Решу егэ математика 501415


Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

Сайты, меню, вход, новости

Задания

Версия для печати и копирования в MS Word

а)  Решите уравнение  косинус x левая круглая скобка 2 косинус x плюс тангенс x правая круглая скобка =1.

б)  Найдите все корни этого уравнения, принадлежащие отрезку  левая квадратная скобка минус дробь: числитель: 5 Пи , знаменатель: 2 конец дроби , минус дробь: числитель: Пи , знаменатель: 2 конец дроби правая квадратная скобка .

Спрятать решение

Решение.

а)  Область определения данного уравнения задается условием  косинус x не равно 0 левая круглая скобка * правая круглая скобка .

При этом условии имеем:  косинус x левая круглая скобка 2 косинус x плюс тангенс x правая круглая скобка =1 равносильно 2 косинус в квадрате x плюс синус x=1 равносильно 2 синус в квадрате x минус синус x минус 1=0, откуда  синус x=1 или  синус x= минус дробь: числитель: 1, знаменатель: 2 конец дроби .

Корни уравнения  синус x=1 не удовлетворяют условию  левая круглая скобка * правая круглая скобка , а из уравнения  синус x= минус дробь: числитель: 1, знаменатель: 2 конец дроби получаем x= минус дробь: числитель: Пи , знаменатель: 6 конец дроби плюс 2 Пи k, x= минус дробь: числитель: 5 Пи , знаменатель: 6 конец дроби плюс 2 Пи k, k принадлежит Z .

б)  Из найденных решений промежутку  левая квадратная скобка минус дробь: числитель: 5 Пи , знаменатель: 2 конец дроби , минус дробь: числитель: Пи , знаменатель: 2 конец дроби правая квадратная скобка принадлежат числа  минус дробь: числитель: 5 Пи , знаменатель: 6 конец дроби , минус дробь: числитель: 13 Пи , знаменатель: 6 конец дроби .

Ответ: а)  левая фигурная скобка минус дробь: числитель: Пи , знаменатель: 6 конец дроби плюс 2 Пи k, минус дробь: числитель: 5 Пи , знаменатель: 6 конец дроби плюс 2 Пи k: k принадлежит Z правая фигурная скобка ; б)  минус дробь: числитель: 13 Пи , знаменатель: 6 конец дроби ; минус дробь: числитель: 5 Пи , знаменатель: 6 конец дроби .

Спрятать критерии

Критерии проверки:

Критерии оценивания выполнения задания Баллы
Обоснованно получены верные ответы в обоих пунктах. 2
Обоснованно получен верный ответ в пункте а),

ИЛИ

получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения пункта а) и пункта б).

1
Решение не соответствует ни одному из критериев, перечисленных выше. 0
Максимальный балл 2

Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 2.

Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.

Линейные уравнения

Линейным называется такое уравнение, в котором неизвестное $x$ находится в числителе уравнения и без показателей. Например: $2х – 5 = 3$

Линейные уравнения сводятся к виду $ax = b$, которое получается при помощи раскрытия скобок, приведения подобных слагаемых, переноса слагаемых из одной части уравнения в другую, а также умножения или деления обеих частей уравнения на число, отличное от нуля.

$5 (5 + 3х) — 10х = 8$

Раскроем скобки.

$25 + 15х — 10х = 8$

Перенесем неизвестные слагаемые в левую часть уравнения, а известные в правую. При переносе из одной части в другую, у слагаемого меняется знак на противоположный.

$15х — 10х = 8 — 25$

Приведем подобные слагаемые.

$5х = -17$ — это конечный результат преобразований.

После преобразований к виду $ax = b$, где, a=0, корень уравнения находим по формуле $х = {b}/{a}$

$х=-{17}/{5}$

$х = — 3,4$

Ответ: $- 3,4$

Квадратные уравнения

Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.

Числа $a, b, c$ называются коэффициентами квадратного уравнения.

  • $a$ — старший коэффициент;
  • $b$ — средний коэффициент;
  • $c$ — свободный член.

Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.

Решение неполных квадратных уравнений

Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.

1. Вынесем общий множитель $x$ за скобки.

Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:

$x = 0; ax + b = 0$

2. Решаем получившиеся уравнения каждое отдельно.

Мы получим $x = 0$ и $x={-b}/{a}$. Следовательно, данное квадратное уравнение имеет два корня $x = 0$ и $x={-b}/{a}$

$4х^2 — 5х = 0$

Вынесем х как общий множитель за скобки:

$х (4х — 5) = 0$

Приравняем каждый множитель к нулю и найдем корни уравнения.

$x = 0$ или $4х — 5 = 0$

$х_1 = 0   х_2 = 1,25$

Ответ: $х_1 = 0; х_2 = 1,25$

Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$

Для решения данного неполного квадратного уравнения выразим $x^2$.

$ax^2 + c = 0$

$ax^2 = — c$

$x_2 = {-c}/{a}$

При решении последнего уравнения возможны два случая:

если ${-c}/{a}>0$, то получаем два корня: $x = ±v{{-c}/{a}}$

если ${-c}/{a}<0$, то уравнение во множестве действительных числе не имеет решений.

$x^2 — 16 = 0$

$x^2 = 16$

$x = ±4$

Ответ: $х_1 = 4, х_2 = — 4$

Решение полного квадратного уравнения

Решение с помощью дискриминанта

Дискриминантом квадратного уравнения D называется выражение

$b^2 — 4ac$.

При решении уравнения с помощью дискриминанта возможны три случая:

1. $D > 0$. Тогда корни уравнения равны:

$x_{1,2}={-b±√D}/{2a}$

2. $D = 0$. В данном случае решение даёт два двукратных корня:

$x_{1}=x_{2}={-b}/{2a}$

3. $D < 0$. В этом случае уравнение не имеет корней.

$3х^2 — 11 = -8х$

Соберем все слагаемые в левую часть уравнения и расставим в порядке убывания степеней

$3х^2 + 8х — 11 = 0$

$a = 3 ,b = 8, c = — 11$

$D = b^2- 4ac = 82- 4 · 3 · (-11) = 196 = 142$

$x_{1}={-b+√D}/{2a}={-8+14}/{6}=1$

$x_{2}={-b-√D}/{2a}={-8-14}/{6}=-3{2}/{3}$

Ответ: $x_1=1, x_2=-3{2}/{3}$

Устные способы

Если сумма коэффициентов равна нулю $(а + b + c = 0)$, то $х_1= 1, х_2={с}/{а}$

$4х^2+ 3х — 7 = 0$

$4 + 3 — 7 = 0$, следовательно $х_1= 1, х_2=-{7}/{4}$

Ответ: $х_1= 1, х_2 = -{7}/{4}$

Если старший коэффициент в сумме со свободным равен среднему коэффициенту $(a + c = b)$, то $х_1= — 1, х_2=-{с}/{а}$

$5х^2+ 7х + 2 = 0$

$5 + 2 = 7$, следовательно, $х_1= -1, х_2 =-{2}/{5}$

Ответ: $х_1= -1, х_2 = -{2}/{5}$

Кубические уравнения

Для решения простых кубических уравнений необходимо обе части представить в виде основания в третьей степени. Далее извлечь кубический корень и получить простое линейное уравнение.

$(x — 3)^3 = 27$

Представим обе части как основания в третьей степени

$(x — 3)^3 = $33

Извлечем кубический корень из обеих частей

$х — 3 = 3$

Соберем известные слагаемые в правой части

$x = 6$

Ответ: $х = 6$

Дробно рациональные уравнения

Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.

Чтобы решить дробное уравнение, необходимо:

  1. найти общий знаменатель дробей, входящих в уравнение;
  2. умножить обе части уравнения на общий знаменатель;
  3. решить получившееся целое уравнение;
  4. исключить из его корней те, которые обращают в ноль общий знаменатель.

$4x + 1 — {3}/{x} = 0$

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

$4x + 1 — {3}/{x}= 0¦· x$

$4x · x + 1 · x — {3·x}/{x} = 0$

3. решаем полученное уравнение

$4x^2 + x — 3 = 0$

Решим вторым устным способом, т.к. $а + с = b$

Тогда $х_1 = — 1, х_2 = {3}/{4}$

4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $х_1 = — 1, х_2 = {3}/{4}$

При решении уравнения с двумя дробями можно использовать основное свойство пропорции.

Основное свойство пропорции: Если ${a}/{b} = {c}/{d}$, то $a · d = b · c$

${3х-5}/{-2}={1}/{х}$

Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

Воспользуемся основным свойством пропорции

$х (3х — 5) = -2$

Раскроем скобки и соберем все слагаемые в левой части уравнения

$3х^2- 5х + 2 = 0$

Решим данное квадратное уравнение первым устным способом, т.к.

$a + b + c = 0$

$x_1 = 1, x_2 = {2}/{3}$

В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $x_1 = 1, x_2 = {2}/{3}$

Рациональное уравнение – это уравнение вида $f(x)=g(x)$, где $f(x)$ и $g(x)$ — рациональные выражения.

Рациональные выражения — это целые и дробные выражения, соединённые между собой знаками арифметических действий: деления, умножения, сложения или вычитания, возведения в целую степень и знаками последовательности этих выражений.

Например,

${2}/{x}+5x=7$ – рациональное уравнение

$3x+√x=7$ — иррациональное уравнение (содержит корень)

Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно рациональным.

Чтобы решить дробно рациональное уравнение, необходимо:

  1. Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ);
  2. Найти общий знаменатель дробей, входящих в уравнение;
  3. Умножить обе части уравнения на общий знаменатель;
  4. Решить получившееся целое уравнение;
  5. Исключить из его корней те, которые обращают в ноль общий знаменатель.

Решить уравнение: $4x+1-{3}/{x}=0$

Решение:

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x ≠ 0$

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

$4x+1-{3}/{x}=0|·x$

$4x·x+1·x-{3·x}/{x}=0$

3. решаем полученное уравнение

$4x^2+x-3=0$

Решим вторым устным способом, т.к. $а+с=b$

Тогда, $x_1=-1, x_2=-{3}/{4}$

4. исключаем те корни, при которых общий знаменатель равен нулю

В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $x_1=-1, x_2=-{3}/{4}$

При решении уравнения с двумя дробями, можно использовать основное свойство пропорции.

Основное свойство пропорции: Если ${a}/{b}={c}/{d}$ — пропорция, то $a·d=b·c$

Решить уравнение ${3x-5}/{-2}={1}/{x}$

Решение:

Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

Воспользуемся основным свойством пропорции

$х(3х-5)=-2$

Раскроем скобки и соберем все слагаемые в левой стороне

$3х^2-5х+2=0$

Решим данное квадратное уравнение первым устным способом, т.к. $a+b+c=0$

$x_1=1, x_2={2}/{3}$

В первом пункте получилось, что при x = 0 уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $x_1=1, x_2={2}/{3}$

Уравнения, содержащие неизвестную под знаком корня, называются иррациональными.

Чтобы решить иррациональное уравнение, необходимо:

  1. Преобразовать заданное иррациональное уравнение к виду: $√{f(x)}=g(x)$ или $√{f(x)}=√{g(x)}$
  2. Обе части уравнение возвести в квадрат: $√{f(x)}^2=(g(x))^2$ или $√{f(x)}^2=√{g(x)}^2$
  3. Решить полученное рациональное уравнение.
  4. Сделать проверку корней, так как возведение в четную степень может привести к появлению посторонних корней. (Проверку можно сделать при помощи подстановки найденных корней в исходное уравнение.)

Решите уравнение $√{4х-3}=х$. Если уравнение имеет более одного корня, укажите наименьший из них.

Решение:

Обе части уравнение возведем в квадрат:

$√{4х-3}^2=х^2$

Получаем квадратное уравнение:

$4х-3=х^2$

Перенесем все слагаемые в левую часть уравнения:

${-х}^2+4х-3=0$

Решим данное квадратное уравнение устным способом, так как

$a+b+c=0$

$-1+4-3=0$, следовательно $х_1 = 1; х_2={с}/{а}={-3}/{-1}=3$

Проведем проверку корней, подставив их вместо икса в исходное уравнение

$√{4·1-3}=1$

$1=1$, получили в результате проверки верное равенство, следовательно $х_1=1$ подходит.

$√{4·(3)-3}=3$

$√9=3$

$3=3$, получили в результате проверки верное равенство, следовательно корень $х_2=3$ подходит

$х_1=1$ наименьший корень.

Ответ: $1$

Так как в иррациональных уравнениях иногда необходимо возводить в квадрат не только число, но и целое выражение, необходимо вспомнить формулы сокращенного умножения:

  1. Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе число плюс квадрат второго числа. $(a-b)^2=a^2-2ab+b^2$
  2. Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа. $(a+b)^2=a^2+2ab+b^2$

Решить уравнение: $х-6=√{8-х}$

Возведем обе части уравнения в квадрат

$(х-6)^2=8-х$

В левой части уравнения при возведении в квадрат получаем формулу сокращенного умножения квадрат разности. В правой части уравнения квадрат и корень компенсируют друг друга и в результате остается только подкоренное выражение

$х^2-2·6·х+6^2=8-х$

$х^2-12х+36=8-х$

Получили квадратное уравнение. Все слагаемые переносим в левую часть уравнения. При переносе слагаемых через знак равно их знаки меняются на противоположные.

$х^2-12х+36-8+х=0$

Приводим подобные слагаемые:

$х^2-11х+28=0$

Найдем корни уравнения через дискриминант:

$D=b^2-4ac=121-4·28=121-112=9=3^2$

$x_{1,2}={-b±√D}/{2a}={11±3}/{2}$

$x_1=7; x_2=4$

Проведем проверку корней, подставив их вместо икса в исходное уравнение

$x_1=7$

$7-6=√{8-7}$

$1=1$, получили верное равенство, следовательно, корень нам подходит.

$x_2=4$

$4-6=√{8-4}$

$-2=2$, получили неверное равенство, следовательно, данный корень посторонний.

Ответ: $7$

Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.

$a^x=b$

При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

$a^n⋅a^m=a^{n+m}$

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются

$a^n:a^m=a^{n-m}$

3. При возведении степени в степень основание остается прежним, а показатели перемножаются

$(a^n)^m=a^{n·m}$

4. При возведении в степень произведения в эту степень возводится каждый множитель

$(a·b)^n=a^n·b^n$

5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

$({a}/{b})^n={a^n}/{b^n}$

6. При возведении любого основания в нулевой показатель степени результат равен единице

$a^0=1$

7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби

$a^{-n}={1}/{a^n}$

${a^{-n}}/{b^{-k}}={b^k}/{a^n}$

8. Радикал (корень) можно представить в виде степени с дробным показателем

$√^n{a^k}=a^{{k}/{n}}$

Показательные уравнения часто сводятся к решению уравнения $a^x=a^m$, где, $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели.

Решить уравнение $25·5^х=1$

Решение:

В левой части уравнения необходимо сделать одну степень с основанием $5$ и в правой части уравнения представить число $1$ в виде степени с основанием $5$

$5^2·5^х=5^0$

При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются

$5^{2+х}=5^0$

Далее проговариваем: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели

$2+х=0$

$х=-2$

Ответ: $-2$

Решить уравнение $2^{3х+2}-2^{3х-2}=30$

Решение:

Чтобы решить данное уравнение, вынесем степень с наименьшим показателем как общий множитель

$2^{3x+2}-2^{3x-2}=30$

$2^{3x-2}({2^{3x+2}}/{2^{3x-2}}-{2^{3x-2}}/{2^{3x-2}})=30$

$2^{3x-2}(2^{3x+2-(3x-2)}-1)=30$

$2^{3x-2}(2^4-1)=30$

$2^{3x-2}·15=30$

Разделим обе части уравнения на $15$

$2^{3х-2}=2$

$2^{3х-2}=2^1$

$3х-2=1$

$3х=3$

$х=1$

Ответ: $1$

Задание:

1 января 2015 года Павел Витальевич взял в банке 1 млн рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 1 процент на оставшуюся сумму долга (то есть увеличивает долг на 1%). затем Павел Витальевич переводит в банк платёж. На какое минимальное количество месяцев Павел Витальевич может взять кредит, чтобы ежемесячные выплаты были не более 125 тыс. рублей?

Решение:

* Банк увеличивает сумму долга на 1%, то есть умножает долг на 1.01, другими словами — это 101% от суммы долга. Составим уравнение, решим задачу по месяцам: 

Для нашего удобства откинем 3 нуля:

Первый месяц:

(1000 * 1.01) — 125 = 1010 — 125 = 885 — Сумма долга после первого месяца.

Второй месяц:

(885 * 1.01) — 125 = 893.85 — 125 = 768.85 — Сумма долга после второго месяца.

Третий месяц:

(768.85 * 1.01) — 125 = 776.5385 — 125 = 651.5385 — сумма долга после третьего месяца.

Четвертый месяц. Откинем некоторые цифры после запятой, чтобы удобнее было считать:

(651.5 * 1.01) — 125 = 658.015 — 125 = 533.015 — сумма долга после четвертого месяца.

Пятый месяц: Снова откинем:

(533 * 1.01) — 125 =  538.33 — 125 = 413.33 — сумма долга после пятого месяца.

Шестой месяц: 

(413.33 * 1.01) — 125 = 417.4633 — 125 = 292.4633 — сумма долга после шестого месяца.

Седьмой месяц: Снова откидываем для удобства.

(292.4 * 1.01) — 125 = 294.92 — 125 = 169.92 — сумма долга после седьмого месяца.

Восьмой месяц:

(169.92 * 1.01) — 125 = 171.6192 — 125 = 46.6192 — сумма долга после восьмого месяца.

Девятый месяц: 

(46.6192 * 1.01) — 125, после девятого месяца сумма долга будет равна нулю.

Ответ: 9 месяцев

Регистрация   
Вход   

Форум   
Поиск   
FAQ   alexlarin.net

Текущее время: 12 мар 2023, 05:01
Часовой пояс: UTC + 3 часа

Сообщения без ответов | Активные темы
 

 Страница 1 из 1 [ Сообщений: 7 ] 

Начать новую тему»>

Ответить

Тренировочный вариант №352

 
Для печати Для печати | Известить друга Известить друга
Предыдущая тема Предыдущая тема | Следующая тема Следующая тема

Тренировочный вариант №352

Автор Сообщение

Заголовок сообщения: Тренировочный вариант №352

Сообщение Добавлено: 08 мар 2023, 17:30 

Не в сети
Администратор
  • Центр пользователя



Зарегистрирован: 10 июн 2010, 15:00
Сообщений: 6119

https://alexlarin.net/gia/trvar352_oge.html

Вернуться наверх 

AliP

Заголовок сообщения: Re: Тренировочный вариант №352

Сообщение Добавлено: 10 мар 2023, 14:04 

Не в сети
  • Центр пользователя



Зарегистрирован: 05 мар 2023, 22:01
Сообщений: 2

1)4213
2)34
3)40
4)186
5)1645
6)0,4
7)2
8)300
9)-15
10)4
11)4123
12)0,8
13)1
14)50
15)53
16)56
17)36
18)
19)13
20)20
21)9
22)[4;+беск)
23)5
25)29

Вернуться наверх 

hpbhpb

Заголовок сообщения: Re: Тренировочный вариант №352

Сообщение Добавлено: 10 мар 2023, 14:14 

Не в сети
Аватар пользователя
  • Центр пользователя



Зарегистрирован: 18 ноя 2015, 07:49
Сообщений: 1730
Откуда: Ставрополь

Подробности:

Здравствуйте, AliP!

У меня такие же ответы, кроме:

Подробности:

В 18-м у меня:

Подробности:

Вернуться наверх 

AliP

Заголовок сообщения: Re: Тренировочный вариант №352

Сообщение Добавлено: 10 мар 2023, 14:29 

Не в сети
  • Центр пользователя



Зарегистрирован: 05 мар 2023, 22:01
Сообщений: 2

hpbhpb писал(а):

Подробности:

Здравствуйте, AliP!

У меня такие же ответы, кроме:

Подробности:

В 18-м у меня:

Подробности:

Здравствуйте! Да, спасибо, в 22 такой же ответ получился. В 18 у меня было предположение насчёт 12, но я не могу обосновать, почему это так.

Последний раз редактировалось AliP 10 мар 2023, 15:21, всего редактировалось 1 раз.

Вернуться наверх 

hpbhpb

Заголовок сообщения: Re: Тренировочный вариант №352

Сообщение Добавлено: 10 мар 2023, 14:54 

Не в сети
Аватар пользователя
  • Центр пользователя



Зарегистрирован: 18 ноя 2015, 07:49
Сообщений: 1730
Откуда: Ставрополь

AliP писал(а):

Здравствуйте! Да, спасибо в 22 такой же ответ получился. В 18 у меня было предположение насчёт 12, но я не могу обосновать, почему это так.

Я тоже не могу обосновать. Может, Михаил Николаевич в вс выложит решение? Мне самому интересно.

Вернуться наверх 

antonov_m_n

Заголовок сообщения: Re: Тренировочный вариант №352

Сообщение Добавлено: Вчера, 21:55 

Не в сети
  • Центр пользователя



Зарегистрирован: 12 июн 2016, 12:25
Сообщений: 2113
Откуда: Москва

Доброй ночи . Задача 18 . Без теоремы синусов можно обойтись , если использовать » четвёртый признак равенства треугольников «

Вложения:
A38B896D-74CF-401B-9BF3-6E6A4D1A7B15_1_201_a.jpeg
A38B896D-74CF-401B-9BF3-6E6A4D1A7B15_1_201_a.jpeg [ 464.87 KIB | Просмотров: 149 ]

_________________
Чтобы добраться до источника, надо плыть против течения.

Вернуться наверх 

hpbhpb

Заголовок сообщения: Re: Тренировочный вариант №352

Сообщение Добавлено: Вчера, 23:16 

Не в сети
Аватар пользователя
  • Центр пользователя



Зарегистрирован: 18 ноя 2015, 07:49
Сообщений: 1730
Откуда: Ставрополь

Спасибо большое, Михаил Николаевич!

Вернуться наверх 

Показать сообщения за:  Сортировать по:  

 Страница 1 из 1 [ Сообщений: 7 ] 

Текущее время: 12 мар 2023, 05:01 | Часовой пояс: UTC + 3 часа

Удалить cookies форума | Наша команда | Вернуться наверх

Кто сейчас на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3

 

 

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:

Перейти:  

Цена: 401 руб.
товар в наличии

ЕГЭ. Математика. Функции, заданные графиками, и их производные. Задача 7, профильный уровень, задача 7, базовый уровень. Рабочая тетрадь.

Рабочая тетрадь по математике серии «ЕГЭ. Математика» ориентирована на подготовку учащихся старшей школы к успешной сдаче Единого государственного экзамена по математике по базовому и профильному уровням. В рабочей тетради представлены задачи по одной позиции контрольных измерительных материалов.
На различных этапах обучения пособие поможет обеспечить уровневый подход к организации повторения, осуществить контроль и самоконтроль знаний по задачам, посвящённым геометрическому смыслу производной. Рабочая тетрадь ориентирована на один учебный год, однако при необходимости позволит в кратчайшие сроки восполнить пробелы в знаниях выпускника.
Тетрадь предназначена для учащихся старшей школы, учителей математики, родителей.
Издание соответствует Федеральному государственному образовательному стандарту (ФГОС).

  • ЕГЭ по математике
  • Производитель: МЦНМО
  • Продавец: официальный сайт Лабиринт
  • Артикул: 934752

Доставка Почтой России, экспресс-доставка курьером или заказ забирается самовывозом из пунктов выдачи и постаматов. Успей купить по дешевой цене, товар находится в ограниченной продаже!

Цена актуальна на дату: 05.03.2023 г. Предложение по артикулу 934752 не является публичной офертой. Для покупки перейдите в интернет-магазин по ссылке «Купить» или «Заказать», добавьте товар в корзину и оформите заказ.

Доставка

  • Курьером;
  • Самовывоз из постаматов и пунктов выдачи;
  • Почтой России;
  • Транспортными компаниями.

Оплата

  • Наличными при получении;
  • Банковской картой;
  • Безналичным расчетом.

* Варианты доставки и оплаты могут отличаться.

Доступность

Смотреть видеоурок ЕГЭ по математике профильного уровня можно в любое время и в любом месте.

Достаточно иметь какое-либо устройство с выходом в Интернет:

  • Персональный компьютер
  • Ноутбук
  • Планшет
  • Смартфон

Удобство

Видеоуроки для подготовки к ЕГЭ по математике позволяют максимально рационально использовать свободное от учебы время. Вам не придется тратить драгоценные минуты на поездки к репетитору или в какие-либо обучающие центры. Видеоуроки ЕГЭ по математике, посмотреть которые вы можете на образовательном портале «Школково», содержат весь необходимый материал для эффективной подготовки к экзамену. Кроме того, наш ресурс позволяет каждому ученику выстроить коммуникацию со своим преподавателем.

Информативность

Каждый школьник может выбрать именно тот видеоурок ЕГЭ по математике, тема которого соответствует изучаемому или повторяемому им материалу. Таким образом, выпускник может быстрее и легче усвоить новую информацию или восполнить пробелы в знаниях.

При подготовке к экзамену нужно делать упор не на его сдачу как самоцель, а на повышение уровня знаний учащегося. Для этого необходимо изучать теорию, отрабатывать навыки, решая разнообразные варианты профильного ЕГЭ по математике нестандартными способами с развернутыми ответами, следить за динамикой обучения.

А поможет вам во всем этом образовательный проект «Школково».

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Решу егэ математика 501189
  • Решу егэ математика 501188
  • Решу егэ математика 501186
  • Решу егэ математика 501059
  • Решу егэ математика 500961

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии