Автор материала — Анна Малкова
Какими были задачи с параметрами на ЕГЭ-2022? На этой странице — обзор всех типов задач №17, предложенных на ЕГЭ по математике в этом году, с полным решением и оформлением.
Напомним, что «параметры» — одна из дорогостоящих задач ЕГЭ. Она оценивается в 4 первичных балла.
Основной темой задач с параметрами на ЕГЭ этого года были модули.
Если вы не помните, что такое модуль числа, — вам сюда.
Способы решения — разные. В одних задачах удобнее графический способ, в других — аналитический.
Мы начнем с тех задач, которые решаются графическим способом. В первых трех, которые мы здесь разбираем, нам встретится уравнение окружности.
Почитать о нем подробно можно здесь.
1. При каких значениях параметра уравнение
имеет ровно 4 решения?
Решение:
Вспомним, как решать уравнения вида
Поэтому исходное уравнение равносильно системе:
Получим:
Изобразим решения системы в координатах
Уравнение задает окружность
с центром
и радиусом 5; уравнение
задает окружность
с центром
и радиусом
; при этом должно выполняться условие
Заметим, что обе окружности проходят через точки и
Найдем, при каких значениях параметра исходное уравнение имеет ровно 4 решения.
При прямая
проходит через точку
общую для двух окружностей; уравнение имеет ровно 3 решения.
Если прямая проходит через точку
(нижнюю точку окружности
), уравнение также имеет 3 решения.
При этом поскольку разность ординат точек Q и A равна
то есть радиусу окружности
При уравнение имеет 4 решения.
Если решений меньше 4.
Если уравнение имеет ровно 3 решения, т.к. точка O(0; 0) общая для обеих окружностей.
Если прямая проходит через B — верхнюю точку окружности
уравнение имеет ровно 3 решения.
В этом случае
При уравнение имеет ровно 4 решения.
Если решений меньше, чем 4.
Объединив случаи, получим ответ.
Ответ:
2. При каких значениях параметра уравнение
имеет ровно 2 решения?
Решение:
Раскроем модуль по определению.
Уравнение (1) задает окружность с центром в точке Р (4; 3) и радиусом 5,
уравнение (2) задает окружность с центром в точке Q(-3; 4) и радиусом 5.
Изобразим график совокупности двух систем в системе координат (x;a).
При получаем часть окружности (1), лежащую ниже прямой a = 7x;
при получаем часть окружности (2), лежащую выше прямой a = 7x.
Исходное уравнение имеет ровно два различных решения, если прямая пересекает график совокупности двух систем ровно два раза.
Прямая проходящая через точку С, пересекает график совокупности двух систем один раз.
Найдем координаты С — самой нижней точки и Е — самой верхней точки правой окружности.
Для этих точек x = 4. Найдем координату a:
или
Координаты точек С (4; и Е (4; 8).
Найдем координаты D — самой нижней точки и F — самой верхней точки левой окружности
Для этих точек x = — 3, найдем координату a.
или
Координаты точек: D (3;
1), F(
3; 9).
Точки А и В, в которых пересекаются две окружности, лежат на прямой
a = 7x (так как при a = 7x выражение под модулем равно нулю).
Подставив a = 7x в уравнение окружности (1) получим:
x = 0 или x = 1.
Получили точки В (0; 0) и А (1; 7).
Прямая пересекает график совокупности двух систем ровно два раза в следующих случаях:
1) если прямая проходит выше точки С, но ниже точки D:
2) если прямая проходит выше точки В, но ниже точки А:
3) если прямая проходит выше точки Е, но ниже точки F:
Если или
то решений нет.
Если или a = 9, уравнение имеет ровно одно решение.
Если или a = 8, ровно три решения.
Если или
ровно четыре решения. Эти случаи нам не подходят.
Ответ: a
3. При каких значениях параметра уравнение
имеет ровно 2 корня?
Решение:
Раскрыв модуль, получим:
Решим систему графически в координатах
Прямая — это биссектриса первого и третьего координатных углов.
Неравенство задает полуплоскость, расположенную ниже прямой
Уравнение задает окружность
1 с центром в точке
и радиусом
Уравнение задает окружность
2 с центром в точке
и радиусом
Заметим, что обе окружности проходят через точки О(0; 0) и М(1; 1). В этом легко убедиться, подставив координаты этих точек в уравнения окружностей.
Исходное уравнение имеет ровно 2 корня, если прямая пересекает совокупность двух окружностей ровно в двух точках, лежащих не выше прямой a = x.
Это происходит в следующих случаях:
1) Прямая проходит выше точки А и ниже точки В на рисунке, где А — нижняя точка окружности
2, В — нижняя точка окружности
1.
2) Прямая проходит выше точки С и ниже точки D на рисунке, где D — верхняя точка окружности
2, С — верхняя точка окружности
1.
3) Прямая проходит выше точки О(0; 0) и ниже точки М(1;1).
Найдем координаты точек А, В, С, D.
Получим, что
Ответ:
Заметим, что в каждом из уравнений присутствовало выражение — как в уравнении окружности. Именно поэтому становилось понятно, что их можно решить графически в координатах x; a.
Теперь — следующий тип задач. Здесь окружностей уже не будет. Зато будет разложение на множители.
4. При каких значениях параметра уравнение
имеет ровно 4 решения?
Решение:
Раскроем модуль. Уравнение равносильно совокупности двух систем:
Упростим по очереди каждую из них.
1) Случай
Найдем дискриминант и корни этого квадратного уравнения.
2) Случай
В этом случае также найдем дискриминант и корни квадратного уравнения.
Получим:
или
.
Решим совокупность двух систем графически в координатах
Если уравнение имеет меньше 4 решений.
Если также меньше 4 решений.
Если прямая проходит через точку A или точку B, уравнение имеет ровно 3 решения.
В точке A пересекаются прямые и
, значит, для этой точки
В точке B пересекаются прямые и
, то для точки B:
.
Уравнение имеет ровно 4 решения, если или
или
.
Ответ:
Следующие две задачи мы решим (для разнообразия) аналитическим способом.
5. При каких значениях параметра уравнение
имеет меньше 4 решений?
Решение:
Уравнение равносильно совокупности:
Рассмотрим каждый случай отдельно
1)
2)
Каждое из уравнений — квадратное и не может иметь больше 2 корней.
Если уравнение (1) имеет 2 неотрицательных корня, а уравнение (2) имеет 2 отрицательных корня, исходное уравнение имеет ровно 4 решения. Найдем, при каких значениях это происходит, а затем исключим эти значения. Получим случай, когда исходное уравнение имеет менее 4 корней.
Исходное уравнение имеет ровно 4 решения, если уравнение имеет два неотрицательных корня, а уравнение
имеет два отрицательных корня.
1 уравнение:
По теореме Виета,
для уравнения
.
При этом
Оценим и
Сравним т.к.
также
Получим:
2 уравнение:
При этом т.е.
— верно при всех a.
Получим:
Исходное уравнение имеет ровно 4 решения, если выполняется система условий:
При всех остальных значениях a — меньше четырёх решений. Значит, подходят значения
Ответ:
6. Найдите все положительные значения a, при каждом из которых уравнение
имеет ровно 4 корня.
Решение:
Раскроем модуль по определению.
Мы получили совокупность двух систем. Чтобы исходное уравнение имело ровно 4 корня, нужно, чтобы каждая система имела ровно два решения. Решим каждую из систем отдельно.
1) Первая система:
Чтобы квадратное уравнение имело два неотрицательных корня, необходимо и достаточно выполнения условий:
Другой способ: можно рассмотреть квадратичную функцию
и воспользоваться условиями:
Найдем дискриминант соответствующего квадратного уравнения.
при этом
Получим:
Корни уравнения
Отсюда
2) Вторая система:
Чтобы система имела ровно 2 решения, для квадратичной функции
необходимо и достаточно выполнения условий:
— верно для всех
Решение второй системы:
Исходное уравнение имеет ровно 4 различных решения, если
Ответ:
Как всему этому научиться? Если вы решили освоить тему «Параметры» — не нужно начинать со сложных задач. Вначале — подготовительная работа. Элементарные функции и их графики, базовые элементы для решения задач с параметрами. Кроме того, надо отлично знать методы алгебры: разложение выражений на множители, выделение полных квадратов, решение уравнений и неравенств всех типов и многое другое.
Изучить все это можно на Онлайн-курсе подготовки к ЕГЭ по математике. На нем мы решаем и такие задачи, и более сложные. Изучаем не менее 11 методов решения задач с параметрами. Выпускники Онлайн-курса отлично справились с «параметрами» на ЕГЭ-2022.
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Задачи с параметрами на ЕГЭ-2022: модули, окружности, квадратные уравнения» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Найдите все значения параметра k, при каждом из которых уравнение имеет хотя бы одно решение на интервале
2
Найдите все значения k, при каждом из которых уравнение
имеет хотя бы одно решение на отрезке
Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 4. (Часть C).
3
Определите, при каких значениях параметра a уравнение
имеет ровно два решения.
Источник: РЕШУ ЕГЭ — Предэкзаменационная работа 2014 по математике.
4
Найдите все значения параметра a, при каждом из которых уравнение
имеет корни, но ни один из них не принадлежит интервалу (4; 19).
5
Найдите все значения параметра a, при каждом из которых уравнение
имеет хотя бы один корень на отрезке [5; 23].
Пройти тестирование по этим заданиям
Задание № 18 варианта КИМ ЕГЭ по математике профильного уровня
Задача с параметром – для обычного школьника одна из самых сложных задач варианта КИМ ЕГЭ: в программах по математике для общеобразовательных школ (за исключением профильных и специализированных классов, школ и лицеев) таким задачам либо не уделяется должного внимания, либо они не рассматриваются вовсе. Несмотря на это, знание набора методов и подходов к решению таких задач и определенная практика их решения позволяют продвинуться в решении задачи с параметром достаточно далеко и если уж не решить ее полностью, то хотя бы получить за нее некоторое количество баллов на экзамене.
Ранее, до появления единого государственного экзамена, задачи с параметрами входили в варианты вступительных экзаменов по математике в ведущие вузы, а сегодня входят в вариант КИМ ЕГЭ профильного уровня. Дело в том, что эти задачи обладают высокой диагностической ценностью: они позволяют не только определить, насколько хорошо выпускник знает основные разделы школьного курса математики, но и проверить, насколько высок уровень его математического и логического мышления, насколько сильны первоначальные навыки математической исследовательской деятельности, а главное – насколько успешно он сможет овладеть курсом математики в вузе.
«Научите меня решать задачи с параметром», – такую просьбу я часто слышу от своих учеников. Что ж, эта задача потребует от выпускника немало интеллектуальных усилий. С чего начать изучение? С освоения методов решения задач с параметром. Собственно, если вы внимательно читали наши рекомендации, как подготовиться к решению сложных задач варианта КИМ ЕГЭ, то заметили, что это универсальный совет. Именно так построен наш курс «1С:Репетитор»: изучаем как можно более широкий спектр методов и приемов решения задач и тренируемся в применении этих методов на практике.
Чему нужно научиться, решая задачи с параметром
В первую очередь – правильно применять равносильные преобразования уравнений, неравенств и их систем. То есть понять, при каких ограничениях, накладываемых на параметр, можно выполнять то или иное преобразование. Лучше всего начать с заданий вида: «Для каждого значения параметра решить…» и рассмотреть по возможности все основные элементарные функции, встречающиеся в школьном курсе математики.
Если с несложными задачами такого вида школьник справляется неплохо, то можно переходить к изучению аналитических методов решения задач, содержательно усложняя и классифицируя задачи с точки зрения применения к ним этих методов исследования. Имеется в виду знакомство с подходами к решению задач, содержащих формулировки типа: «При каких значениях параметра уравнение (неравенство, система) имеет одно (два, три, бесконечно много и т.д.) решений», «При каких значениях параметра решением уравнения (неравенства, системы) является некоторое подмножество множества действительных чисел» и т.д.
Следующий шаг, который мы рекомендуем, – тщательно изучить схему исследования квадратичной функции. Поскольку квадратичная функция является одной из самых хорошо изученных в школьном курсе математики, на ее основе можно предложить большое количество исследовательских задач, разнообразных по форме и содержанию, чем и пользуются составители вариантов КИМ ЕГЭ.
Мы рекомендуем подойти к рассмотрению данных задач по следующей схеме:
Следующая тема курса – графические методы решения задач с параметром
Существует два принципиально различных подхода – построение графиков функций или уравнений в плоскости (x; y) или в плоскости (x; a). Кроме того, для графического метода решения задач с параметром в плоскости (x; y) необходимо рассмотреть различные виды преобразования графиков – обычно это параллельный перенос, поворот прямой и гомотетия. Есть класс задач, решение которых основано на аналитических свойствах функций (области определения, области значений, четности, периодичности и т.д.), эти свойства и приемы их использования тоже нужно знать.
На этом перечень методов решения задач с параметрами, разумеется, не заканчивается, но анализ вариантов КИМ ЕГЭ профильного уровня и практика показывают, что в настоящее время этого достаточно для успешного решения задачи № 18 на экзамене.
В заключение отметим, что выстроить подобный курс самостоятельно, без преподавателя, обычный школьник не сможет, даже имея под рукой хорошие учебные пособия по методам решения задач с параметром. Здесь необходима помощь опытного наставника, который сможет подобрать нужные задачи и выстроить траекторию движения школьника по ним.
Заметим, кстати, что весьма эффективным инструментом для изучения именно методов решения задач с параметром являются интерактивные тренажеры с пошаговым разбором решения.
Работая с таким тренажером, школьник одновременно учится выстраивать логику решения задачи с параметром и контролирует правильность выполнения каждого шага решения. Это очень важное умение, так как одна из основных сложностей в решении задачи с параметром состоит в том, что необходимо на каждом шаге решения понимать, что означают уже полученные результаты и что (в зависимости от этих результатов) еще остается сделать, чтобы довести решение до конца.
Регулярно тренируйтесь в решении задач
Чтобы начать заниматься на портале «1С:Репетитор», достаточно Зарегистрироваться.
Вы можете:
- Начать заниматься бесплатно.
Купить доступ к этой задаче в составе
экспресс-курса «Алгебра» и научиться решать задачи №13, №15, №17, №18 и №19 на максимальный балл.
Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.
Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.
Здесь ключевые фразы, чтобы поисковые роботы лучше находили наши советы:
Разбор задач с параметрами из ЕГЭ по математике, по теме задачи с параметром ЕГЭ, как решать задание 18 в экзамене ЕГЭ, задачи с параметром ЕГЭ, задания с параметром ЕГЭ, задача 18 ЕГЭ, модуль и окружности, решение параметров ЕГЭ, решение задачи 18, система уравнений с параметром, научиться решать задачи с параметрами, сложных задач варианта КИМ ЕГЭ, начертить графики функций, ЕГЭ по математике профильного уровня, методы решения уравнений и неравенств, выпускникам 11 класса в 2018 году, поступающим в технический вуз.
Пора начать разбираться с один и самых сложных заданий на ЕГЭ – с параметрами. Этот номер может принести целых 4 балла.
Итак, параметр – это буква (обычно в заданиях используют букву а), вместо которой можно подставить число.
Решить задачу с параметром – значит найти такое значение параметра а, при котором будет выполняться условие задачи. Стоит отметить, что существует огромное количество различных вариантов формулировки задачи. Самым популярным является: «Найти все значения параметра а, при котором уравнение такое-то имеет столько-то корней».
Что нужно знать, чтобы научиться решать параметры?
Таким вопросом задаются многие школьники. Ответ прост: буквально всё. Параметры – самая обширная тема ЕГЭ, тут может быть и тригонометрия, и функции (здесь надо уметь исследовать функцию при помощи производной), и степени, и логарифмы, и дроби и всё-всё-всё остальное, а возможно и все темы сразу. Причём не только в уравнениях, но и в неравенствах.
Так что прежде чем браться за параметры, убедись, что ты отлично решаешь обычные уравнения, щёлкаешь неравенства, а первая часть занимает у тебя не более 15-ти минут.
Краткий алгоритм решения параметров, где дробь равна нулю:
1) необходимо перейти к системе, состоящей из двух условий: знаменатель не равен 0, а числитель равен 0.
2) далее нужно дать условие, чтобы уравнение (числитель) имело два корня, следовательно его дискриминант больше 0.
3) выписать дискриминант, обозначить, что он больше 0 и решить неравенство.
4) выразить из неравенства (которое вышло из знаменателя) а и подставить в уравнение (числитель).
5) дать условие, что при подстановке а в уравнение не должно получаться верное равенство.
6) выписать промежуток из пункта 3 и выколоть точки, которые получились в пункте 5. Это и будет ответ.
Параметры с модулем
Для начала стоит вспомнить, что же такое модуль и как его раскрыть.
Модуль числа — это расстояние, а расстояние не может быть отрицательным. Поэтому и модуль числа не бывает отрицательным:
|a| > 0
Модуль положительного числа равен самому числу.
|a| = a, если a > 0
Модуль отрицательного числа равен противоположному числу.
|−a| = a
Модуль нуля равен нулю.
|0| = 0, если a = 0
Противоположные числа имеют равные модули.
|−a| = |a| = a
Когда писать систему, а когда совокупность?
Многие ученики, решая параметры (и не только их) задаются вопросом: тут ставить систему или совокупность?
В двух словах это можно прокомментировать так:
Если надо пересечь решения, то будет система, а если объединить – совокупность. Или, сформулировав по-другому, скажем: система – это когда мы говорим «выполняется и одно условие, и другое», а совокупность – «и то, и другое».
Допустим, мы решаем квадратное уравнение, в котором дискриминант больше нуля. Следовательно оно будет иметь два корня. Но ведь х не может быть двумя числами одновременно, а значит мы говорим, что х – это такое-то число или другое число.
(по оформлению: такое-то число и другое число сделать более бледным, серым)
В этом случае мы используем совокупность.
Заметим, что когда мы решаем квадратное уравнение по теореме Виета (а кто-то вообще использует теорему Виета вместо дискриминанта?), то условие о сумме и произведении мы записываем в системе, ведь они должны выполняться одновременно:
x2+px+q=0
{ x1+x2=-p
x1*x2=q
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!
165 задач с параметрами
1. Линейные уравнения и приводимые к ним уравнения с параметрами.
2. Квадратичные и сводимые к ним уравнения с параметрами.
3. Уравнения с параметрами, содержащие модуль.
4. Системы уравнений с параметрами.
5. Иррациональные уравнения с параметрами.
6. Линейные неравенства и неравенства, приводимые к линейным. Системы неравенств.
7. Квадратичные неравенства с параметрами.
8. Иррациональные неравенства с параметрами.
9. Уравнения и неравенства с параметрами, содержащие логарифмы.
10. Тригонометрические уравнения, неравенства и системы уравнений с параметрами.
Уравнения с модулем
Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.
Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.
Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.
Прежде всего вспомним, что
Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)
Слева модуль, справа число
Это самый простой случай. Решим уравнение
Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:
Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.
Переменная как под модулем, так и вне модуля
Здесь приходится раскрывать модуль по определению. . . или соображать!
Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:
Решение первой системы: . У второй системы решений нет.
Ответ: 1.
Первый случай: x ≥ 3. Снимаем модуль:
Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.
Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:
Значит, больше трёх и потому является корнем исходного уравнения
Стало быть, годятся лишь и .
Ответ:
Квадратные уравнения с заменой |x| = t
Поскольку , удобно сделать замену |x| = t. Получаем:
Модуль равен модулю
Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:
Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:
Остаётся решить каждое из уравнений совокупности и записать ответ.
Два или несколько модулей
Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.
Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)
Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.
Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:
Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.
Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:
Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.
Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:
Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.
Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:
Ничего нового. Мы и так знаем, что x = 1 является решением.
Модуль в модуле
Начинаем с раскрытия внутреннего модуля.
1) x ≤ 3. Получаем:
Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.
1.1) Получаем в этом случае:
Это значение x не годится, так как не принадлежит рассматриваемому промежутку.
1.2) . Тогда:
Это значение x также не годится.
Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.
Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:
Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.
Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.
Читайте также о том, как решать неравенства с модулем.
Решение уравнений с модулями и параметрами
Презентация к уроку
Загрузить презентацию (434 кБ)
Цель урока. Решение уравнений с параметрами и модулями, применяя свойства функций в неожиданных ситуациях и освоение геометрических приемов решения задач. Нестандарные уравнения.
Задачи:
- Образовательные: научить решать некоторые виды уравнений уравнений модулями и параметрами;
- Развивающие: развивать культуру мысли, культуру речи и умение работать с тетрадью и доской.
- Воспитательные: воспитывать самостоятельность и умение преодолевать трудности.
Оборудование: наглядный материал для устного счёта и объяснения новой темы. Интерактивная доска, мультимедийное оборудование урока.
Структура урока:
- Повторение изученного материала (устный счёт).
- Изучение нового материала.
- Закрепление изученного материала.
- Итог урока.
- Домашнее задание.
1. Повторение важнейшего теоретического материала по темам: «Уравнения, содержащие модуль», «Решение уравнений с параметрами»
1) «Уравнения, содержащие модуль»
Абсолютной величиной или модулем числа a называется число a, если a > 0, число – a, если a <a, если a > 00, если a = 0– a, если a 0 и | a | > a для всех a € R .
Неравенство | x | 0) равносильно двойному неравенству – a 0.
Неравенство | x | > a, (если a > 0) равносильно двум неравенствам
Неравенство | x | > a, (если a : | x + 3 | + | y – 2 | = 4;
Расcмотрим четыре случая
< | x + 3 > 0 | < | x > – 3 |
y – 2 > 0 | y > 2 | ||
x + 3 + y – 2 = 4 | y = – x + 3 |
< | x + 3 > 0 | < | x > – 3 |
y – 2 < | x + 3 < | x 0 | y > – 2 |
– x – 3 – y – 2 = 4 | y = x + 9 |
< | x + 3 < | x 2 – 1) х = а + 1.
Нетрудно сообразить, что при решении этого уравнения достаточно рассмотреть такие случаи: 1) а = 1; тогда уравнение принимает вид ОX = 2 и не имеет решения 2) а = – 1; получаем ОX = О , и очевидно х – любое. Ответ: 3. Решения примеров (из вариантов С) 1. При каком значении параметра р уравнение | х 2 – 5х + 6 | + | х 2 – 5х + 4 | = р имеет четыре корня. Рассмотрим функцию у = | х 2 – 5х + 6 | + | х 2 – 5х + 4 | Так как х 2 – 5х + 6 = (х – 2)(х – 3) и х 2 – 5х + 4 = (х – 1)(х – 4), то y = | (х – 2)(х – 3) | + | (х – 1)(х – 4) |, корни квадратных трехчленов отметим на числовой прямой
Числовая прямая при этом разбивает на 5 промежутков
Для случая 3) х0 = – b | 2a = 2, y0 = 25 : 2 + 25 – 10 = 2,5 Итак, (2,5; 2,5) – координаты вершины параболы y = – 2x 2 + 10x – 10. Построим график функции, заданной равенством Как видно из рисунка, исходное уравнение имеет четыре корня, если 2 2 – | x | = 6 1. Решить уравнение: | x – 5 | – | 2x + 3 | = 10 1. Решить уравнение | x – 5 | – | 2x + 3| = 10 5. Итог урока 1. Определение модуля. 6. Задание на дом. C5 варианта №11 Ф.Ф. Лысенко. Математика, 2012 источники: http://ege-study.ru/ru/ege/materialy/matematika/uravneniya-i-neravenstva-s-modulem/ http://urok.1sept.ru/articles/615749
|
11 ноября 2016
В закладки
Обсудить
Жалоба
Сборник заданий с ответами.
Содержание
1. Линейные уравнения и приводимые к ним уравнения с параметрами.
2. Квадратичные и сводимые к ним уравнения с параметрами.
3. Уравнения с параметрами, содержащие модуль.
4. Системы уравнений с параметрами.
5. Иррациональные уравнения с параметрами.
6. Линейные неравенства и неравенства, приводимые к линейным. Системы неравенств.
7. Квадратичные неравенства с параметрами.
8. Иррациональные неравенства с параметрами.
9. Уравнения и неравенства с параметрами, содержащие логарифмы.
10. Тригонометрические уравнения, неравенства и системы уравнений с параметрами.
spr-new.pdf
Существует ровно три генеральных метода решения задач 17:
- Метод перебора — классический перебор вариантов. Например, когда выражение под модулем больше нуля и когда меньше;
- Графический метод — привлечение чертежа. Во многих задачах 17 достаточно начертить графики функций — и решение становится очевидным;
- Метод следствий — нестандартный и, как правило, самый изощренный. Если в исходном условии удастся подметить что-нибудь полезное, в дальнейшем можно значительно упростить решение всей задачи.
Конечно, одну и ту же задачу зачастую можно решить разными способами. Но далеко не все они оптимальны: выбрав неправильный «путь», можно увязнуть в вычислениях, так и не дойдя до ответа.
Поэтому в данном разделе я рассмотрю все способы, а ваша задача — практиковаться и учиться правильно выбирать.:)
- Глава 1.
- Графический подход
- § 1.
- Вебинар по задачам 18: модуль и окружности
- § 2.
- Как решать задачу 18: графический подход
- § 3.
- Задача 18: две окружности и модуль
- § 4.
- Задача 18: пересечение графиков окружности и модуля
- § 5.
- Новая задача 18 из пробного ЕГЭ — наглядный пример того, как эффективно работает графическое решение задач с параметром.
- Глава 2.
- Аналитический подход
- § 1.
- Задачи 18: Аналитическое решение
- § 2.
- Окружность и модуль: задачи 18 с двумя параметрами
- § 3.
- Аналитическое решение задачи 18 с перебором различных вариантов
- Глава 3.
- Нестандартные приемы
- § 1.
- Задача 18: метод симметричных корней
- § 2.
- Как увидеть симметрию корней в задаче 18?
- § 3.
- Метод мажорант в задаче 18
- § 4.
- Графическое решение сложных задач 18 с модулем
- § 5.
- Задание 18: Симметрия корней в системе уравнений
- § 6.
- Анализ знаков квадратного трёхчлена в сложных задачах 18
- § 7.
- Применение производной для отыскания точек пересечения графиков
- § 8.
- Продвинутый метод симметричных корней
- § 9.
- Новая задача 18 с графическим решением