Образовательный портал для подготовки к экзаменам
Математика базового уровня
Математика базового уровня
Сайты, меню, вход, новости
Задания
Версия для печати и копирования в MS Word
Бегун пробежал 250 м за 36 секунд. Найдите среднюю скорость бегуна на дистанции. Ответ дайте в километрах в час.
Спрятать решение
Решение.
Чтобы перевести метры в секунду в километры в час нужно умножать на 3,6. Скорость бегуна 250/36 м/c, она равна (250/36) · 3,6 = 25 км/ч.
Источник: ЕГЭ по математике — 2015. Досрочная волна, вариант ФИПИ
Задания
Версия для печати и копирования в MS Word
Тип 10 № 509187
На рисунке изображены графики функций $fleft(xright)=dfrac{k}{x} $ и $gleft(xright)=ax+b$, которые пересекаются в точках $A$ и~$B$. Найдите ординату точки $B$.
Аналоги к заданию № 509167: 509168 509182 509183 629173 632392 509169 509170 509171 509172 509173 … Все
Прототип задания
·
Каталог заданий
Назад в каталог
Вернуться к списку прототипов этой категории
Версия для печати и копирования в MS Word
1
Тип 10 № 509187
На рисунке изображены графики функций $fleft(xright)=dfrac{k}{x} $ и $gleft(xright)=ax+b$, которые пересекаются в точках $A$ и~$B$. Найдите ординату точки $B$.
Аналоги к заданию № 509167: 509168 509182 509183 629173 632392 509169 509170 509171 509172 509173 … Все
Прототип задания
·
Задания
Версия для печати и копирования в MS Word
Тип 10 № 509966
План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, изображённого на плане. Ответ дайте в квадратных метрах.
Спрятать решение
Решение.
Участок, изображенный на плане, представляет собой прямоугольник, площадь которого равна произведению длин его сторон. Таким образом, площадь участка: 3 · 3 − 1= 8.
Ответ: 8.
Аналоги к заданию № 509793: 509966 Все
Спрятать решение
·
Прототип задания
·
·
Сообщить об ошибке · Помощь
Каталог заданий
Назад в каталог
Вернуться к списку прототипов этой категории
Версия для печати и копирования в MS Word
1
Тип 10 № 509966
План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, изображённого на плане. Ответ дайте в квадратных метрах.
Аналоги к заданию № 509793: 509966 Все
Решение
·
Прототип задания
·
·
Сообщить об ошибке · Помощь
508780 решу егэ математика
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
—>
Задание 14 № 508380
Воспользуемся тем, что для суммы возможны четыре случая раскрытия модулей, откуда заключаем:
Приведем другое решение:
Как и в первом решении запишем неравенство в виде:
Заметим, что левая часть представляет из себя кусочно-линейную функцию, которая возрастает при и убывает при Это означает, что в точке –3 она достигает минимума равного 5. Таким образом, правая часть Тогда неравенство принимает вид:
Задание 14 № 508380
—>
508780 решу егэ математика.
Ege. sdamgia. ru
07.03.2017 0:00:13
2017-03-07 00:00:13
Источники:
Https://ege. sdamgia. ru/problem? id=508380
ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 508780 решу егэ математика
508780 решу егэ математика
508780 решу егэ математика
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
—>
Задание 10 № 508781
Симметричную монету бросают 11 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4~орла»?
Задание 10 № 508782
Симметричную монету бросают 12 раз. Во сколько раз вероятность события «выпадет ровно 4 орла» меньше вероятности события «выпадет ровно 5~орлов»?
Задание 10 № 508783
Симметричную монету бросают 8 раз. Во сколько раз вероятность события «выпало ровно 4 орла» больше вероятности события «выпадет ровно 3~орла»?
Задание 10 № 508784
Симметричную монету бросают 9 раз. Во сколько раз вероятность события «выпадет ровно 4 орла» больше вероятности события «выпадет ровно 3~орла»?
Задание 10 № 508785
Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 4 орла» больше вероятности события «выпадет ровно 3~орла»?
Задание 10 № 508786
Симметричную монету бросают 16 раз. Во сколько раз вероятность события «выпадет ровно 8 орлов» больше вероятности события «выпадет ровно 7~орлов»?
Задание 10 № 508787
Симметричную монету бросают 17 раз. Во сколько раз вероятность события «выпадет ровно 8 орлов» больше вероятности события «выпадет ровно 7~орлов»?
Задание 10 № 508788
Симметричную монету бросают 20 раз. Во сколько раз вероятность события «выпадет ровно 10 орлов» больше вероятности события «выпадет ровно 9~орлов»?
Задание 10 № 508789
Симметричную монету бросают 21 раз. Во сколько раз вероятность события «выпадет ровно 10 орлов» больше вероятности события «выпадет ровно 9~орлов»?
Задание 10 № 508790
Симметричную монету бросают 22 раза. Во сколько раз вероятность события «выпадет ровно 10 орлов» больше вероятности события «выпадет ровно 9~орлов»?
Задание 10 № 508786
Задание 10 № 508781
Задание 10 508786.
Ege. sdamgia. ru
14.05.2019 20:28:53
2019-05-14 20:28:53
Источники:
Https://ege. sdamgia. ru/test? likes=508780
ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 508780 решу егэ математика
508780 решу егэ математика
508780 решу егэ математика
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
—>
Задание 10 № 508780
Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?
Воспользуемся формулой Бернулли. Найдем вероятность события А, состоящего в том, что при десяти бросаниях выпадет ровно 5 орлов:
Аналогично найдем вероятность события B, состоящего в том, что при десяти бросаниях выпадет ровно 4 орла:
Приведем решение Ирины Шраго.
Вероятность того, что выпадет ровно 5 орлов, равна отношению количества вариантов, при которых выпадает ровно 5 орлов, к общему количеству вариантов: Вероятность того, что выпадет ровно 4 орла, равна отношению количества вариантов, при которых выпадает ровно 4 орла, к общему количеству вариантов: Тогда отношение этих вероятностей
—>
Задание 10 № 508780
Уско рен ная под го тов ка к ЕГЭ с ре пе ти то ра ми Учи.
Ege. sdamgia. ru
09.08.2017 16:57:34
2017-08-09 16:57:34
Источники:
Https://ege. sdamgia. ru/problem? id=508780
Пробный тренировочный вариант №26 в формате решу ОГЭ 2023 по математике 9 класс от 7 марта 2023 года с ответами и решением по новой демоверсии ОГЭ 2023 года для подготовки на 100 баллов, задания взяты из открытого банка заданий ФИПИ и с экзамена прошлых лет, данный вариант вы можете решить онлайн или скачать.
Скачать тренировочный вариант и ответы
Посмотреть другие тренировочные варианты
variant_26_oge2023_matematika_9klass
Коля летом отдыхает у дедушки и бабушки в деревне Марьевке. Коля с дедушкой собираются съездить на велосипедах в село Сосновое на железнодорожную станцию. Из Марьевки в Сосновое можно проехать по прямой лесной дорожке. Есть более длинный путь по шоссе – через деревню Николаевку до деревни Запрудье, где нужно повернуть под прямым углом направо на другое шоссе, ведущее в Сосновое.
Есть и третий маршрут: в Николаевке можно свернуть на прямую тропинку, которая идёт мимо озера прямо в Сосновое. По шоссе Коля с дедушкой едут со скоростью 20 км/ч, а по лесной дорожке и тропинке 15 км/ч. Расстояние по шоссе от Марьевки до Николаевки равно 12 км, от Марьевки до Запрудья – 20 км, а от Запрудья до Соснового 15 км.
1. Пользуясь описанием, определите, какими цифрами на плане обозначены населённые пункты. В ответ запишите полученную последовательность четырёх цифр.
Ответ: 1432
2. На сколько процентов скорость, с которой едут Коля с дедушкой по тропинке, меньше их скорости по шоссе?
Ответ: 25
3. Сколько минут затратят на дорогу Коля с дедушкой, если поедут на станцию через Запрудье?
Ответ: 105
4. Найдите расстояние от д. Николаевка до с. Сосновое по прямой. Ответ дайте в километрах.
Ответ: 17
5. Определите, на какой маршрут до станции потребуется меньше всего времени. В ответе укажите, сколько минут потратят на дорогу Коля с дедушкой, если поедут этим маршрутом.
Ответ: 100
6. Найдите значение выражения 4,4 − 1,7.
Ответ: 2,7
8. Найдите значение выражения (4𝑏) 2 : 𝑏 5 ∙ 𝑏 3 при 𝑏 = 128.
Ответ: 16
9. Найдите корень уравнения (𝑥 − 5) 2 = (𝑥 − 2 .
Ответ: 6, 5
10. В магазине канцтоваров продаётся 84 ручки, из них 22 красных, 9 зелёных, 41 фиолетовая, остальные синие и чёрные, их поровну. Найдите вероятность того, что случайно выбранная в этом магазине ручка будет красной или фиолетовой.
Ответ: 0, 75
11. На рисунках изображены графики функций вида 𝑦 = 𝑘𝑥 +𝑏. Установите соответствие между графиками функций и знаками коэффициентов 𝑘 и 𝑏. В таблице под каждой буквой укажите соответствующий номер.
Ответ: 312
12. Чтобы перевести значение температуры по шкале Цельсия в шкалу Фаренгейта, пользуются формулой 𝑡𝐹 = 1,8𝑡𝐶 +32, где 𝑡𝐶 − температура в градусах Цельсия, 𝑡𝐹 − температура в градусах Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует 80 градусов по шкале Цельсия?
Ответ: 176
13. Укажите решение неравенства −3 − 𝑥 ≥ 𝑥 −6.
Ответ: 1
14. Курс воздушных ванн начинают с 10 минут в первый день и увеличивают время этой процедуры в каждый следующий день на 10 минут. В какой по счёту день продолжительность процедуры достигнет 1 часа 20 минут?
Ответ: 8
15. Диагонали 𝐴𝐶 и 𝐵𝐷 параллелограмма 𝐴𝐵𝐶𝐷 пересекаются в точке 𝑂, 𝐴𝐶 = 12, 𝐵𝐷 = 20, 𝐴𝐵 = 7. Найдите 𝐷𝑂.
Ответ: 10
16. Радиус окружности, описанной около квадрата, равен 32√2. Найдите длину стороны этого квадрата.
Ответ: 64
17. Найдите площадь квадрата, описанного около окружности радиуса 40.
Ответ: 6400
18. На клетчатой бумаге с размером клетки 1 × 1 изображена трапеция. Найдите длину её средней линии.
Ответ: 4
19. Какое из следующих утверждений верно?
1) Боковые стороны любой трапеции равны.
2) Серединные перпендикуляры к сторонам треугольника пересекаются в точке, являющейся центром окружности, описанной около треугольника.
3) Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны.
Ответ: 2
20. Решите уравнение 𝑥(𝑥 2 + 2𝑥 + 1) = 2(𝑥 +1).
Ответ: -2; -1; 1
21. Свежие фрукты содержат 78% воды, а высушенные – 22%. Сколько сухих фруктов получится из 78 кг свежих фруктов?
Ответ: 22
23. Точки 𝑀 и 𝑁 являются серединами сторон 𝐴𝐵 и 𝐵𝐶 треугольника 𝐴𝐵𝐶 соответственно. Отрезки 𝐴𝑁 и 𝐶𝑀 пересекаются в точке 𝑂, 𝐴𝑁 = 27, 𝐶𝑀 = 18. Найдите 𝐶𝑂.
Ответ: 12
24. В трапеции 𝐴𝐵𝐶𝐷 с основаниями 𝐴𝐷 и 𝐵𝐶 диагонали пересекаются в точке 𝑂. Докажите, что площади треугольников 𝐴𝑂𝐵 и 𝐶𝑂𝐷 равны.
25. Боковые стороны 𝐴𝐵 и 𝐶𝐷 трапеции 𝐴𝐵𝐶𝐷 равны соответственно 40 и 41, а основание 𝐵𝐶 равно 16. Биссектриса угла 𝐴𝐷𝐶 проходит через середину стороны 𝐴𝐵. Найдите площадь трапеции.
Ответ: 820
Тренировочные варианты ОГЭ по математике 9 класс задания с ответами
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и…
Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 16 сек.
ЕГЭ по математике (база) 2023 задание 16: номер 441 | gzvne | Механические часы с двенадцат…
35
Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки $11$, но не дойдя до отметки $2$ часа.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Найдите значение выражения ${(4^{-6})^2}/{4^{-14}}$.
Найдите $sin x$, если известно, что $cos x = {√7}/{4}$ и $270° < x < 360°$.
Найдите значение выражения ${6√{180}}/{√5}$.
Найдите значение выражения $67·10-4.5·10^2$.
На экранах долгожданный шестой сезон одного из самых популярных и востребованных сериалов на зарубежном телевидении. Проект «Викинги» повествует о выдающемся воинственном народе, который проживает в Скандинавии и управляется безумным, яростным, но при этом очень мудрым правителем Рагнаром Лодброком. Этот человек смог собрать вокруг себя верных людей, смог установить свои правила на родных территориях, а вскоре отправился на покорение европейских земель. Главный герой повёл за собой свою армию, которая дошла с ним до территории Франции, осадив Париж и забрав сокровища одной из самых могущественных стран центральной Европы! Викингам по силам оказалось разбить армии англичан, которых не спасло даже нахождение на море. Ко всему прочему, главные персонажи сумели пробиться вглубь континента, наворотив дел и в других частях Европы.Продолжение истории обещает зрителям ещё более интересные походы. В этот раз главный герой вместе с верными товарищами отправится на восточные земли. Его встреча с Вещим Олегом, роль которого исполнит великолепный российский актёр Данила Козловский будет судьбоносной. Но чем же обернётся новый сезон знаменитого сериала?
- Название: Vikings
- Год выхода: 2013-03-03
- Страна: Канада, Ирландия
- Режиссер: Киаран Доннелли, Кен Джиротти, Стивен Ст.
- Статус сериала: Завершен
- Перевод: LostFilm
- Качество: FHD (1080p) (45 мин)
- Возраст: Сериал для зрителей старше 18+ лет
-
8.2
8.5
- В главных ролях: Кэтрин Уинник, Густаф Скарсгард, Александр Людвиг, Джорджия Хёрст, Алекс Хег Андерсен, Джордан Патрик Смит, Марко Ильсё, Петер Францен, Трэвис Фиммел, Клайв Стэнден
- Жанры: Приключения, Военный, Исторический, Боевик, Мелодрама, Драма
6 сезон 21 серия
Викинги смотреть онлайн в хорошем качестве бесплатно
Смотреть онлайн
Плеер 2
Плеер 3
Свет
К сожалению некоторые диалоги в сериале не переведены, рекомендуем в настройках включить субтитры, чтобы понимать диалоги. Приятного просмотра!
Задание 1
В треугольнике $$ABC$$ известно, что $$AC=BC$$, высота $$AH$$ равна 8, $$BH=20$$. Найдите $$tg BAC$$.
Ответ: 0,4
Задание 2
Найдите объём многогранника, вершинами которого являются точки $$A_1$$, $$B_1$$, $$F_1$$, $$E$$ правильной шестиугольной призмы $$ABCDEFA_1B_1C_1D_1E_1F_1$$, площадь основания которой равна 10, а боковое ребро равно 9.
Ответ: 5
Задание 3
В группе туристов 32 человека. Их вертолётом доставляют в труднодоступный район, перевозя по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист Г. полетит четвёртым рейсом вертолёта.
Ответ: 0,125
Задание 4
Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 9. Какова вероятность того, что для этого потребовалось три броска? Ответ округлите до сотых.
Ответ: 0,46
Задание 5
Найдите корень уравнения $$(frac{1}{9})^{x+4}=729$$
Ответ: -7
Задание 6
Найдите значение выражения $$log_{6}1,25cdot log_{0,8}6$$
Ответ: -1
Задание 7
На рисунке изображён график функции $$y=f(x)$$, определённой на интервале (-11; 2). Найдите количество точек, в которых касательная к графику функции $$y=f(x)$$ параллельна прямой $$y=-4$$.
Ответ: 7
Задание 8
Высота над землёй подброшенного вверх мяча меняется по закону $$h(t)=1+11t-5t^{2}$$, где $$h$$ — высота в метрах, $$t$$ — время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее 3 метров?
Ответ: 1,8
Задание 9
Имеется два сосуда. Первый содержит 25 кг, а второй — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 52 % кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 53 % кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Ответ: 11
Задание 10
На рисунке изображены графики функций $$f(x)=asqrt{x}$$ и $$g(x)=kx+b$$, которые пересекаются в точках $$A$$ и $$B$$. Найдите абсциссу точки $$A$$.
Ответ: 0,25
Задание 11
Найдите наименьшее значение функции $$y=6x-sin x+17$$ на отрезке $$[0;frac{pi}{2}]$$
Ответ: 17
Задание 12
а) Решите уравнение $$log^{2}_{2}(8x^{2})-log_{4}(2x)-1=0$$
б) Найдите все корни этого уравнения, принадлежащие отрезку [0,4; 0,8].
Ответ: а)$$0,5;frac{sqrt[8]{2}}{4}$$; б)$$0,5$$
Задание 13
Сторона основания правильной четырёхугольной пирамиды $$SABCD$$ относится к боковому ребру как $$1:sqrt{2}$$ . Через вершину $$D$$ проведена плоскость $$alpha$$, перпендикулярная боковому ребру $$SB$$ и пересекающая его в точке $$M$$.
а) Докажите, что сечение пирамиды $$SABCD$$ плоскостью $$alpha$$ — это четырёхугольник, диагонали которого перпендикулярны.
б) Найдите площадь этого сечения, если боковое ребро пирамиды равно 6.
Ответ: $$6sqrt{3}$$
Задание 14
Решите неравенство $$frac{sqrt{x-2}(4-3^{x-1})}{2^{1-x^{2}}-3}geq 0$$
Ответ: $$2;[log_{3}12;+infty)$$
Задание 15
15 июня 2025 года Данила Сергеевич планирует взять кредит в банке на 4 года в размере целого числа миллионов рублей. Условия его возврата таковы:
— в январе каждого года действия кредита долг увеличивается на 15 % от суммы долга на конец предыдущего года;
— в период с февраля по июнь в каждый из 2026 и 2027 годов необходимо выплатить только начисленные в январе проценты по кредиту;
— в период с февраля по июнь в каждый из 2028 и 2029 годов выплачиваются равные суммы, причём последний платёж должен погасить долг по кредиту полностью.
Найдите наибольший размер кредита, при котором общая сумма выплат по кредиту не превысит 20 млн рублей.
Ответ: 13 млн. руб.
Задание 16
Окружность с центром в точке $$C$$ касается гипотенузы $$AB$$ прямоугольного треугольника $$ABC$$ и пересекает его катеты $$AC$$ и $$BC$$ в точках $$E$$ и $$F$$. Точка $$D$$ — основание высоты, опущенной на $$AB$$. $$I$$ и $$J$$ — центры окружностей, вписанных в треугольники $$BCD$$ и $$ACD$$.
а) Докажите, что точки $$E$$ и $$F$$ лежат на прямой $$IJ$$.
б) Найдите расстояние от точки $$C$$ до прямой $$IJ$$, если $$AC=2sqrt{3}$$, $$BC=2$$.
Ответ: $$frac{sqrt{6}}{2}$$
Задание 17
Найдите все значения $$a$$, при каждом из которых оба уравнения $$a+frac{x}{3}=|x|$$ и $$2a+x=sqrt{2a^{2}+4ax-x^{2}+12}$$ имеют ровно по 2 различных корня, и строго между корнями каждого из уравнений лежит корень другого уравнения.
Ответ: $$(frac{2sqrt{6}}{sqrt{13}};frac{4sqrt{6}}{5})$$
Задание 18
Трёхзначное число, меньшее 700, поделили на сумму его цифр и получили натуральное число $$n$$.
а) Может ли $$n$$ равняться 64?
б) Может ли $$n$$ равняться 78?
в) Какое наибольшее значение может принимать $$n$$, если все цифры ненулевые?
Ответ: а)да б)нет в)73
Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2023 из различных источников.
Варианты составлены в соответствии с демоверсией 2023 года
Тренировочные варианты ЕГЭ 2023 по математике (профиль)
vk.com/pezhirovschool | |
Вариант 1 | решения |
Вариант 2 | решения |
Вариант 3 | решения |
Вариант 4 | решения |
Вариант 5 (с ответами) | |
Вариант 6 (с ответами) | |
Вариант 7 (с ответами) | |
Вариант 8 (с ответами) | |
egemath.ru | |
вариант 1 | скачать |
вариант 2 | скачать |
вариант 3 | скачать |
вариант 4 | скачать |
вариант 5 | скачать |
вариант 6 | скачать |
вариант 7 | скачать |
вариант 8 | скачать |
вариант 9 | скачать |
вариант 10 | скачать |
вариант 11 | скачать |
вариант 12 | скачать |
вариант 13 | скачать |
вариант 14 | скачать |
вариант 15 | скачать |
вариант 16 | скачать |
вариант 17 | скачать |
вариант 18 | скачать |
вариант 19 | скачать |
вариант 20 | скачать |
time4math.ru | |
вариант 1-2 | ответы |
вариант 3-4 | ответы |
вариант 5-6 | ответы |
вариант 7-8 | |
yagubov.ru | |
вариант 33 (сентябрь) | ege2023-yagubov-prof-var33 |
вариант 34 (октябрь) | ege2023-yagubov-prof-var34 |
вариант 35 (ноябрь) | ege2023-yagubov-prof-var35 |
вариант 36 (декабрь) | ege2023-yagubov-prof-var36 |
вариант 37 (январь) | ege2023-yagubov-prof-var37 |
вариант 38 (февраль) | ege2023-yagubov-prof-var38 |
math100.ru (с ответами) | |
variant 179 | скачать |
variant 180 | скачать |
variant 181 | скачать |
variant 182 | скачать |
variant 183 | скачать |
variant 184 | скачать |
variant 185 | скачать |
variant 186 | скачать |
variant 187 | скачать |
variant 188 | скачать |
variant 189 | скачать |
variant 190 | скачать |
variant 191 | скачать |
variant 192 | скачать |
variant 193 | скачать |
variant 194 | скачать |
variant 195 | скачать |
variant 196 | скачать |
variant 197 | скачать |
variant 198 | скачать |
variant 199 | скачать |
variant 200 | скачать |
variant 201 | скачать |
variant 202 | скачать |
variant 203 | скачать |
variant 204 | скачать |
variant 205 | скачать |
alexlarin.net | |
Вариант 397 | проверить ответы |
Вариант 398 | проверить ответы |
Вариант 399 | проверить ответы |
Вариант 400 | проверить ответы |
Вариант 401 | проверить ответы |
Вариант 402 | проверить ответы |
Вариант 403 | проверить ответы |
Вариант 404 | проверить ответы |
Вариант 405 | проверить ответы |
Вариант 406 | проверить ответы |
Вариант 407 | проверить ответы |
Вариант 408 | проверить ответы |
Вариант 409 | проверить ответы |
Вариант 410 | проверить ответы |
Вариант 411 | проверить ответы |
Вариант 412 | проверить ответы |
Вариант 413 | проверить ответы |
vk.com/ege100ballov | |
вариант 1 | скачать |
вариант 2 | скачать |
вариант 3 | скачать |
вариант 4 | скачать |
вариант 5 | скачать |
вариант 6 | скачать |
вариант 7 | скачать |
вариант 8 | скачать |
вариант 9 | скачать |
вариант 10 | скачать |
вариант 11 | скачать |
vk.com/math.studying | |
Вариант 1 | ответы |
vk.com/marsel_tutor | |
Вариант 1 | разбор |
Вариант 2 | конспект / разбор |
Вариант 3 | конспект / разбор |
Вариант 4 | конспект / разбор |
Вариант 5 | конспект / разбор |
Вариант 6 | разбор |
vk.com/shkolkovo_easy_math | |
Вариант 1 | решение |
Вариант 2 | решение |
Вариант 3 | решение |
Вариант 5 | решение |
Вариант 6 | решение |
vk.com/mathlearn_ru | |
вариант 1 | разбор |
vk.com/ekaterina_chekmareva | |
Вариант 1 | ответы |
Вариант 2 | ответы |
Вариант 3 | ответы |
Вариант 4 | ответы |
Вариант 5 | ответы |
Вариант 6 | ответы |
Вариант 7 | ответы |
Вариант 8 | ответы |
Структура варианта КИМ ЕГЭ 2023 по математике профильного уровня
Экзаменационная работа состоит из двух частей и включает в себя 18 заданий, которые различаются по содержанию, сложности и количеству заданий:
– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;
– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).
Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях. Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.
Задания части 1 предназначены для определения математических компетентностей выпускников образовательных организаций, реализующих программы среднего (полного) общего образования на базовом уровне. Задание с кратким ответом (1–11) считается выполненным, если в бланке ответов № 1 зафиксирован верный ответ в виде целого числа или конечной десятичной дроби.
Задания 12–18 с развёрнутым ответом, в числе которых 5 заданий повышенного уровня и 2 задания высокого уровня сложности, предназначены для более точной дифференциации абитуриентов вузов.
Примеры заданий:
1. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 76 бадминтонистов, среди которых 22 спортсмена из России, в том числе Игорь Чаев. Найдите вероятность того, что в первом туре Игорь Чаев будет играть с каким-либо бадминтонистом из России.
2. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу
3. На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 363. Затем в каждом числе поменяли местами первую и вторую цифры (например, число 17 заменили на число 71).
а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 4 раза больше, чем сумма исходных чисел.
б) Могла ли сумма получившихся чисел быть ровно в 2 раза больше, чем сумма исходных чисел?
в) Найдите наибольшее возможное значение суммы получившихся чисел.
Смотрите также:
ЕГЭ профильный уровень. №7 Геометрический смысл производной, касательная. Задача 11
Задача 11. На рисунке изображен график (y = f’left( x right)) — производной функции (fleft( x right)). Найдите абсциссу точки, в которой касательная к графику (y = fleft( x right)) параллельна оси абсцисс или совпадает с ней.
ОТВЕТ: — 3.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна оси абсцисс или совпадает с ней, то её угловой коэффициент равен 0 (коэффициент перед x). Следовательно, необходимо найти точку, в которых (f’left( {{x_0}} right) = 0). Этому соответствует точка пересечения графика производной с прямой (y = 0) (ось Ox). Это точка –3 (выделена красным цветом см. рисунок).
Ответ: –3.
Комментарии для сайта Cackle
338584 решу огэ математика
Задание 21 № 338584
Из городов А и В навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в В на 40 минут раньше, чем велосипедист приехал в А, а встретились они через 15 минут после выезда. Сколько часов затратил на путь из В в А велосипедист?
Пусть — скорость мотоциклиста, — скорость велосипедиста. Примем расстояние между городами за единицу. Мотоциклист и велосипедист встретились через 15 минут, то есть через часа, после выезда, поэтому Мотоциклист прибыл в B на 40 минут, то есть на ч., раньше, чем велосипедист в А, откуда Получаем систему уравнений:
Скорость мотоциклиста не может быть отрицательной, поэтому скорость велосипедиста равна 1, а время, затраченное на весь путь равно одному часу.
Заметим, что в приведенном решении скорости выражаются не в км/час, а в условных единицах, и зависят от того, за какую величину принято расстояние между городами. Если бы расстояние между городами было принято за 10, то получилось бы V2=10 и V1=30. Однако найденное время не зависит от того, за какую величину принято расстояние между городами.
Приведем другое решение.
Пусть T — время, которое затратил на дорогу мотоциклист. Тогда время, затраченное велосипедистом, равно Пусть S — расстояние между городами, тогда скорость мотоциклиста равна а скорость велосипедиста равна Мотоциклист и велосипедист встретились через 15 минут, то есть через часа, после выезда, поэтому Умножив обе части уравнения на 4 и разделив на S, получим:
Время не может быть отрицательным, следовательно, мотоциклист затратил на дорогу часа, а велосипедист час.
Задание 21 № 338584
, раньше, чем велосипедист в А, откуда Получаем систему уравнений.
Oge. sdamgia. ru
22.01.2019 9:01:54
2019-01-22 09:01:54
Источники:
Https://oge. sdamgia. ru/test? pid=338584
OГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 338584 решу огэ математика
338584 решу огэ математика
338584 решу огэ математика
Задание 21 № 352780
Из городов А и В навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в В на 33 минуты раньше, чем велосипедист приехал в А, а встретились они через 22 минуты после выезда. Сколько часов затратил на путь из В в А велосипедист?
Пусть — скорость мотоциклиста, — скорость велосипедиста. Примем расстояние между городами за единицу. Мотоциклист и велосипедист встретились через 22 минуты, то есть через часа, после выезда, поэтому Мотоциклист прибыл в B на 33 минуты раньше, чем велосипедист в А, откуда Получаем систему уравнений:
Скорость мотоциклиста не может быть отрицательной, поэтому скорость велосипедиста равна, а время, затраченное на весь путь равно
Задание 21 № 352780
Мотоциклист и велосипедист встретились через 22 минуты, то есть через часа, после выезда, поэтому Мотоциклист прибыл в B на 33 минуты раньше, чем велосипедист в А, откуда Получаем систему уравнений.
Math-oge. sdamgia. ru
07.08.2020 6:56:19
2020-08-07 06:56:19
Источники:
Https://math-oge. sdamgia. ru/problem? id=352780
OГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 338584 решу огэ математика
338584 решу огэ математика
338584 решу огэ математика
Задание 21 № 338584
Из городов А и В навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в В на 40 минут раньше, чем велосипедист приехал в А, а встретились они через 15 минут после выезда. Сколько часов затратил на путь из В в А велосипедист?
Пусть — скорость мотоциклиста, — скорость велосипедиста. Примем расстояние между городами за единицу. Мотоциклист и велосипедист встретились через 15 минут, то есть через часа, после выезда, поэтому Мотоциклист прибыл в B на 40 минут, то есть на ч., раньше, чем велосипедист в А, откуда Получаем систему уравнений:
Скорость мотоциклиста не может быть отрицательной, поэтому скорость велосипедиста равна 1, а время, затраченное на весь путь равно одному часу.
Заметим, что в приведенном решении скорости выражаются не в км/час, а в условных единицах, и зависят от того, за какую величину принято расстояние между городами. Если бы расстояние между городами было принято за 10, то получилось бы V2=10 и V1=30. Однако найденное время не зависит от того, за какую величину принято расстояние между городами.
Приведем другое решение.
Пусть T — время, которое затратил на дорогу мотоциклист. Тогда время, затраченное велосипедистом, равно Пусть S — расстояние между городами, тогда скорость мотоциклиста равна а скорость велосипедиста равна Мотоциклист и велосипедист встретились через 15 минут, то есть через часа, после выезда, поэтому Умножив обе части уравнения на 4 и разделив на S, получим:
Время не может быть отрицательным, следовательно, мотоциклист затратил на дорогу часа, а велосипедист час.
Задание 21 № 338584
Скорость мотоциклиста не может быть отрицательной, поэтому скорость велосипедиста равна 1, а время, затраченное на весь путь равно одному часу.
Oge. sdamgia. ru
27.06.2019 1:59:14
2019-06-27 01:59:14
Источники:
Https://oge. sdamgia. ru/problem? id=338584