n = 1;
F(n) = n × F(n — 1), если n > 1.
Чему равно значение выражения
F(2023) / F(2020)?

F(2023) = 2023! = 2023 ⋅ 2022!

F(2023)/F(2020) = (2023 ⋅ 2022 ⋅ 2021 ⋅ 2020!)/2020! = 2023 ⋅ 2022 ⋅ 2021 =

= 8266912626

Ответ: 8266912626

Задание выполняется с использованием прилагаемых файлов

Задание 17. Проверка на делимость

Файл с данными

В файле содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от –10 000 до 10 000 включительно. Определите количество пар последовательности, в которых
только одно число оканчивается на 3, а сумма квадратов элементов пары не меньше квадрата максимального элемента последовательности, оканчивающегося на 3. В ответе запишите два числа: сначала количество найденных пар, затем максимальную из сумм квадратов элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.

 f= open(’17.txt’)
p=[int(i) for i in f]
f.close()

k = 0
PP = 0
M3 = 0

for i in p:
    if (abs(i))%10 == 3:
        M3 = max(i, M3)

for i in range(1,len(p)): #Осторожно, скобки!
    if ( ((abs(p[i-1])%10 == 3) + ((abs(p[i])% 10 == 3)) ==1 ) and ((p[i-1]**2 + p[i]**2) >= M3**2) ):
        k+=1
        PP = max(PP, p[i-1]**2 + p[i]**2)

print(k,PP)

Ответ: 180  190360573

Задание выполняется с использованием прилагаемых файлов

Задание 18. Робот-сборщик монет

Файл с данными

Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.Пример входных данных: 

1 8 8 4
10 1 1 3
1 3 12 2
2 3 5 6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

Сначала скопируем таблицу рядом, начиная со столбца АА, можно уменьшить ширину столбца до 4-5. Ячейка АА1=А1. Ячейка АВ1 = АА1+В1, протягиваем ее до АТ1. Ячейка АА2 = АА1 + А2, протягиваем ее до АА20. Далее ячейка АВ2 = В2+МАКС(АА2;АВ1), протягиваем ее на весь оставшийся диапазон, копируем только значения, не трогая стен. 

 

Справа от стен формулы повторяют крайний левый рял, столбец АА, снизу от стен формулы копируют верхнюю строку 1.

Далее делаем замену всех формул МАКС на МИН.

Ответ: 1099 1026

Задание 19. Выигрышная стратегия. Задание 1

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 129. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу из 129 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 128. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

При значениях S < 64 у Пети есть возможность сделать такой ход, что Ваня не сможет выиграть своим первым ходом. При значении S = 64 Петя своим первым ходом может получить 65 или 128 камней в куче. Во всех случаях Ваня увеличивает количество камней в куче в два раза и выигрывает своим первым ходом.

Ответ: 64

Задание 20. Выигрышная стратегия. Задание 2

 Для игры, описанной в задании 19, найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причем одновременно выполняются два условия:

  • Петя не может выиграть за один ход;
  • Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в порядке возрастания.

 Значение S должно быть меньше 64, поскольку иначе Ваня сможет выиграть своим первым ходом.

 

Ответ: 32    63

Задание 21. Выигрышная стратегия. Задание 3

Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

  • у Вани есть выигрышная стратегия, позволяющая ему выиграть
    первым или вторым ходом при любой игре Пети;
  • у Вани нет стратегии, которая позволит ему гарантированно выиграть
    первым ходом.

Если найдено несколько значений S, в ответе запишите минимальное из них.

 

 

Ответ: 62

Задание 22. Многопроцессорные системы 

В файле содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.
Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы – время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.
Типовой пример организации данных в файле:

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемого файла.

В независимых процессах время считается от 0,
в зависимых прибавляется к времени процесса, от которого зависит.

 

Ответ: 17

Задание 23. Анализ программы с циклами и условными операторами

Исполнитель преобразует число на экране.
У исполнителя есть две команды, которые обозначены латинскими буквами:
A. Прибавить 1
B. Умножить на 2
Программа для исполнителя – это последовательность команд. Сколько существует программ, для которых при исходном числе 1 результатом является число 35, при этом траектория вычислений содержит число 10 и не содержит 17?
Траектория вычислений программы – это последовательность результатов
выполнения всех команд программы.
Например, для программы ABA при
исходном числе 7 траектория будет состоять из чисел 8, 16, 17.

def f(x, y):
    if x == y:
        return 1
    if x > y or x == 17:
        return 0
    else:
        return f(x + 1, y) + f (2 * x, y)

print (f(1,10) * f(10, 35))

Ответ: 98

Задание выполняется с использованием прилагаемых файлов

Задание 24. Анализ программы с циклами и условными операторами

Файл с данными

Текстовый файл состоит из символов A, C, D, F и O. Определите максимальное количество идущих подряд пар символов вида согласная + гласная
в прилагаемом файле. Для выполнения этого задания следует написать программу.

f=open(’24.txt’) 
p= f.readline()
f.close()

PP = [‘CA’, ‘CO’, ‘DA’, ‘DO’, ‘FA’, ‘FO’]
M=k=0

for i in range(1, len(p), 2):
    x = p[i-1] + p[i]
    if x in PP:
        k += 1
    else:
        k = 0    
    M=max(M,k)
print(M)

Ответ: 95

Задание 25. Анализ программы с циклами и условными операторами

Назовём маской числа последовательность цифр, в которой также могут
встречаться следующие символы:
– символ «?» означает ровно одну произвольную цифру;
– символ «*» означает любую последовательность цифр произвольной длины;
в том числе «*» может задавать и пустую последовательность.

Например, маске 123*4?5 соответствуют числа 123405 и 12300405. 

Среди натуральных чисел, не превышающих 1010, найдите все числа, соответствующие маске 1?2139*4, делящиеся на 2023 без остатка.
В ответе запишите в первом столбце таблицы все найденные числа в порядке возрастания, а во втором столбце – соответствующие им результаты деления этих чисел на 2023. Количество строк в таблице для ответа избыточно.

Самый простой способ использовать библиотеку fnmatch.
Функция fnmatch() проверяет, соответствует ли строка шаблонной строке, возвращая True или False

или так полным перебором:

y = {»,’0′,’00’,’000′}
for x in y:
    for j in range(10):
        s = ‘1’ + str(j) + ‘2139’ + x + ‘4’
        if int(s) % 2023 == 0:
            print (s, int(s)//2023)

for x in range (1000):
    for j in range(10):
        s = ‘1’ + str(j) + ‘2139’ + str(x) + ‘4’
        if int(s) % 2023 == 0:
            print (s, int(s)//2023

Ответ: 162139404 80148
1321399324 653188
1421396214 702618
1521393104 752048

Задание выполняется с использованием прилагаемых файлов

Задание 26. Анализ программы с циклами и условными операторами

В магазине для упаковки подарков есть N кубических коробок. Самой интересной считается упаковка подарка по принципу матрёшки – подарок упаковывается в одну из коробок, та в свою очередь в другую коробку и т.д.
Одну коробку можно поместить в другую, если длина её стороны хотя бы на 3 единицы меньше длины стороны другой коробки. Определите наибольшее количество коробок, которое можно использовать для упаковки одного подарка, и максимально возможную длину стороны самой маленькой коробки, где будет находиться подарок. Размер подарка позволяет поместить его в самую маленькую коробку.
Входные данные
В первой строке входного файла находится число N – количество коробок в магазине (натуральное число, не превышающее 10 000). В следующих N строках находятся значения длин сторон коробок (все числа натуральные, не превышающие 10 000), каждое – в отдельной строке.
Запишите в ответе два целых числа: сначала наибольшее количество коробок, которое можно использовать для упаковки одного подарка, затем максимально возможную длину стороны самой маленькой коробки в таком наборе.
Типовой пример организации данных во входном файле
5
43
40
32
40
30
Пример входного файла приведён для пяти коробок и случая, когда минимальная допустимая разница между длинами сторон коробок, подходящих для упаковки «матрёшкой», составляет 3 единицы. При таких исходных данных условию задачи удовлетворяют наборы коробок с длинами сторон 30, 40 и 43 или 32, 40 и 43 соответственно, т.е. количество коробок равно 3, а длина стороны самой маленькой коробки равна 32.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.

Задание выполняется с использованием прилагаемых файлов

Задание 27. Анализ программы с циклами и условными операторами

У медицинской компании есть N пунктов приёма биоматериалов на анализ. Все пункты расположены вдоль автомагистрали и имеют номера, соответствующие расстоянию от нулевой отметки до конкретного пункта. Известно количество пробирок, которое ежедневно принимают в каждом из пунктов. Пробирки перевозят в специальных транспортировочных контейнерах вместимостью не более 36 штук. Каждый транспортировочный контейнер упаковывается в пункте приёма и вскрывается только в лаборатории.
Стоимость перевозки биоматериалов равна произведению расстояния от пункта до лаборатории на количество контейнеров с пробирками. Общая стоимость перевозки за день равна сумме стоимостей перевозок из каждого пункта в лабораторию. Лабораторию расположили в одном из пунктов приёма биоматериалов таким образом, что общая стоимость доставки биоматериалов из всех пунктов минимальна.
Определите минимальную общую стоимость доставки биоматериалов из всех пунктов приёма в лабораторию.
Входные данные

Файл А
Файл В

Дано два входных файла (файл A и файл B), каждый из которых в первой строке содержит число N (1 ≤ N ≤ 10 000 000) – количество пунктов приёма биоматериалов. В каждой из следующих N строк находится два числа: номер пункта и количество пробирок в этом пункте (все числа натуральные, количество пробирок в каждом пункте не превышает 1000). Пункты перечислены в порядке их расположения вдоль дороги, начиная от нулевой отметки.
В ответе укажите два числа: сначала значение искомой величины для файла
А, затем – для файла B.
Типовой пример организации данных во входном файле
6
1 100
2 200
5 4
7 3
8 2
10 190
При таких исходных данных и вместимости транспортировочного контейнера, составляющей 96 пробирок, компании выгодно открыть лабораторию в пункте 2. В этом случае сумма транспортных затрат составит: 1 ∙ 2 + 3 ∙ 1 + 5 ∙ 1 + 6 ∙ 1 + 8 ∙ 2.

Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов. 
Предупреждение:
для обработки файла B не следует использовать переборный алгоритм, вычисляющий сумму для всех возможных вариантов, поскольку написанная по такому алгоритму программа будет выполняться слишком долго.

Ответ: 51063 5634689219329 

Первые шаги

На предыдущих уроках мы установили среду Кумир, настроили ее для дальнейшей работы и научились задавать стартовую обстановку Робота. Теперь перейдем непосредственно к составлению алгоритмов для Робота с использованием простых команд.

Если вам больше нравится информация в формате видеоуроков, то на сайте есть видеоурок Робот. Простые команды.

У любого исполнителя должна быть система команд (СКИсистема команд исполнителя). Система команд исполнителя — совокупность всех команд, которые может выполнить исполнитель. В качестве примера рассмотрим дрессированную собаку. Она умеет выполнять некоторые команды — «Сидеть», «Лежать», «Рядом» и т. п. Это и есть ее система команд.

Простые команды Робота

У нашего Робота тоже есть система команд. Сегодня мы рассмотрим простые команды Робота. Всего их 5:

  • вверх
  • вниз
  • влево
  • вправо
  • закрасить

Результат выполнения этих команд понятен из их названия:

  1. вверх — переместить Робота на одну клетку вверх
  2. вниз — переместить Робота на одну клетку вниз
  3. влево — переместить Робота на одну клетку влево
  4. вправо — переместить Робота на одну клетку вправо
  5. закрасить — закрасить текущую клетку (клетку в которой находится Робот).

Эти команды можно писать с клавиатуры, а можно использовать горячие клавиши (нажав их команды будут вставляться автоматически):

  • вверх — Escape, Up (стрелка вверх)
  • вниз — Escape, Down (стрелка вниз)
  • влево — Escape, Left (стрелка влево)
  • вправо — Escape, Right (стрелка вправо)
  • закрасить — Escape, Space (пробел)

Обратите внимание, что набирать нужную комбинацию горячих клавиш нужно не привычным нам способом! Мы привыкли нажимать клавиши одновременно, а здесь их нужно нажимать последовательно. К примеру, чтобы ввести команду вверх, нужно нажать Escape, отпустить ее и после этого нажать стрелку вверх. Это нужно помнить.

Теперь мы готовы написать первый алгоритм для Робота. Предлагаю начать с простого — нарисуем квадрат со стороной 3 клетки. Поехали!

Запускаем Кумир, настраиваем его. Можно начинать писать программу? Конечно нет! Мы же не задали стартовую обстановку! Делаем это. Предлагаю использовать вот такую:

Стартовая обстановка Робота

Стартовая обстановка Робота

Вот теперь все готово. Начинаем писать программу. Пока она выглядит так

Первая программа для Робота

Первая программа для Робота

Удаляем символ «|» и называем наш алгоритм «Квадрат»

Алгоритм квадрат

Алгоритм квадрат

Предлагаю рисовать квадрат, двигаясь по часовой стрелке. Для начала закрасим текущую клетку, дав команду закрасить. Потом делаем шаг вправо и опять закрашиваем клетку. И еще раз шаг вправо и закрасить.

Первые шаги

Первые шаги

Попробуем запустить программу и посмотреть что же получилось. Для запуска нажимаем F9 или же кнопку на панели инструментов

выполнить программу

выполнить программу

В результате мы должны увидеть вот такую картину

Первый результат

Первый результат

Если такое окно Робота у вас не появилось, то на панели инструментов щелкните «Показать окно Робота» или в меню Робот выберите пункт «Показать окно Робота«. Продолжаем дальше.

Теперь мы будем двигаться вниз и закрашивать правую сторону квадрата:

вниз

закрасить

вниз

закрасить

Потом пойдем влево, закрашивая нижнюю границу квадрата

влево

закрасить

влево

закрасить

У нас осталась одна незакрашенная  клетка. Закрасим ее

вверх

закрасить

Все готово! В итоге наша программа выглядит так:

использовать Робот

алг Квадрат

нач

закрасить

вправо

закрасить

вправо

закрасить

вниз

закрасить

вниз

закрасить

влево

закрасить

влево

закрасить

вверх

закрасить

кон

А результат ее работы вот так

Результат работы программы

Результат работы программы

Итак, сегодня мы с вами написали программу, используя простые команды Робота. Рекомендую попрактиковаться самостоятельно — придумать себе задание и написать программу. Это могут быть самые различные фигуры, узоры, буквы. К примеру, попробуйте написать программу, рисующую букву П, Р, Ш, Щ, М. А если получится и захотите поделиться — комментируйте и прикрепляйте результат к комментарию.

Автор:

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Робкое сердце паустовский сочинение егэ
  • Робинзон крузо сочинение вступление
  • Рниму инфекционные болезни экзамен
  • Робинзон крузо написан почти три века назад сочинение егэ
  • Рниму график пересдач экзаменов

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии