Решу егэ физика связанные тела


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word


2

Задания Д28 C1 № 703

Массивный брусок движется поступательно по горизонтальной плоскости под действием постоянной силы, направленной под углом  альфа = 30 градусов к горизонту. Модуль этой силы F = 12Н. Коэффициент трения между бруском и плоскостью mu=0,2. Модуль силы трения, действующей на брусок равен 2,8 Н. Чему равна масса бруска? Ответ приведите в килограммах.


3

Задания Д28 C1 № 704

Брусок массой m = 2кг движется поступательно по горизонтальной плоскости под действием постоянной силы, направленной вверх под углом  альфа = 30 градусов к горизонту. Модуль этой силы F = 12Н. Модуль силы трения, действующей на брусок равен 2,8 Н. Чему равен коэффициент трения между бруском и плоскостью? Ответ с точностью до первого знака после запятой.


4

Задания Д28 C1 № 705

Брусок массой m = 2кг движется поступательно по горизонтальной плоскости под действием постоянной силы F, направленной под углом  альфа = 30 градусов к горизонту. Коэффициент трения между бруском и плоскостью mu=0,2. Модуль силы трения, действующей на брусок равен 2,8 Н. Чему равен модуль силы F? Ответ приведите в ньютонах.


5

Задания Д28 C1 № 706

Коэффициент трения резины колес автомобиля об асфальт равен 0,4. При скорости движения 20м/с водитель, во избежание аварии, должен придерживаться радиуса поворота, не меньшего, чем? Ответ приведите в метрах.

Пройти тестирование по этим заданиям

Динамика: движения системы связанных тел. 

Проецирование сил нескольких объектов.

Действие второго закона Ньютона на тела, которые скреплены нитью 


Если ты, дружок, позабыл, как силушку проецировать, советую мыслишки в своей головушке освежить.

А для тех, кто все помнит, поехали!

Задача 1. На гладком столе лежат два связанных невесомой и нерастяжимой ниткой бруска с массой 200 г левого и массой правого 300 г. К первому приложена сила 0,1 Н, к левому — в противоположном направлении сила 0,6 Н. С каким ускорением движутся грузы?

Движение происходит только на оси X. 

Т.к. к правому грузу приложена большая сила, движение данной системы будет направлено вправо, поэтому направим ось так же. Ускорение у обоих брусков будет направлено в одну сторону — сторону большей силы.

По II з. Ньютона спроецируем силы обоих тел на Ох:

Сложим верхнее и нижнее уравнение. Во всех задачах, если нет каких-то условий сила натяжения у разных тел одинакова T₁ и Т₂.

Выразим ускорение:

Ответ: 1 м/с²

Задача 2. Два бруска, связанные нерастяжимой нитью, находятся на горизонтальной плоскости. К ним приложены силы F₁ и F₂, составляющие с горизонтом углы α и β. Найти ускорение системы и силу натяжения нити. Коэффициенты трения брусков о плоскость одинаковы и равны μ. Силы F₁ и F₂ меньше силы тяжести брусков. Система движется влево.

Cистема движется влево, однако ось можно направить в любую сторону (дело лишь в знаках, можете поэксперментировать на досуге). Для разнообразия направим вправо, против движения всей системы, мы же любим минусы! Спроецируем силы на Ох (если с этим сложности — вам сюда ).

По II з. Ньютона спроецируем силы обоих тел на Ох:

Сложим уравнения и выразим ускорение:

Выразим натяжение нити. Для этого приравняем ускорение из обоих уравнений системы:

Задача 3. Через неподивжный блок перекинуты нить, к которой подвешены три одинаковых груза (два с одной стороны и один с другой) массой 5 кг каждый. Найти ускорение системы. Какой путь пройдут грузы за первые 4 с движения? 

В данной задаче можно представить, что два левых груза скреплены вместе без нити, это избавит нас от проецирования взаимно равных сил.

Вычтем из первого уравнения второе:

Зная ускорение и то, что начальная скорость равна нулю, используем формулу пути для равноускоренного движения:

Ответ: 26,64 м

Задача 4. Два груза массами 4 кг и 6 кг соединены легкой нерастяжимой нитью. Коэффициенты трения между грузом и столом μ = 0,2. Определите ускорение, с которым будут двигаться грузы.

Запишем движение тел на оси, из Oy найдем N для силы трения (Fтр = μN):

(Если сложно понять, какие уравнения понадобятся для решения задачи, лучше запишите все)

Сложим два нижних уравнения для того, чтобы T сократилось:

Выразим ускорение:

Ответ: 2,8 м/с²

Задача 5. На наклонной поскости с углом наклона 45° лежит брускок массой 6 кг. Груз массой 4 кг присоединен к бруску при помощи нити и перекинут через блок. Определите натяжение нити, если коэффициент трения бруска о плоскость μ = 0,02. При каких значениях μ система будет в равновесии?

Ось направим произвольно и предположим, что правый груз перевешивает левый и поднимает его вверх по наклонной плоскости.


Из уравнения на ось Y выразим N для силы трения на ось Х (Fтр = μN):

Решим систему, взяв уравнение для левого тела по оси Х и для правого тела по оси Y:

Выразим ускорение, чтобы осталась одна неизвестная T, и найдем ее:

Система будет в равновесии. Это означает, что сумма всех сил, действующих на каждое из тел, будет равна нулю:

Получили отрицательный коэффициент трения, значит, движение системы мы выбрали неверно (ускорение, силу трения). Можно это проверить, подставив силу натяжения нити Т в любое уравнение и найдя ускорение. Но ничего страшного, значения остаются теми же по модулю, но противоположными по направлению.

Значит, правильное направление сил должно выглядить так, а коэффициент трения, при котором система будет в равновесии, равен 0,06.

Ответ: 0,06

Задача 6. На двух наклонных плоскостях находится по грузу массами 1 кг. Угол между горизонталью и плоскостями равен α = 45° и β = 30°. Коэффициент трения у обеих плоскостей μ = 0,1.  Найдите ускорение, с которым движутся грузы, и силу натяжения нити. Каким должно быть отношение масс грузов, чтобы они находились в равновесии.

В данной задаче уже потребуются все уравнения на обе оси для каждого тела:

Найдем N в обоих случаях, подставим их в силу трения и запишем вместе уравнения для оси Х обоих тел:

Сложим уравнения и сократим на массу:

Выразим ускорение:

Подставив в любое уравнение найденное ускорение, найдем Т:

А теперь одолеем последний пункт и разберемся с соотношением масс. Сумма всех сил, действующих на любое из тел, равна нулю для того, чтобы система находилась в равновесии:

Сложим уравнения

Все, что с одной массой, перенесем в одну часть, все остальное — в другую часть уравнения:

Получили, что отношение масс должно быть таким:

Однако, если мы предположим, что система может двигаться в другом направлении, то есть правый груз будет перевешивать левый, направление ускорения и силы трения изменится. Уравнения останутся такими же, а вот знаки будут другими, и тогда отношение масс получится таким:

Тогда при соотношении масс от 1,08 до 1,88 система будет находиться в покое.

У многих может сложиться впечатление, что соотношение масс должно быть каким-то конкретным значением, а не промежутком. Это правда, если отстутвует сила трения. Чтобы уравновешивать силы тяжести под разными углами, найдется только один варинт, когда система находится в покое.

В данном же случае сила трения дает диапазон, в котором, пока сила трения не будет преодолена, движения не начнется.

Ответ: от 1,08 до 1,88

Задачи для закрепления.
Система связанных тел.

Будь в курсе новых статеек, видео и легкого технического юмора.

Задача 1

К одному концу лёгкой пружины жёсткостью k = 100 Н/м прикреплён массивный груз, лежащий на горизонтальной плоскости, другой конец пружины закреплён неподвижно (см. рисунок). Коэффициент трения груза по плоскости Груз смещают по горизонтали, растягивая пружину, затем отпускают с начальной скоростью, равной нулю. Груз движется в одном направлении и затем останавливается в положении, в котором пружина уже сжата. Максимальное растяжение пружины, при котором груз движется таким образом, равно d = 15 см. Найдите массу m груза.

Решение

1. Начальная энергия системы равна потенциальной энергии растянутой пружины:  После того, как пружину отпустили, она остановится в положении, при котором она сжата на величину  Тогда конечная энергия системы равна потенциальной энергии сжатой пружины: 

Изменение полной энергии системы равно работе силы трения 

 

где  — модуль силы реакции опоры.

2. В момент, когда груз остановился, по второму закону Ньютона равнодействующая всех сил стала равна нулю. Пружина сжата, поэтому сила упругости пружины направлена вправо. Её уравновешивает сила трения покоя, которая направлена против возможного движения, причём эта сила максимальна, т. к. по условию начальное положение пружины соответствует максимальному растяжению пружины, при котором груз движется таким образом.

Запишем закон Ньютона для горизонтальной и вертикальной осей:

 

3. Подставим полученное выражение для  в равенство из пункта 1:

 

После подстановки получим 

Ответ: 

Задача 2

Из пружинного пистолета выстрелили вертикально вниз в мишень, находящуюся на расстоянии 2 м от него. Совершив работу 0,12 Дж, пуля застряла в мишени. Какова масса пули, если пружина была сжата перед выстрелом на 2 см, а ее жесткость 100 Н/м?

Решение

Согласно закону сохранения механической энергии, имеем два равенства:

где  и  — скорости летящей пули соответственно на высоте и непосредственно перед мишенью. Вся энергия подлетевшей к мишени пули потрачена на механическую работу, так что

 

Решая полученную систему уравнений, находим массу пули: 

Задача 3

Небольшая шайба после толчка приобретает скорость v = 2 м/с и скользит по внутренней поверхности гладкого закрепленного кольца радиусом R = 0,14 м. На какой высоте h шайба отрывается от кольца и начинает свободно падать?

Решение

Согласно закону сохранения энергии:

,            (1)

где  — скорость шайбы в момент отрыва от кольца на высоте .

В точке отрыва сила нормальной реакции опоры равна 0; . Центростремительное ускорение шайбы  найдём из второго закона Ньютона (см. рис.):

.                (2)

.                            (3)

Объединяя (1), (2) и (3), получим:

 м.

Ответ: 0,18.

Задача 4

Грузы массами M = 1 кг и m связаны легкой нерастяжимой нитью, переброшенной через блок, по которому нить может скользить без трения (см. рис.). Груз массой М находится на шероховатой наклонной плоскости (угол наклона плоскости к горизонту а = 30°, коэффициент трения  = 0,3). Чему равно минимальное значение массы m, при котором система грузов еще не выходит из первоначального состояния покоя?

Решение

Если масса m достаточно мала, но грузы ещё покоятся, то сила трения покоя, действующая на груз массой М, направлена вверх вдоль наклонной плоскости. Запишем второй закон Ньютона для каждого из покоящихся тел в проекциях на оси введенной системы координат. На первое тело действуют сила тяжести, сила нормальной реакции опоры, сила натяжения нити и сила трения:

(ось направлена вниз вдоль наклонной плоскости);

 (ось направлена вверх перпендикулярно наклонной плоскости).

На второе тело действуют сила тяжести и сила натяжения нити:

 (ось направлена вертикально вниз).

Учитывая, что  (нить легкая, между блоком и нитью трения нет), то  (сила трения покоя). Получим:

 кг.

Ответ: 0,24.

Задача 5

Тело, брошено с поверхности земли со скоростью v под углом a к горизонту. Сопротивление воздуха пренебрежимо мало.

Установите соответствие между физическими величинами, характеризующими движение тела, и формулами, по которым их можно определить.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры.

Решение

Рассмотрим динамику движения тела, брошенного под углом  к горизонту с начальной скоростью . В задаче нас интересует вертикальное движение тела.

Из рисунка видно, что проекция начальной скорости на ось Oy равна

.

Проекция ускорения равна

,

где  м/с2 – ускорение свободного падения. Таким образом, скорость тела вдоль оси Oy будет меняться по закону

.

Можно заметить, что в точке максимального подъема скорость , получаем уравнение

То есть для буквы «А» соответствует формула под номером 4.

Для определения максимальной высоты , запишем формулу движения тела, подброшенного вертикально вверх:

и, учитывая, что , а время для достижения максимальной высоты составляет , получаем выражение:

.

То есть для буквы «Б» соответствует формула под номером 1.

Ответ: А4, Б1.

Задача 6

Воздушный шар объемом V = 2500 м3 с массой оболочки  = 400 кг имеет внизу отверстие, через которое воздух в шаре нагревается горелкой. До какой минимальной температуры t1 нужно нагреть воздух в шаре, чтобы шар взлетел вместе с грузом (корзиной и воздухоплавателем) массой  = 200 кг? Температура окружающего воздуха t = 7 °С, его плотность  = 1,2 кг/м3. Оболочку шара считать нерастяжимой.

Решение

Шар взлетает, когда сила тяжести, действующая на него, равна силе Архимеда

,    (1)

где m — масса воздуха в шаре. Из уравнения Менделеева-Клапейрона

,        (2)

где  — молярная масса воздуха. Объединяя (1) и (2), получим:

 К

соответственно  °С.

Ответ: 350.

Задача 7

Брусок массой m1 = 500 г соскальзывает по наклонной плоскости с некоторой высоты h и, двигаясь по горизонтальной поверхности, сталкивается с неподвижным бруском массой m2 = 300 г. Считая столкновение абсолютно неупругим, определите высоту h, если общая кинетическая энергия брусков после столкновения равна 2,5 Дж. Трением при движении пренебречь. Считать, что наклонная плоскость плавно переходит в горизонтальную.

Решение

Кинетическая энергия брусков после столкновения  где v — скорость системы после удара, определяемая из закона сохранения импульса на горизонтальном участке: m1v1 = (m1 + m2)v.

Исключая из системы уравнений скорость v, получим:

 

Кинетическая энергия первого бруска перед столкновением определяется из закона сохранения механической энергии при скольжении по наклонной плоскости:  что даёт выражение

 

Подставляя значения масс и энергии из условия, получим численное значение h = 0,8 м

Ответ: h = 0,8 м.

Задача 8

Небольшой груз, прикрепленный к нити длиной l = 15 см, вращается вокруг вертикальной оси так, что нить отклоняется от вертикали на угол a = 60°. С какой скоростью движется груз?

Решение

На груз действуют сила натяжения нити  и сила тяжести , как указано на рисунке.

В инерциальной системе отсчёта, связанной с Землёй, ускорение тела определяется вторым законом Ньютона:

Здесь  — центростремительное ускорение. Решая полученную систему, получим:

 м/с.

Ответ: 1,5.

Задача 9

Камень массой m = 4 кг падает под углом a = 30° к вертикали со скоростью 10 м/с в тележку с песком общей массой M = 16 кг, покоящуюся на горизонтальных рельсах. Определите скорость тележки с камнем после падения в нее камня.

Решение

Общая инерция камня, падающего в тележку, равна . Величина инерции, в горизонтальном направлении от падения камня составит . Тогда из закона сохранения инерции, учитывая, что тележка вначале была неподвижной, а после падения в нее камня увеличила свою массу на массу камня, получаем

,

откуда

и

 м/с

Ответ: 1.

Задача 10

Два груза одинаковой массы М, связанные нерастяжимой и невесомой нитью, движутся прямолинейно по гладкой горизонтальной поверхности под действием горизонтальной силы F, приложенной к одному из грузов (см. рис.). Минимальная сила F, при которой нить обрывается, равна 12 Н. При какой силе натяжения обрывается нить?

Решение

Сила, под действием которой движутся грузы массой M – это равнодействующая, то есть учитывающая силу трения. Следовательно, из второго закона Ньютона можно записать , где  — ускорение, с которым движутся грузы. Сила натяжения нити T создается последним грузом, который перемещается с тем же ускорением , но имеет массу M,  т.е. . Выражая ускорение как , получаем силу натяжения, равную  Н.

Ответ: 6.

Задача 11

Груз, лежащий на столе, связан легкой нерастяжимой нитью, переброшенной через идеальный блок, с грузом массой 0,25 кг. На первый груз действует горизонтальная постоянная сила F, равная 9 Н (см. рис.). Второй груз движется с ускорением 2 м/с2, направленным вверх. Трением между грузом и поверхностью стола пренебречь. Какова масса первого груза?

Решение

На второй груз действует сила тяжести  и противоположная сила тяги первого груза  Н (трение здесь не учитывается). Таким образом, для системы из двух грузов массами  и  можем записать

,

где  — масса первого груза. Отсюда получаем:

Подставляем числовые значения, находим

 кг.

Ответ: 3.

Задача 12

Маленький шарик падает сверху на наклонную плоскость и упруго отражается от неё. Угол наклона плоскости к горизонту равен  На какое расстояние по горизонтали перемещается шарик между первым и вторым ударами о плоскость? Скорость шарика непосредственно перед первым ударом направлена вертикально вниз и равна 1 м/с.

Решение

Выберем следующую систему координат: ось  направим вдоль плоскости, а ось   —   перпендикулярно ей. Тогда кинематические уравнения движения шарика имеют вид:

В момент второго соударения шарика с плоскостью 

Решая систему уравнений, получаем:

 и 

Из рисунка видно, что

Ответ: 

Задача 13

На гладкой горизонтальной поверхности стола покоится горка с двумя вершинами, высоты которых h и 5/2*h (см. рисунок). На правой вершине горки находится шайба. От незначительного толчка шайба и горка приходят в движение, причём шайба движется влево, не отрываясь от гладкой поверхности горки, а поступательно движущаяся горка не отрывается от стола. Скорость шайбы на левой вершине горки оказалась равной v. Найдите отношение масс шайбы и горки.

Решение

На систему тел «шайба + горка» действуют внешние силы (тяжести и реакции стола), направленные по вертикали, поэтому проекция импульса системы на горизонтальную ось Ох системы отсчёта, связанной со столом, сохраняется.

В начальный момент , а в момент  . Из закона сохранения импульса  получим: , где m — масса шайбы, М — масса горки.

Работа сил тяжести определяется изменением потенциальной энергии, а суммарная работа сил реакции равна нулю, так как поверхности гладкие. Следовательно, полная механическая энергия системы тел, равная сумме кинетической и потенциальной, сохраняется. Так как потенциальная энергия горки не изменилась, получаем уравнение

.

Решение системы дает отношение масс

.

Ответ: .

Задача 14 

 Снаряд, движущийся со скоростью v0 разрывается на две равные части, одна из которых продолжает движение по направлению движения снаряда, а другая движется в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков увеличивается за счёт энергии взрыва на величину ∆E. Скорость осколка, движущегося вперёд по направлению движения снаряда, равна v1. Найдите массу m осколка.

Решение

Введём обозначение: v2 — модуль скорости летящего назад осколка снаряда. Система уравнений для решения задачи:

Выразим v2 из первого уравнения:  — и подставим во второе уравнение. Получим: . Отсюда следует:

.

Ответ: .

Задача 15

Снаряд массой 2m разрывается в полёте на две равные части, одна из которых продолжает движение по направлению движения снаряда, а другая — в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков увеличивается за счёт энергии взрыва на величину ∆Е. Модуль скорости осколка, движущегося по направлению движения снаряда, равен v1, а модуль скорости второго осколка равен v2. Найдите ∆Е.

Решение

Введём обозначение: v0 — модуль скорости снаряда до разрыва. Система уравнений для решения задачи:

Выразим v0 из первого уравнения:  и подставим во второе уравнение. Получим:

.

Отсюда следует:

.

Ответ: .

Задача 16

При выполнении трюка «Летающий велосипедист» гонщик движется по гладкому трамплину под действием силы тяжести, начиная движение из состояния покоя с некоторой высоты (см. рисунок). На краю трамплина скорость гонщика направлена под углом α = 60° к горизонту. Пролетев по воздуху, он приземляется на горизонтальный стол, поднявшись в полёте на высоту h над краем трамплина. С какой высоты H начинал движение гонщик?

Решение

Применим закон сохранения энергии и найдём скорость велосипедиста при отрыве от трамплина.

 

Рассмотрим проекции скорости на горизонтальную и вертикальную оси:

 

В тот момент, когда велосипедист достигнет наивысшей точки полёта вертикальная проекция его скорости станет равной нулю, при этом в горизонтальном направлении он пролетит половину пути. Найдём время, за которое велосипедист достигнет наивысшей точки.

 

Координата  зависит от времени по закону  Значит, максимальная высота полёта велоспедиста

 

Откуда 

Ответ: 

Задача 17

После толчка льдинка закатилась в яму с гладкими стенками, в которой она может двигаться практически без трения. На рисунке приведен график зависимости энергии взаимодействия льдинки с Землей от её координаты в яме.

В некоторый момент времени льдинка находилась в точке А с координатой  и двигалась влево, имея кинетическую энергию, равную 2 Дж. Сможет ли льдинка выскользнуть из ямы? Ответ поясните, указав, какие физические закономерности вы использовали для объяснения.

Решение

1) Льдинка сможет выскользнуть из ямы через ее правый край.

2) Трения при движении льдинки нет, поэтому ее механическая энергия сохраняется. Запас кинетической энергии льдинки в точке A позволяет ей подняться до уровня, где ее потенциальная энергия составит 4 Дж.

3) Левый край ямы поднят до большей высоты. Следовательно, этого края льдинка не достигнет и заскользит вправо. Правый же край ямы ниже: на верху этого края потенциальная энергия льдинки меньше 4 Дж. Поэтому льдинка выскользнет из ямы через правый край.

Задача 18

Гладкий клин массой M с углом  при основании стоит на горизонтальной плоскости, часть которой под ним и левее — гладкая, а часть — справа от него — шероховатая (см. рис.). На вершине клина, на высоте H над плоскостью находится маленький брусок массой m, коэффициент трения которого о шероховатую часть плоскости равен  Брусок отпускают без начальной скорости, он скатывается по клину и далее скользит по шероховатой плоскости и останавливается на некотором расстоянии L по горизонтали от своего начального положения. Найдите это расстояние L, если в точке перехода с клина на плоскость есть гладкое закругление, так что скорость бруска при переходе с клина на плоскость не уменьшается.

Решение

При соскальзывании бруска с клина выполняются законы сохранения горизонтальной проекции импульса и механической энергии данной системы тел:   где v и V — скорости бруска и клина, соответственно, после соскальзывания бруска с клина. Из этих уравнений следует, что скорость бруска перед его попаданием на шероховатый участок плоскости равна:

 

До попадания на этот участок брусок сдвинется из начального положения по горизонтали без трения на расстояние  равное, очевидно, длине основания клина, а затем пройдёт по шероховатой плоскости расстояние  на котором его кинетическая энергия будет израсходована на работу против силы сухого трения скольжения. По закону Амонтона — Кулона эта сила равна  так как сила N давления бруска на неподвижную горизонтальную плоскость равна mg. Таким образом,  и  Искомое расстояние L в результате равно сумме l1 и l2:

 

Ответ: 

Задача 19

В системе, изображённой на рисунке, трения нет, блоки невесомы, нить невесома и нерастяжима, m1 = 2 кг, m2 = 4 кг, m3 = 1 кг. Найдите модуль и направление ускорения  груза массой m3.

Решение

1. Введём на рисунке неподвижную систему координат, у которой ось горизонтальна и направлена вправо, а ось y направлена вертикально вниз. Обозначим также силы, определяющие ускорения тел вдоль направлений их движения: силу T натяжения нити, которая, как следует из условия задачи, постоянна по модулю вдоль всей нити, и силу тяжести 

2. Записывая второй закон Ньютона в проекциях на оси x и y для трёх грузов, имеем:

   

3. Поскольку нить нерастяжима, из постоянства её длины получаем следующее соотношение для координат грузов:

 

Отсюда следует связь между ускорениями грузов: 

4. Решая полученную систему уравнений, находим модуль искомого ускорения:

 

вектор  направлен вниз.

Ответ:  вектор  направлен вниз.

Задача 20

К двум вертикально расположенным пружинам одинаковой длины подвесили однородный стержень длиной L = 30 см. Если к этому стержню подвесить груз массой m = 3 кг на расстоянии d = 5 см от правой пружины, то стержень будет расположен горизонтально, и растяжения обеих пружин будут одинаковы (см. рисунок). Жёсткость левой пружины в 2 раза меньше, чем правой. Чему равна масса стержня М? Сделайте рисунок с указанием используемых в решении сил.

Решение

1. Укажем на рисунке силы действующие на стержень. Приравняем моменты сил, действующих на стержень, относительно центра стержня, т.е. точки А:

 

Учтем, что стержень расположен горизонтально, т.е. удлинения пружин равны, а также, что жесткость правой пружины в два раза больше левой:

 

2. Приравняем моменты сил, действующих на стержень, относительно точки Б, которая находится в месте крепления правой пружины:

 

3. Найдем массу стержня:

 

Ответ: 

Задача 21

Найдите модуль ускорения a груза массой m в системе, изображённой на рисунке. Трения нет, блоки невесомы, нити лёгкие и нерастяжимые, их участки, не лежащие на блоках, вертикальны, масса второго груза M, ускорение свободного падения равно g.

Решение

Введём координатную ось Х, направленную вниз, и отметим на ней координаты грузов М и mxM и xm (см. рис.). Пронумеруем блоки цифрами 1, 2, 3 и укажем на рисунке силы натяжения нитей и силы тяжести, действующие на грузы. Согласно условию, в силу невесомости нитей и блоков, а также отсутствия сил трения, первая нить, охватывающая блоки 1 и 2, натянута с силой T, а вторая — с силой 2T, так что на груз m действует направленная вверх сила 4T. Если сместить груз М вдоль оси Х вниз на расстояние ΔxM, то в силу нерастяжимости нитей блок 2 сместится, как следует из рисунка, на −ΔxM/2, а блок 3 и груз m — на Δxm = −ΔxM/4. Таким образом, ΔxM + 4Δxm = 0.

Отсюда получаем уравнение кинематической связи: A + 4a = 0, где A и a — проекции ускорений грузов М и m на ось Х. Уравнения движения грузов (второй закон Ньютона) в проекциях на ось Х имеют вид: МA = Мg – Tma = mg – 4T. Решая полученную систему из трех уравнений, находим, что модуль ускорения груза М равен: 

Ответ: 

Задача 22

Тонкий однородный стержень АВ шарнирно закреплён в точке А и удерживается горизонтальной нитью ВС (см. рисунок). Трение в шарнире пренебрежимо мало. Масса стержня m = 1 кг, угол его наклона к горизонту α = 45°. Найдите модуль силы  действующей на стержень со стороны шарнира. Сделайте рисунок, на котором укажите все силы, действующие на стержень.

Решение

1. Изобразим на рисунке силы, действующие на стержень, и систему координат Оху.

Здесь  — сила натяжения нити,  — сила тяжести,  и  — вертикальная и горизонтальная составляющие силы, действующей на стержень со стороны шарнира.

2. В положении равновесия равны нулю сумма моментов сил, действующих на стержень, относительно оси, проходящей через точку А перпендикулярно плоскости рисунка, сумма горизонтальных и сумма вертикальных составляющих сил, действующих на стержень:

 где  — длина стержня; (1)

 (2)

 (3)

3. Модуль силы реакции шарнира 

Из (1) получим  Окончательно

 

Ответ: 

Задача 23

Из двух ровных досок сделан желоб, представляющий собой двугранный угол с раствором  Желоб закреплен так, что его ребро горизонтально, а доски симметричны относительно вертикали. В желобе на боковой поверхности лежит цилиндр массой Коэффициент трения между досками и цилиндром равен  К торцу цилиндра приложена горизонтально направленная сила  Найдите модуль ускорения цилиндра.

Решение

Изобразим вид на желоб со стороны торца цилиндра. На цилиндр в плоскости чертежа действуют направленная вниз сила тяжести  и две равные по модулю силы реакции досок, направленные перпендикулярно стенкам желоба. Так как цилиндр не движется в вертикальном направлении, то, в соответствии со вторым законом Ньютона, сумма проекций этих трех сил на вертикаль равна нулю:

 где  

Отсюда  В горизонтальном направлении (вдоль желоба) на цилиндр действуют сила  а также, в противоположном направлении, две силы сухого трения  Предположим, что цилиндр будет двигаться по желобу. Тогда по закону Амонтона — Кулона для силы сухого трения скольжения можно записать:

 

Записывая второй закон Ньютона в проекции на горизонтальную ось, направленную вдоль ребра желоба, получим:

 

где  — модуль искомого ускорения цилиндра. Заметим, что  Это означает, что приложенная к торцу цилиндра сила превышает силу трения покоя, то есть цилиндр и в самом деле будет скользить вдоль желоба.

Следовательно,  Подставляя числовые данные и проверяя размерность, окончательно получим:

 

Ответ: 

Задача 24

Равносторонний треугольник, состоящий из трёх жёстких лёгких стержней, может вращаться без трения вокруг горизонтальной оси, совпадающей с одной из его сторон. В точке пересечения двух других его сторон к треугольнику прикреплён массивный грузик (см. рисунок). Как и во сколько раз изменится период малых колебаний грузика около его положения равновесия, если ось вращения наклонить под углом  к горизонту?

Решение

Обозначим расстояние от оси вращения треугольника до грузика через  Тогда период колебаний при горизонтальном положении оси равен, очевидно, 

После наклона оси на угол  возвращающая сила при отклонении треугольника от положения равновесия уменьшится: составляющая силы тяжести вдоль оси, равная  (здесь  — масса грузика), будет компенсироваться силами реакции со стороны подшипников, в которых закреплена эта ось, а в направлении, перпендикулярном оси, будет действовать эффективная «сила тяжести», равна  Поэтому период малых колебаний грузика при наклоненной оси будет равен 

Таким образом, период колебаний увеличится в  раз.

Ответ: период колебаний увеличится в  раз.

Задача 25

На гладкой горизонтальной плоскости лежат два груза массами  и  соединённые невесомой нерастяжимой нитью, перекинутой через два неподвижных (А и В) и один подвижный (О) невесомые блоки, как показано на рисунке. Оси блоков горизонтальны, трения в осях блоков нет. К оси О подвижного блока приложена направленная вертикально вниз сила F = 4 Н. Найдите ускорение этой оси. Сделайте схематический рисунок с указанием сил, действующих на грузы и блок.

Решение

Нарисуем силы Т натяжения нити, одинаковые, в силу условия задачи, вдоль всей нити и действующие на грузы и блок О (см. рисунок). Введём систему координат XY, как показано на рисунке, и запишем уравнения движения грузов в проекции на ось X:

В силу невесомости блока О имеем  или 

В силу нерастяжимости нити (длиной L) и неподвижности блоков А и В (их координаты  и  постоянны) имеется следующая кинематическая связь между координатами  и  грузов и координатой  блока О (здесь  — радиус блоков А и ВR — радиус блока О):

или

и значит

 

Решаем записанную систему уравнений и получаем ответ:

Ответ: 

Задача 26

Два вращающихся вала соединены замкнутым ремнём, который не проскальзывает относительно валов. Радиус первого вала равен R, радиус второго вала равен 2R. Чему равно отношение угловой скорости точки A к угловой скорости вращения первого вала 

Решение

Скорость движения точек первого вала, находящихся на расстоянии  от его центра, даётся формулой Угловая скорость вращения точки А равна угловой скорости вращения второго вала. Валы связаны ремнём, поэтому скорости ободов  у валов одинаковы, а их угловые скорости

В итоге получаем

 

Ответ: 0,5.

Задача 28

Два велосипедиста совершают кольцевую гонку с одинаковой угловой скоростью. Положения и траектории движения велосипедистов показаны на рисунке. Чему равно отношение центростремительных ускорений велосипедистов ?

Решение

При движении по окружности угловая  и линейная  скорости тела связаны с радиусом окружности соотношением:  Центростремительное ускорение равно  Поскольку велосипедисты едут с одинаковым угловыми скоростями, для отношения центростремительных ускорения велосипедистов имеем:

 

Ответ: 2.

Задача 29

Прибор наблюдения обнаружил летящий снаряд и зафиксировал его горизонтальную координату  и высоту  м над Землёй (см. рисунок). Через 3 с снаряд упал на Землю и взорвался на расстоянии  м от места его обнаружения. Известно, что снаряды данного типа вылетают из ствола пушки со скоростью 800 м/с. Какова была максимальная высота Н траектории снаряда, если считать, что сопротивление воздуха пренебрежимо мало? Пушка и место взрыва находятся на одной горизонтали.

Первое решение

Найдём горизонтальную скорость снаряда: 

Найдём вертикальную проекцию скорости  снаряда в момент обнаружения:

 

Определим, за какое время  снаряд долетел из верхней точки траектории в точку, в которой был зафиксирован:

 

Таким образом, время опускания снаряда составляет

 

Таким образом, максимальная высота снаряда:

 

Второе решение

Найдём горизонтальную скорость снаряда:  эта скорость остается постоянной на протяжении всего полета. Определим величину вертикальной проекции скорости в начальный момент:  Используя формулу для максимальной высоты брошенного под углом к горизонту тела, получаем:

 

Ответ: около 16 км.

Задача 30

К концу вертикального стержня привязана лёгкая нерастяжимая нить с маленьким грузиком на конце. Грузик раскрутили на нити так, что она отклонилась от вертикали на угол α = 30º (см. рисунок). Как и во сколько раз надо изменить угловую скорость ω вращения грузика вокруг стержня для того, чтобы этот угол стал равным β = 60º?

Решение

1. Обозначим силу натяжения нити T, массу грузика m, длину нити l, радиус окружности, по которой вращается грузик, R, и изобразим систему на рисунке (см. рисунок).

2. Запишем уравнение движения грузика по окружности вокруг стержня в проекциях на вертикальную ось и на радиус окружности  с учётом выражения для центростремительного ускорения грузика: .

3. Из написанных соотношений следует, что , а .

4. Для того, чтобы угол отклонения нити стал равным β, угловая скорость вращения грузика должна увеличиться в

 раза.

Ответ: 1,3 раза.

Задача 31

В аттракционе человек массой 80 кг движется на тележке по рельсам и совершает «мертвую петлю» в вертикальной плоскости. Каков радиус круговой траектории, если при скорости 10 м/с, направленной вертикально вверх, сила нормального давления человека на сидение тележки равна 1 600 Н? Ускорение свободного падения равно 

Задача 32

На рисунке приведен график зависимости проекции скорости тела от времени. Чему равна проекция ускорения тела в момент времени 45 с? Ответ выразите в м/с2.

Решение

Из графика видно, что скорость в интервале времени от 40 с до 50 с меняется линейно, значит, ускорение постоянно. На всём этом интервале времени ускорение такое же, как и в момент времени 45 с. Найдём это ускорение:

 

Ответ: 2.

Задача 32

Два небольших тела с массами 2 кг и 3 кг висят на разных концах невесомой нерастяжимой нити, перекинутой через гладкий неподвижный блок. Первое тело находится на высоте 40 см ниже второго. Тела пришли в движение без начальной скорости. Через какое время они окажутся на одной высоте? Сделайте схематический рисунок с указанием сил, действующих на тела. Обоснуйте применимость используемых законов к решению задачи.

Решение

Задача 33

Система грузов M, m1 и m2, показанная на рисунке, движется из состояния покоя. Поверхность стола — горизонтальная гладкая. Коэффициент трения между грузами M и m1 равен μ = 0,3. Грузы M и m2 связаны легкой нерастяжимой нитью, которая скользит по блоку без трения. Пусть M = 2,4 кг, m1 = m2 = m. При каких значениях m грузы M и m1 движутся как одно целое? Сделайте рисунок с указанием сил, действующих на грузы.

Решение

Задача 34

Небольшие шарики, массы которых m и M, соединены лёгким стержнем и помещены в гладкую сферическую выемку радиусом R = 20 см. В начальный момент шарики удерживаются в положении, изображённом на рисунке. Когда их отпустили без толчка, шарики стали скользить по поверхности выемки. Минимальная высота, на которой оказался шарик m в процессе движения, равна 4 см от нижней точки выемки. Определите отношение масс M и m.

Решение

Задача 35

Небольшой брусок массой m начинает соскальзывать с высоты H по гладкой горке, переходящей в мёртвую петлю (см. рисунок). Определите высоту отрыва бруска, если высота горки H. Радиус окружности R. Сделайте рисунок с указанием сил, поясняющий решение.

Решение

Направим ось Ох вдоль ускорения и пусть сила тяжести образует с этой осью угол α Запишем второй закон Ньютона для бруска на высоте h:

N плюс mg косинус альфа =ma_ц=m дробь: числитель: V в степени 2 , знаменатель: R конец дроби . 

Выразим отсюда скорость бруска, учитывая, что  косинус альфа = дробь: числитель: h минус R, знаменатель: R конец дроби и по третьему закону Ньютона N=F:

V в степени 2 = дробь: числитель: R, знаменатель: m конец дроби левая круглая скобка F плюс mg дробь: числитель: h минус R, знаменатель: R конец дроби правая круглая скобка . 

На высоте h брусок обладает как кинетической, так и потенциальной энергией. Из закона сохранения энергии найдём искомую высоту H:

mgH=mgh плюс дробь: числитель: mV в степени 2 , знаменатель: 2 конец дроби ,

откуда

H=h плюс дробь: числитель: V в степени 2 , знаменатель: 2g конец дроби =h плюс дробь: числитель: R, знаменатель: 2mg конец дроби левая круглая скобка F плюс mg дробь: числитель: h минус R, знаменатель: R конец дроби правая круглая скобка =2,5 плюс 0,75=3,25м.

Задача 36

В маленький шар массой M=100г, висящий на нити длиной l=50 см, попадает и застревает в нем пулька массой m=20г, летящая под углом 30 град к горизонту (см рисунок). Какую скорость v имела пуля перед попаданием в шар, если после соударения шар с застрявшей в нем пулей отклонился по вертикали на угол 60 град? Сопротивлением воздуха пренебречь. Какие законы вы использовали для описания взаимодействия пульки с шаром и подьема тел? Обоснуйте их применимость к данному случаю.

Решение

Задача 37

При выполнение трюка летающий велосипедист гонщик движется по трамплину под действием силы тяжести, начиная движение из состояния покоя с высоты H. На краю трамплина скорость гонщика направлена под таим углом к горизонту, что дальность его полета максимальна. Пролетев по воздуху, гонщик приземляется на горизонтальный стол, находящейся на той же высоте, что и край трамплина. Какова высота полета h на этом трамплине? Сопротивлением воздуха и трением пренебречь.

Решение

Подборка тренировочных вариантов ЕГЭ 2023 по физике для 11 класса с ответами из различных источников.

Соответствуют демоверсии ЕГЭ 2023 по физике

→ варианты прошлого года

Тренировочные варианты ЕГЭ 2023 по физике

ЕГЭ 100 баллов (с ответами) 
Вариант 1 скачать
Вариант 2 скачать
Вариант 3 скачать
Вариант 4 скачать
Вариант 5 скачать
Вариант 6 скачать
vk.com/shkolkovo_fiz
Вариант 1 ответы
Вариант 2 разбор
Вариант 3 ответы
easy-physic.ru
Вариант 110 ответы разбор
Вариант 111 ответы разбор
Вариант 112 ответы разбор
Вариант 113 ответы разбор
Вариант 114 ответы разбор
Вариант 115 ответы разбор
Вариант 116 ответы разбор

Примеры заданий:

1. Цилиндрический сосуд разделён лёгким подвижным теплоизолирующим поршнем на две части. В одной части сосуда находится аргон, в другой – неон. Концентрация молекул газов одинакова. Определите отношение средней кинетической энергии теплового движения молекул аргона к средней кинетической энергии теплового движения молекул неона, когда поршень находится в равновесии.

2. Газ получил количество теплоты, равное 300 Дж, при этом внутренняя энергия газа уменьшилась на 100 Дж. Масса газа не менялась. Какую работу совершил газ в этом процессе?

3. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

1) При увеличении длины нити математического маятника период его колебаний уменьшается.
2) Явление диффузии протекает в твёрдых телах значительно медленнее, чем в жидкостях.
3) Сила Лоренца отклоняет положительно и отрицательно заряженные частицы, влетающие под углом к линиям индукции однородного магнитного поля, в противоположные стороны.
4) Дифракция рентгеновских лучей невозможна.
5) В процессе фотоэффекта с поверхности вещества под действием падающего света вылетают электроны.

4. В запаянной с одного конца трубке находится влажный воздух, отделённый от атмосферы столбиком ртути длиной l = 76 мм. Когда трубка лежит горизонтально, относительная влажность воздуха ϕ1 в ней равна 80%. Какой станет относительная влажность этого воздуха ϕ2 , если трубку поставить вертикально, открытым концом вниз? Атмосферное давление равно 760 мм рт. ст. Температуру считать постоянно

5. Предмет расположен на главной оптической оси тонкой собирающей линзы. Оптическая сила линзы D = 5 дптр. Изображение предмета действительное, увеличение (отношение высоты изображения предмета к высоте самого предмета) k = 2. Найдите расстояние между предметом и его изображением. 

Связанные страницы:

Подробности
Обновлено 30.05.2018 20:07
Просмотров: 626

Задачи по физике — это просто!

Вспомним
Тела, связанные нерастяжимой нитью, имеют одинаковые по модулю ускорения.

Не забываем
Решать задачи надо всегда в системе СИ!

А теперь к задачам!

Типовые задачи из курса школьной физики по динамике на движение системы связанных друг с другом тел.

Задача 1

Брусок массой 3,5 кг под действием подвешенного груза меняет свою скорость от 0 до 10 м/с. Найти коэффициент трения бруска о плоскость.

Задача 2

К тросу, перекинутому через неподвижный блок, подвешены 2 груза массами 0,2 и 0,25 кг. Определить ускорение свободного падения, если после подвешивания система грузов пришла в движение и за 2 секунды каждый из грузов сместился на 216 см.


Решение задач на движение системы связанных тел

 Общий случай решения

Рас­смот­рим общий слу­чай. Име­ет­ся непо­движ­ный блок, через ко­то­рый пе­ре­ки­ну­та нить, к кон­цам ко­то­рой под­ве­ше­ны два гру­зи­ка мас­сой  и , где .

Схема блока

Рис. 1. Схема блока

 ; 

На пер­вый гру­зик дей­ству­ет сила при­тя­же­ния к земле и сила на­тя­же­ния нити, ко­то­рая на­прав­ле­на вверх. Со­от­вет­ствен­но, на вто­рой гру­зик будут дей­ство­вать те же силы. Ве­ли­чи­ны сил на­тя­же­ния их будут оди­на­ко­вы по мо­ду­лю при усло­вии, что тре­ние в оси блока от­сут­ству­ет и сам блок неве­сом, то есть его не нужно рас­кру­чи­вать ка­кой-то парой сил. Сила на­тя­же­ния – это внут­рен­няя сила, воз­ни­ка­ю­щая в си­сте­ме свя­зан­ных тел, друг на друга они дей­ству­ют по­сред­ством нити. Уско­ре­ние у этих гру­зи­ков будет иметь раз­ное на­прав­ле­ние, так как пер­вый гру­зик тя­же­лее, то он будет дви­гать­ся вниз, а вто­рой вверх, но ве­ли­чи­ны уско­ре­ний будут оди­на­ко­вы и равны а, при усло­вии, что нить нерас­тя­жи­ма. К блоку при­ло­же­ны три силы – две силы на­тя­же­ния, ко­то­рые тянут блок вниз, и сила ре­ак­ции креп­ле­ния оси блока, на­прав­лен­ная вверх и рав­ная удво­ен­ной силе на­тя­же­ния, так как центр блока ни­ку­да не пе­ре­ме­ща­ет­ся и сумма сил, при­ло­жен­ных к нему долж­на быть равна нулю. При раз­бо­ре таких задач оси ри­со­вать не обя­за­тель­но, по­то­му что под­ра­зу­ме­ва­ет­ся, что для каж­до­го тела можно вы­брать свое на­прав­ле­ние оси. Так как пер­вое тело дви­жет­ся вниз, то ось  необ­хо­ди­мо на­пра­вить вниз так, как на­прав­ле­но уско­ре­ние. Вто­рое тело дви­жет­ся вверх и  на­прав­ле­но вверх со­глас­но вто­ро­му уско­ре­нию. За­пи­сы­ва­ем вто­рой закон Нью­то­на для этих тел, при сло­же­нии внут­рен­ние силы у нас со­кра­тят­ся, и мы по­лу­чим общий вид для уско­ре­ния. Это от­но­ше­ние у нас будет все­гда, то есть ка­кое-то чис­ло­вое зна­че­ние, умно­жен­ное на , ко­то­рое за­став­ля­ет си­сте­му все­гда дви­гать­ся.

 Задача 1

Оди­на­ко­вые брус­ки, свя­зан­ные нитью, дви­жут­ся под дей­стви­ем внеш­ней силы  по глад­кой го­ри­зон­таль­ной по­верх­но­сти (Рис. 2). Как из­ме­нит­ся сила на­тя­же­ния нити , если тре­тий бру­сок пе­ре­ло­жить с пер­во­го на вто­рой?

1. Уве­ли­чит­ся в 2 раза

2. Уве­ли­чит­ся в 3 раза

3. Умень­шит­ся в 1,5 раза

4. Умень­шит­ся в 2раза

Ил­лю­стра­ция к за­да­че 1 Как из­ме­нит­ся сила на­тя­же­ния нити , если тре­тий бру­сок пе­ре­ло­жить с пер­во­го на вто­рой?

Рис. 2. Ил­лю­стра­ция к за­да­че 1

В этой за­да­че необ­хо­ди­мо найти от­но­ше­ние силы на­тя­же­ния  к .

 ; 

Ре­ше­ние за­да­чи 1 Как из­ме­нит­ся сила на­тя­же­ния нити , если тре­тий бру­сок пе­ре­ло­жить с пер­во­го на вто­рой?

Рис. 3. Ре­ше­ние за­да­чи 1

Рас­тя­ну­тая нить в этой си­сте­ме дей­ству­ет на бру­сок 2, за­став­ляя его дви­гать­ся впе­ред, но она также дей­ству­ет и на бру­сок 1, пы­та­ясь пре­пят­ство­вать его дви­же­нию. Эти две силы на­тя­же­ния равны по ве­ли­чине, и нам как раз необ­хо­ди­мо найти эту силу на­тя­же­ния. В таких за­да­чах необ­хо­ди­мо упро­стить ре­ше­ние сле­ду­ю­щим об­ра­зом: счи­та­ем, что сила  яв­ля­ет­ся един­ствен­ной внеш­ней силой, ко­то­рая за­став­ля­ет дви­гать­ся си­сте­му трех оди­на­ко­вых брус­ков, и уско­ре­ние оста­ет­ся неиз­мен­ным, то есть сила за­став­ля­ет дви­гать­ся все три брус­ка с оди­на­ко­вым уско­ре­ни­ем. Тогда на­тя­же­ние  все­гда дви­га­ет толь­ко один бру­сок и будет равно mа по вто­ро­му за­ко­ну Нью­то­на.  будет равно удво­ен­но­му про­из­ве­де­нию массы на уско­ре­ние, так как тре­тий бру­сок на­хо­дит­ся на вто­ром и нить на­тя­же­ния долж­на уже дви­гать два брус­ка. В таком слу­чае от­но­ше­ние  к  будет равно 2. Пра­виль­ный ответ – пер­вый.

 Задача 2

Два тела мас­сой  и , свя­зан­ные неве­со­мой нерас­тя­жи­мой нитью, могут без тре­ния сколь­зить по глад­кой го­ри­зон­таль­ной по­верх­но­сти под дей­стви­ем по­сто­ян­ной силы  (Рис. 4). Чему равно от­но­ше­ние сил на­тя­же­ния нити в слу­ча­ях а и б?

Выбор от­ве­та: 1. 2/3; 2. 1; 3. 3/2; 4. 9/4.

Ил­лю­стра­ция к за­да­че 2 Решение задач на движение системы связанных тел

Рис. 4. Ил­лю­стра­ция к за­да­че 2

Ре­ше­ние за­да­чи 2 Решение задач на движение системы связанных телРе­ше­ние за­да­чи 2 Решение задач на движение системы связанных тел

Рис. 5. Ре­ше­ние за­да­чи 2

На брус­ки дей­ству­ет одна и та же сила, толь­ко в раз­ных на­прав­ле­ни­ях, по­это­му уско­ре­ние в слу­чае «а» и слу­чае «б» будет одним и тем же, так как одна и та же сила вы­зы­ва­ет уско­ре­ние двух масс. Но в слу­чае «а» эта сила на­тя­же­ния за­став­ля­ет дви­гать­ся еще и бру­сок 2, в слу­чае «б» это бру­сок 1. Тогда от­но­ше­ние этих сил будет равно от­но­ше­нию их масс и мы по­лу­чим ответ – 1,5. Это тре­тий ответ.

 Задача 3

На столе лежит бру­сок мас­сой 1 кг, к ко­то­ро­му при­вя­за­на нить, пе­ре­ки­ну­тая через непо­движ­ный блок. Ко вто­ро­му концу нити под­ве­шен груз мас­сой 0,5 кг (Рис. 6). Опре­де­лить уско­ре­ние, с ко­то­рым дви­жет­ся бру­сок, если ко­эф­фи­ци­ент тре­ния брус­ка о стол со­став­ля­ет 0,35.

Ил­лю­стра­ция к за­да­че 3 Опре­де­лить уско­ре­ние, с ко­то­рым дви­жет­ся бру­сок

Рис. 6. Ил­лю­стра­ция к за­да­че 3

За­пи­сы­ва­ем крат­кое усло­вие за­да­чи:

Ре­ше­ние за­да­чи 3 Опре­де­лить уско­ре­ние, с ко­то­рым дви­жет­ся бру­сок

Рис. 7. Ре­ше­ние за­да­чи 3

Ре­ше­ние за­да­чи 3 Опре­де­лить уско­ре­ние, с ко­то­рым дви­жет­ся бру­сок

Необ­хо­ди­мо пом­нить, что силы на­тя­же­ния  и  как век­то­ры раз­ные, но ве­ли­чи­ны этих сил оди­на­ко­вы и равны  Точно также у нас будут оди­на­ко­вы и уско­ре­ния этих тел, так как они свя­за­ны нерас­тя­жи­мой нитью, хотя на­прав­ле­ны они в раз­ные сто­ро­ны:  – го­ри­зон­таль­но,  – вер­ти­каль­но. Со­от­вет­ствен­но, и оси для каж­до­го из тел вы­би­ра­ем свои. За­пи­шем урав­не­ния вто­ро­го за­ко­на Нью­то­на для каж­до­го из этих тел, при сло­же­нии внут­рен­ние силы на­тя­же­ния со­кра­тят­ся, и по­лу­чим обыч­ное урав­не­ние, под­ста­вив в него дан­ные, по­лу­чим, что уско­ре­ние равно .

Для ре­ше­ния таких задач можно поль­зо­вать­ся ме­то­дом, ко­то­рый ис­поль­зо­вал­ся в про­шлом веке: дви­жу­щей силой в дан­ном слу­чае яв­ля­ет­ся ре­зуль­ти­ру­ю­щая внеш­них сил, при­ло­жен­ных к телу. За­став­ля­ет дви­гать­ся эту си­сте­му сила тя­же­сти вто­ро­го тела, но ме­ша­ет дви­же­нию сила тре­ния брус­ка о стол, в этом слу­чае:

 , так как дви­жут­ся оба тела, то дви­жу­щая масса будет равна сумме масс  , тогда уско­ре­ние будет равно от­но­ше­нию дви­жу­щей силы на дви­жу­щую массу  Так можно сразу прий­ти к от­ве­ту.

 Задача 4

В вер­шине двух на­клон­ных плос­ко­стей, со­став­ля­ю­щих с го­ри­зон­том углы  и , за­креп­лен блок. По по­верх­но­сти плос­ко­стей при ко­эф­фи­ци­ен­те тре­ния 0,2 дви­жут­ся брус­ки  кг и , свя­зан­ные нитью, пе­ре­ки­ну­той через блок (Рис. 8). Найти силу дав­ле­ния на ось блока.

Ил­лю­стра­ция к за­да­че 4 Найти силу дав­ле­ния на ось блока

Рис. 8. Ил­лю­стра­ция к за­да­че 4

Вы­пол­ним крат­кую за­пись усло­вия за­да­чи и по­яс­ня­ю­щий чер­теж (рис. 9):

Ре­ше­ние за­да­чи 4 Найти силу дав­ле­ния на ось блока

Рис. 9. Ре­ше­ние за­да­чи 4

Мы пом­ним, что если одна плос­кость со­став­ля­ет угол в 600 с го­ри­зон­том, а вто­рая плос­кость – 300 с го­ри­зон­том, то угол при вер­шине будет 900, это обыч­ный пря­мо­уголь­ный тре­уголь­ник. Через блок пе­ре­ки­ну­та нить, к ко­то­рой под­ве­ше­ны брус­ки, они тянут вниз с одной и той же силой, и дей­ствие сил на­тя­же­ния Fн1 и Fн2 при­во­дит к тому, что на блок дей­ству­ет их ре­зуль­ти­ру­ю­щая сила. Но между собой эти силы на­тя­же­ния будут равны, со­став­ля­ют они между собой пря­мой угол, по­это­му при сло­же­нии этих сил по­лу­ча­ет­ся квад­рат вме­сто обыч­но­го па­рал­ле­ло­грам­ма. Ис­ко­мая сила Fд яв­ля­ет­ся диа­го­на­лью квад­ра­та. Мы видим, что для ре­зуль­та­та нам необ­хо­ди­мо найти силу на­тя­же­ния нити. Про­ве­дем ана­лиз: в какую сто­ро­ну дви­жет­ся си­сте­ма из двух свя­зан­ных брус­ков? Более мас­сив­ный бру­сок, есте­ствен­но, пе­ре­тя­нет более лег­кий, бру­сок 1 будет со­скаль­зы­вать вниз, а бру­сок 2 будет дви­гать­ся на­верх по скло­ну, тогда урав­не­ние вто­ро­го за­ко­на Нью­то­на для каж­до­го из брус­ков будет вы­гля­деть: 

Ре­ше­ние си­сте­мы урав­не­ний для свя­зан­ных тел вы­пол­ня­ет­ся ме­то­дом сло­же­ния, далее пре­об­ра­зо­вы­ва­ем и на­хо­дим уско­ре­ние:

Это зна­че­ние уско­ре­ния необ­хо­ди­мо под­ста­вить в фор­му­лу для силы на­тя­же­ния и найти силу дав­ле­ния на ось блока:

Мы вы­яс­ни­ли, что сила дав­ле­ния на ось блока при­бли­зи­тель­но равна 16 Н.

 Заключение

Мы рас­смот­ре­ли раз­лич­ные спо­со­бы ре­ше­ния задач, ко­то­рые мно­гим из вас при­го­дят­ся в даль­ней­шем, чтобы по­нять прин­ци­пы устрой­ства и ра­бо­ты тех машин и ме­ха­низ­мов, с ко­то­ры­ми при­дет­ся иметь дело на про­из­вод­стве, в армии, в быту.

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Решу егэ физика сборник 2022
  • Решу егэ физика решать
  • Решу егэ физика радиоактивный распад
  • Решу егэ физика равноускоренное движение
  • Решу егэ физика равномерное движение

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии