В одном ресторане в г. Тамбове администратор предлагает гостям сыграть в «Шеш-беш»: гость бросает одновременно две игральные кости. Если он выбросит комбинацию 5 и 6 очков хотя бы один раз из двух попыток, то получит комплимент от ресторана: чашку кофе или десерт бесплатно. Какова вероятность получить комплимент? Результат округлите до сотых.
Спрятать решение
Решение.
Сначала найдём вероятность того, что при двух бросках игральных костей комбинация 5 и 6 очков не выпадет ни разу. Заметим, что вероятность выбросить комбинацию 5 и 6 очков складывается из двух несовместных событий: на первом кубике выпало 5 очков, а на втором кубике выпало 6 очков или на первом кубике выпало 6 очков, а на втором кубике выпало 5 очков. Тогда вероятность того, что при броске двух игральных костей выпадет комбинация 5 и 6 очков, равна
Вероятность противоположного события, состоящего в том, что при одном броске костей комбинация 5 и 6 очков не выпадет, равна
Каждое бросание костей не зависит от предыдущего. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Поэтому вероятность того, что при двух бросках игральных костей комбинация 5 и 6 очков не выпадет ни разу, равна Следовательно, вероятность противоположного события, состоящего в том, что при двух бросаниях игральных костей комбинация 5 и 6 очков выпадет хотя бы один раз, равна
Округляя до сотых, получаем ответ.
Ответ: 0,11.
Приведем другое решение.
Пусть событие A состоит в том, что при первом бросании выпала комбинация 5 и 6 очков, а событие B состоит в том, что при втором бросании выпала комбинация 5 и 6 очков. Событие, состоящее в том, что комбинация 5 и 6 очков выпадет хотя бы один раз из двух попыток, является суммой этих событий. События A и B являются совместными и независимыми, вероятность их суммы вычисляется по формуле:
Округляя до сотых, получим 0,11.
Приведем решение Надежды Козловой.
Пусть событие A состоит в том, что при первом бросании выпала комбинация 5 и 6 очков, а событие C состоит в том, что при первом бросании комбинация 5 и 6 очков не выпала, а при втором бросании выпала. Тогда
Эти события являются несовместными, вероятность их суммы равна сумме их вероятностей:
Округляя до сотых, получим 0,11.
508791 егэ математика
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
—>
Задание 10 № 508791
В одном ресторане в г. Тамбове администратор предлагает гостям сыграть в «Шеш-беш»: гость бросает одновременно две игральные кости. Если он выбросит комбинацию 5 и 6 очков хотя бы один раз из двух попыток, то получит комплимент от ресторана: чашку кофе или десерт бесплатно. Какова вероятность получить комплимент? Результат округлите до сотых.
Сначала найдём вероятность того, что при двух бросках игральных костей комбинация 5 и 6 очков не выпадет ни разу. Заметим, что вероятность выбросить комбинацию 5 и 6 очков складывается из двух несовместных событий: на первом кубике выпало 5 очков, а на втором кубике выпало 6 очков или на первом кубике выпало 6 очков, а на втором кубике выпало 5 очков. Тогда вероятность того, что при броске двух игральных костей выпадет комбинация 5 и 6 очков, равна
Вероятность противоположного события, состоящего в том, что при одном броске костей комбинация 5 и 6 очков не выпадет, равна
Каждое бросание костей не зависит от предыдущего. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Поэтому вероятность того, что при двух бросках игральных костей комбинация 5 и 6 очков не выпадет ни разу, равна Следовательно, вероятность противоположного события, состоящего в том, что при двух бросаниях игральных костей комбинация 5 и 6 очков выпадет хотя бы один раз, равна
Округляя до сотых, получаем ответ.
Приведем другое решение.
Пусть событие A состоит в том, что при первом бросании выпала комбинация 5 и 6 очков, а событие B состоит в том, что при втором бросании выпала комбинация 5 и 6 очков. Событие, состоящее в том, что комбинация 5 и 6 очков выпадет хотя бы один раз из двух попыток, является суммой этих событий. События A и B являются совместными и независимыми, вероятность их суммы вычисляется по формуле:
Задание 10 № 508791
—>
Приведем другое решение.
Math-ege. sdamgia. ru
12.02.2019 4:26:26
2019-02-12 04:26:26
Источники:
Https://math-ege. sdamgia. ru/problem? id=508791
508791 number, meaning and properties — my » /> » /> .keyword { color: red; } 508791 егэ математика
Number 508791
Number 508791
Number 508,791 spell 🔊, write in words: Five hundred and eight thousand, seven hundred and ninety-one . Ordinal number 508791th is said 🔊 and write: Five hundred and eight thousand, seven hundred and ninety-first. Color #508791. The meaning of number 508791 in Maths: Is Prime? Factorization and prime factors tree. The square root and cube root of 508791. What is 508791 in computer science, numerology, codes and images, writing and naming in other languages
What is 508,791 in other units
The decimal (Arabic) number 508791 converted to a Roman number is (D)(V)MMMDCCXCI. Roman and decimal number conversions.
Weight conversion
Length conversion
508791 kilometers (km) equals to 316148 miles (mi).
508791 miles (mi) equals to 818820 kilometers (km).
508791 meters (m) equals to 1669242 feet (ft).
508791 feet (ft) equals 155082 meters (m).
508791 centimeters (cm) equals to 200311.4 inches (in).
508791 inches (in) equals to 1292329.1 centimeters (cm).
Temperature conversion
508791° Fahrenheit (°F) equals to 282643.9° Celsius (°C)
508791° Celsius (°C) equals to 915855.8° Fahrenheit (°F)
Time conversion
(hours, minutes, seconds, days, weeks)
508791 seconds equals to 5 days, 21 hours, 19 minutes, 51 seconds
508791 minutes equals to 1 year, 2 weeks, 3 days, 7 hours, 51 minutes
Codes and images of the number 508791
Number 508791 morse code: . —— —.. —. —-. .—-
Sign language for number 508791:
Number 508791 in braille:
Share in social networks
Mathematics of no. 508791
Multiplications
Multiplication table of 508791
508791 multiplied by two equals 1017582 (508791 x 2 = 1017582).
508791 multiplied by three equals 1526373 (508791 x 3 = 1526373).
508791 multiplied by four equals 2035164 (508791 x 4 = 2035164).
508791 multiplied by five equals 2543955 (508791 x 5 = 2543955).
508791 multiplied by six equals 3052746 (508791 x 6 = 3052746).
508791 multiplied by seven equals 3561537 (508791 x 7 = 3561537).
508791 multiplied by eight equals 4070328 (508791 x 8 = 4070328).
508791 multiplied by nine equals 4579119 (508791 x 9 = 4579119).
Fractions: decimal fraction and common fraction
Fraction table of 508791
Half of 508791 is 254395,5 (508791 / 2 = 254395,5 = 254395 1/2).
One third of 508791 is 169597 (508791 / 3 = 169597).
One quarter of 508791 is 127197,75 (508791 / 4 = 127197,75 = 127197 3/4).
One fifth of 508791 is 101758,2 (508791 / 5 = 101758,2 = 101758 1/5).
One sixth of 508791 is 84798,5 (508791 / 6 = 84798,5 = 84798 1/2).
One seventh of 508791 is 72684,4286 (508791 / 7 = 72684,4286 = 72684 3/7).
One eighth of 508791 is 63598,875 (508791 / 8 = 63598,875 = 63598 7/8).
One ninth of 508791 is 56532,3333 (508791 / 9 = 56532,3333 = 56532 1/3).
Calculator
Advanced math operations
Is Prime?
Factorization and factors (dividers)
The prime factors of 508791 are 3 * 181 * 937
The factors of 508791 are 1 , 3 , 181 , 543 , 937 , 2811 , 169597 , 508791
Total factors 8.
Sum of factors 682864 (174073).
Prime factor tree
Powers
The second power of 508791 2 is 258.868.281.681.
The third power of 508791 3 is 131.709.851.904.757.664.
Roots
Logarithms
The natural logarithm of No. ln 508791 = loge 508791 = 13,139793.
The logarithm to base 10 of No. log10 508791 = 5,706539.
The Napierian logarithm of No. log1/e 508791 = -13,139793.
Trigonometric functions
The cosine of 508791 is -0,799116.
The sine of 508791 is -0,601177.
The tangent of 508791 is 0,752303.
Properties of the number 508791
Number 508791 in Computer Science
Code typeCode value
PIN 508791 | It’s recommendable to use 508791 as a password or PIN. |
508791 Number of bytes | 496.9KB |
CSS Color |
If you know something interesting about the 508791 number that you did not find on this page, do not hesitate to write us here.
Number 508791
Number 508,791 spell 🔊, write in words: Five hundred and eight thousand, seven hundred and ninety-one . Ordinal number 508791th is said 🔊 and write: Five hundred and eight thousand, seven hundred and ninety-first. Color #508791. The meaning of number 508791 in Maths: Is Prime? Factorization and prime factors tree. The square root and cube root of 508791. What is 508791 in computer science, numerology, codes and images, writing and naming in other languages
The decimal (Arabic) number 508791 converted to a Roman number is (D)(V)MMMDCCXCI. Roman and decimal number conversions.
Weight conversion
Length conversion
508791 kilometers (km) equals to 316148 miles (mi).
508791 miles (mi) equals to 818820 kilometers (km).
508791 meters (m) equals to 1669242 feet (ft).
508791 feet (ft) equals 155082 meters (m).
508791 centimeters (cm) equals to 200311.4 inches (in).
508791 inches (in) equals to 1292329.1 centimeters (cm).
Temperature conversion
508791° Fahrenheit (°F) equals to 282643.9° Celsius (°C)
508791° Celsius (°C) equals to 915855.8° Fahrenheit (°F)
Time conversion
(hours, minutes, seconds, days, weeks)
508791 seconds equals to 5 days, 21 hours, 19 minutes, 51 seconds
508791 minutes equals to 1 year, 2 weeks, 3 days, 7 hours, 51 minutes
Codes and images of the number 508791
Number 508791 morse code: . —— —.. —. —-. .—-
Sign language for number 508791:
Number 508791 in braille:
Time conversion.
Number. academy
24.04.2020 8:20:59
2020-04-24 08:20:59
Источники:
Https://number. academy/508791
ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 508791 егэ математика
508791 егэ математика
508791 егэ математика
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
—>
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Решите уравнение Если уравнение имеет более одного корня, в ответе запишите больший из корней.
—>
За пи сы вай тесь на бес плат ное за ня тие.
Ege. sdamgia. ru
17.03.2018 10:49:47
2018-03-17 10:49:47
Источники:
Https://ege. sdamgia. ru/test? id=44002311
Рассмотрим решение новых задач по теории вероятностей, которые появятся в ЕГЭ по математике в 2022 году.
Вы можете попробовать решить задачи самостоятельно, а потом сверить свое решение с предложенным.
1. № 508755
Игральный кубик бросают дважды. Известно, что в сумме выпало 8 очков. Найдите вероятность того, что в первый раз выпало 6 очков.
Решение. показать
2. № 508769
Игральную кость бросили два раза. Известно, что три очка не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 8».
Решение. показать
3. № 508781
Симметричную монету бросают 11 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?
Решение. показать
4. № 508791
В одном ресторане в г. Тамбове администратор предлагает гостям сыграть в «Шеш-беш»: гость бросает одновременно две игральные кости. Если он выбросит комбинацию 5 и 6 очков хотя бы один раз из двух попыток, то получит комплимент от ресторана: чашку кофе или десерт бесплатно. Какова вероятность получить комплимент? Результат округлите до сотых.
Решение. показать
5. № 508793
Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 4. Какова вероятность того, что потребовалось сделать три броска? Результат округлите до сотых.
Решение. показать
6. № 508798
Игральную кость бросали до тех пор, пока сумма выпавших очков не превысила число 3. Какова вероятность того, что для этого потребовалось 3 броска? Ответ округлите до сотых.
Решение. показать
7. № 508809
Телефон передает SMS-сообщение. В случае неудачи телефон делает следующую попытку. Вероятность того, что сообщение удастся передать без ошибок в каждой отдельной попытке, равна 0,2. Найдите вероятность того, что для передачи сообщения потребуется не больше двух попыток.
Решение. показать
8. № 508820
При подозрении на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 91% случаев. Если заболевание нет, то тест выявляет отсутствие заболевания в среднем в 93% случаев. Известно, что в среднем тест оказывается положительным у 10% пациентов, направленных на тестирование. При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание? Результат округлите до сотых.
Решение. показать
9. № 508831
Стрелок в тире стреляет по мишени до тех пор, пока не поразит ее. Известно, что он попадает в цель с вероятностью 0,2 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,5?
Решение. показать
10. № 508843
В ящике три красных и три синих фломастера. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что в первый раз синий фломастер появится третьим по счету?
Решение. показать
11. №508851
Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень дается не более двух выстрелов, и известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,6. Во сколько раз вероятность события «стрелок поразит ровно три мишени» больше вероятность события «стрелок поразит ровно две мишени».
Решение. показать
12. № 508868
В викторине участвуют 10 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды. Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником. Известно, что в первых шести играх победила команда А. Какова вероятность, что эта команда выиграет седьмой раунд.
Решение. показать
13. № 508871
Турнир по настольному теннису проводится по олимпийской системе: игроки случайным образом разбиваются на пары; проигравший в каждой паре выбывает из турнира, а победитель выходит в следующий тур, где встречается со следующим противником, который определен жребием. Всего в турнире 8 игроков, все они играют одинаково хорошо, поэтому в каждой встрече вероятность выигрыша и поражения у каждого игрока равна 0,5. Среди игроков два друга — Иван и Алексей. Какова вероятность того, что этим двоим в каком-то туре придется сыграть друг с другом?
Решение. показать
14. № 508887
Первый игральный кубик обычный, а на гранях второго кубика нет четных чисел, а нечетные числа встречаются по два раза. В остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 3 и 5 очков. Какова вероятность, что бросали второй кубик?
Решение. показать
15. № 509078
Маша коллекционирует принцесс из Киндер-сюрпризов. Всего в коллекции 10 разных принцесс, и они равномерно распределены, то есть в каждом Киндер-сюрпризе может с равными вероятностями оказаться любая из 10 принцесс. У Маши есть две разные принцессы из коллекции. Какова вероятность того, что для получения следующей принцессы Маше придется купить еще 2 или 3 шоколадных яйца?
Решение. показать
15. № 508885
Первый член последовательности целых чисел равен 0. Каждый следующий член последовательности с вероятность на единицу больше предыдущего и с вероятность
на единицу меньше предыдущего. Какова вероятность того, что какой-то член этой последовательности окажется равен -1?
Решение. показать
И.В. Фельдман, репетитор по математике
Вариант № 50010809
1. Тип 1 № 27935
Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.
2. Тип 2 № 27161
Площадь полной поверхности конуса равна 12. Параллельно основанию конуса проведено сечение, делящее высоту в отношении 1:1, считая от вершины конуса. Найдите площадь полной поверхности отсечённого конуса.
3. Тип 3 № 282856
При производстве в среднем на каждые 2982 исправных насоса приходится 18 неисправных. Найдите вероятность того, что случайно выбранный насос окажется неисправным.
4. Тип 4 № 508791
В одном ресторане в г. Тамбове администратор предлагает гостям сыграть в «Шеш-беш»: гость бросает одновременно две игральные кости. Если он выбросит комбинацию 5 и 6 очков хотя бы один раз из двух попыток, то получит комплимент от ресторана: чашку кофе или десерт бесплатно. Какова вероятность получить комплимент? Результат округлите до сотых.
5. Тип 5 № 77378
Решите уравнение
6. Тип 6 № 26745
Найдите значение выражения
7. Тип 7 № 551737
Функция
определена и непрерывна на отрезке
На рисунке изображен график её производной. Найдите промежутки возрастания функции
В ответе укажите сумму целых точек, входящих в эти промежутки.
8. Тип 8 № 28005
Плоский замкнутый контур площадью находится в магнитном поле, индукция которого равномерно возрастает. При этом согласно закону электромагнитной индукции Фарадея в контуре появляется ЭДС индукции, значение которой, выраженное в вольтах, определяется формулой
где α — острый угол между направлением магнитного поля и перпендикуляром к контуру,
— постоянная, S — площадь замкнутого контура, находящегося в магнитном поле (в м2). При каком минимальном угле α (в градусах) ЭДС индукции не будет превышать
9. Тип 9 № 99588
Из двух городов, расстояние между которыми равно 560 км, навстречу друг другу одновременно выехали два автомобиля. Через сколько часов автомобили встретятся, если их скорости равны 65 км/ч и 75 км/ч?
10. Тип 10 № 628238
На рисунке изображён график функции Найдите значение f(−6).
11. Тип 11 № 282859
Найдите точку максимума функции
12. Тип 12 № 512356
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
13. Тип 13 № 513094
В правильной треугольной пирамиде SABC сторона основания AB равна 12, а боковое ребро SA равно 8. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.
б) Найдите объём пирамиды, вершиной которой является точка C, а основанием — сечение пирамиды SABC плоскостью α.
14. Тип 14 № 512460
Решите неравенство
15. Тип 15 № 513288
Строительство нового завода стоит 78 млн рублей. Затраты на производство х тыс. ед. продукции на таком заводе равны млн рублей в год. Если продукцию завода продать по цене р тыс. рублей за единицу, то прибыль фирмы (в млн рублей) за один год составит
Когда завод будет построен, фирма будет выпускать продукцию в таком количестве, чтобы прибыль была наибольшей. При каком наименьшем значении р строительство завода окупится не более, чем за 3 года?
16. Тип 16 № 514633
На продолжении стороны АС за вершину А треугольника АВС отмечена точка D так, что AD = AB. Прямая, проходящая через точку А, параллельно BD, пересекает сторону ВС в точке M.
а) Докажите, что AM — биссектриса треугольника АВС.
б) Найти SAMBD, если AC = 30, BC = 18 и AB = 24.
17. Тип 17 № 517504
Найдите все значения а, при каждом из которых система
имеет хотя бы одно решение.
18. Тип 18 № 506067
На шести елках сидят шесть сорок — по одной на каждой елке. Елки растут в ряд с интервалом в 10 м. Если какая-то сорока перелетает с одной елки на другую, то какая-нибудь другая сорока обязательно перелетает на столько же метров, но в обратном направлении.
а) Могут ли все сороки собраться на одной елке?
б) А если сорок и елок семь?
в) А если елки стоят по кругу?
Просмотр содержимого документа
«ЕГЭ 2023 Январь Математика Вариант 7»
ЕГЭ по математике — Профиль 2023. Открытый банк заданий с ответами.
Вариант МА2210301 и ответы
Скачать ответы и
решения для вариантов
1.
Каждый день во время конференции расходуется 60 пакетиковчая.
Конференция длится 9 дней. В пачке чая 50 пакетиков. Какого наименьшего
количества пачек чая хватит на все дни конференции?
2.
Установите соответствие между величинами и их
возможнымизначениями: к каждому элементу первого столбца подберите
соответствующий элемент из второго столбца.
3.
В таблице показано расписание пригородных электропоездовпо
направлению Москва Курская – Крутое – Петушки. Владислав пришёл на станцию
Москва Курская в 18:20 и хочет уехать в Петушки на электропоезде без пересадок.
Найдите номер ближайшего электропоезда, который ему подходит.
5. В коробке вперемешку лежат чайные пакетики с
чёрным и зелёным чаем, одинаковые на вид, причём пакетиков с чёрным чаем в 4
раза больше, чем пакетиков с зелёным. Найдите вероятность того, что случайно
выбранный из этой коробки пакетик окажется пакетиком с чёрным чаем.
8.
Некоторые учащиеся 10-х классов школы ходили в апреле наспектакль
«Гроза». В мае некоторые десятиклассники пойдут на постановку по пьесе
«Бесприданница», причём среди них не будет тех, кто ходил в апреле на спектакль
«Гроза». Выберите утверждения, которые будут верны при указанных условиях
независимо от того, кто из десятиклассников пойдёт на постановку по пьесе
«Бесприданница».
●
1) Каждый учащийся 10-х классов, который не ходил на спектакль
«Гроза», пойдёт на постановку по пьесе «Бесприданница».
●
2) Нет ни одного десятиклассника, который ходил на спектакль
«Гроза» и пойдёт на постановку по пьесе «Бесприданница».
●
3) Среди учащихся 10-х классов этой школы, которые не пойдут на
постановку по пьесе «Бесприданница», есть хотя бы один, который ходил на
спектакль «Гроза».
●
4) Найдётся десятиклассник, который не ходил на спектакль «Гроза»
и не пойдёт на постановку по пьесе «Бесприданница».
9.
На фрагменте географической карты схематично изображеныграницы
деревни Покровское и очертания озёр (площадь одной клетки равна одному
гектару). Оцените приближённо площадь озера Малого. Ответ дайте в гектарах с
округлением до целого значения.
10.
Диагональ прямоугольного экрана ноутбука равна 40 см, аширина
экрана ― 32 см. Найдите высоту экрана. Ответ дайте в сантиметрах.
11.
Пирамида Снофру имеет форму правильной четырёхугольнойпирамиды,
сторона основания которой равна 220 м, а высота — 104 м. Сторона основания
точной музейной копии этой пирамиды равна 55 см. Найдите высоту музейной копии.
Ответ дайте в сантиметрах.
12.
В треугольнике ABC проведена биссектриса AL, угол ALC равен 112°
, угол ABC равен 106° . Найдите угол ACB . Ответ дайте в градусах.
13.
Даны два цилиндра. Радиус основания и высота первогоцилиндра
равны соответственно 2 и 6, а второго — 6 и 4. Во сколько раз объём второго
цилиндра больше объёма первого?
15. В школе мальчики составляют 55 % от числа всех
учащихся. Сколько в этой школе мальчиков, если их на 50 человек больше, чем
девочек?
19.
Цифры четырёхзначного числа, кратного 5, записали вобратном
порядке и получили второе четырёхзначное число. Затем из исходного числа вычли
второе и получили 3366. В ответе укажите какое-нибудь одно такое исходное
число.
20.
Имеется два сплава. Первый содержит 45 % никеля, второй —5 %
никеля. Из этих двух сплавов получили третий сплав, содержащий 15 % никеля.
Масса первого сплава равна 40 кг. На сколько килограммов масса первого сплава
была меньше массы второго?
21.
Прямоугольник разбит на четыре меньших прямоугольникадвумя
прямолинейными разрезами. Периметры трёх из них, начиная с левого верхнего и
далее по часовой стрелке, равны 2, 3 и 18. Найдите периметр четвёртого
прямоугольника.
Вариант МА2210305 и ответы
Скачать ответы и
решения для вариантов
1. Для покраски 1 кв. м потолка требуется 230 г
краски. Краска продаётся в банках по 2 кг. Какое наименьшее количество банок
краски нужно для покраски потолка площадью 44 кв. м?
3. В таблице представлены налоговые ставки на
автомобили в Москве с 1 января 2013 года. Какова налоговая ставка (в рублях за
1 л. с. в год) на автомобиль мощностью 115 л. с.?
5.
Помещение освещается двумя лампами. Вероятностьперегорания одной
лампы в течение года равна 0,3. Найдите вероятность того, что в течение года
обе лампы перегорят.
6.
В таблице даны результаты олимпиад по русскому языку ибиологии в
9 «А» классе. Похвальные грамоты дают тем школьникам, у кого суммарный балл по
двум олимпиадам больше 110 или хотя бы по одному предмету набрано не меньше 60
баллов. Укажите номера учащихся 9 «А» класса, набравших меньше 60 баллов по
русскому языку и получивших похвальные грамоты, без пробелов, запятых и других
дополнительных символов.
7.
На рисунке изображены график функции и касательные,проведённые к
нему в точках с абсциссами A, B, C и D. В правом столбце указаны значения
производной функции в точках A, B, C и D. Пользуясь графиком, поставьте в
соответствие каждой точке значение производной функции в ней.
8.
Некоторые учащиеся 10-х классов школы ходили в ноябре наоперу
«Евгений Онегин». В марте некоторые десятиклассники пойдут на оперу «Руслан и
Людмила», причём среди них не будет тех, кто ходил в ноябре на оперу «Евгений
Онегин». Выберите утверждения, которые будут верны при указанных условиях независимо
от того, кто из десятиклассников пойдёт на оперу «Руслан и Людмила».
●
1) Каждый учащийся 10-х классов, который не ходил на оперу
«Евгений Онегин», пойдёт на оперу «Руслан и Людмила».
●
2) Нет ни одного десятиклассника, который ходил на оперу «Евгений
Онегин» и пойдёт на оперу «Руслан и Людмила».
●
3) Найдётся десятиклассник, который не ходил на оперу
«Евгений Онегин» и не пойдёт на оперу «Руслан и
Людмила».
●
4) Среди учащихся 10-х классов этой школы, которые не пойдут на
оперу «Руслан и Людмила», есть хотя бы один, который ходил на оперу «Евгений
Онегин».
9.
План местности разбит на клетки. Каждая клетка обозначаетквадрат
1м×1м . Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных
метрах.
10.
Пожарную лестницу длиной 10 м приставили к окну дома.Нижний конец
лестницы отстоит от стены на 6 м. На какой высоте находится верхний конец
лестницы? Ответ дайте в метрах.
11.
Прямолинейный участок трубы длиной 4 м, имеющей всечении
окружность, необходимо покрасить снаружи (торцы трубы открыты, их красить не
нужно). Найдите площадь поверхности, которую необходимо покрасить, если внешний
обхват трубы равен 19 см. Ответ дайте в квадратных сантиметрах.
12.
В треугольнике ABC стороны AC и BC равны. Внешний угол при
вершине B равен 146° . Найдите угол C. Ответ дайте в градусах.
13.
Даны два шара радиусами 4 и 2. Во сколько раз объёмбольшего шара
больше объёма меньшего?
15. Число больных гриппом в школе уменьшилось за
месяц в пять раз. На сколько процентов уменьшилось число больных гриппом?
19.
Найдите пятизначное число, кратное 15, любые две соседниецифры
которого отличаются на 3. В ответе укажите какое-нибудь одно такое число.
20.
Теплоход, скорость которого в неподвижной воде равна 19 км/ч,
проходит по течению реки и после стоянки возвращается в исходный пункт.
Скорость течения равна 3 км/ч, стоянка длится 5 часов, а в исходный пункт
теплоход возвращается через 43 часа после отправления из него. Сколько
километров проходит теплоход за весь рейс?
21.
На кольцевой дороге расположены четыре бензоколонки: А, Б,В и Г.
Расстояние между А и Б — 55 км, между А и В — 40 км, между В и Г — 40 км, между
Г и А — 30 км (все расстояния измеряются вдоль кольцевой дороги по кратчайшей
дуге). Найдите расстояние (в километрах) между Б и В.
Вариант МА2210309 и ответы
Скачать ответы и
решения для вариантов
2.
Прямоугольный параллелепипед описан около цилиндра,радиус
основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту
цилиндра.
3.
В группе 16 человек, среди них — Анна и Татьяна. Группуслучайным
образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность
того, что Анна и Татьяна окажутся в одной подгруппе.
4.
Агрофирма закупает куриные яйца только в двух домашниххозяйствах.
Известно, что 40 % яиц из первого хозяйства — яйца высшей категории, а из
второго хозяйства — 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей
категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы,
окажется из первого хозяйства.
9. Пристани A и B расположены на озере, расстояние
между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На
следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч
больше прежней, сделав по пути остановку на 8 часов. В результате она затратила
на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость
баржи на пути из A в B. Ответ дайте в км/ч.
13. Основанием правильной пирамиды PABCD является
квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD
перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра
пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если AB
= 30.
15.
По вкладу «А» банк в конце каждого года планируетувеличивать на
13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать
эту сумму на 7 % в первый год и на целое число n процентов за второй год.
Найдите наименьшее значение n , при котором за два года хранения вклад «Б»
окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
16.
В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M
. Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б)
Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22 .
18. У Ани есть 800 рублей. Ей нужно купить конверты
(большие и маленькие). Большой конверт стоит 32 рубля, а маленький — 25 рублей.
При этом число маленьких конвертов не должно отличаться от числа больших
конвертов больше чем на пять. а) Может ли Аня купить 24 конверта? б) Может ли
Аня купить 29 конвертов? в) Какое наибольшее число конвертов может купить Аня?
Вариант МА2210311 и ответы
Скачать ответы и
решения для вариантов
1.
Найдите периметр прямоугольника, если его площадь равна 12,а
отношение соседних сторон равно 1:3.
2.
Шар вписан в цилиндр. Площадь полной поверхностицилиндра равна
78. Найдите площадь поверхности шара.
3.
В магазине в среднем из 120 сумок 15 имеют скрытые
дефекты.Найдите вероятность того, что выбранная в магазине сумка окажется со
скрытыми дефектами.
4.
Игральный кубик бросают дважды. Известно, что в суммевыпало 11
очков. Найдите вероятность того, что во второй раз выпало 5 очков.
9. Игорь и Паша, работая вместе, могут покрасить
забор за 40 часов. Паша и Володя, работая вместе, могут покрасить этот же забор
за 48 часов, а Володя и Игорь, работая вместе, — за 60 часов. За сколько часов
мальчики покрасят забор, работая втроём?
13. Основанием правильной пирамиды PABCD является
квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD
перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра
пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если
AB = 24 .
15.
По вкладу «А» банк в конце каждого года планируетувеличивать на
11 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать
эту сумму на 7 % в первый год и на целое число n процентов за второй год.
Найдите наименьшее значение n , при котором за два года хранения вклад «Б»
окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
16.
В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M
. Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б)
Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 18.
18. У Ани есть 400 рублей. Ей нужно купить конверты
(большие и маленькие). Большой конверт стоит 22 рубля, а маленький — 17 рублей.
При этом число маленьких конвертов не должно отличаться от числа больших
конвертов больше чем на пять. а) Может ли Аня купить 19 конвертов? б) Может ли
Аня купить 23 конверта? в) Какое наибольшее число конвертов может купить Аня?
Скачать ответы и
решения для вариантов