Параметры егэ математика для чайников

Одна из сложных задач Профильного ЕГЭ по математике — задача с параметрами. В ЕГЭ 2022 года это №17. И даже в вариантах ОГЭ они есть. Что же означает это слово — параметр?

Толковый словарь (в который полезно время от времени заглядывать) дает ответ: «Параметр — это величина, характеризующая какое-нибудь основное свойство устройства, системы, явления или процесса».

Хорошо, параметр — это какая-либо характеристика, свойство системы или процесса.

Вот, например, ракета выводит космический аппарат в околоземное пространство. Как вы думаете — какие параметры влияют на его полет?

Если корабль запустить с первой космической скоростью, приближенно равной 7,9 км/с, он выйдет на круговую орбиту.

Вторая космическая скорость, приближенно равная 11,2 км/с, позволяет космическому кораблю преодолеть поле тяжести Земли. Третья космическая скорость, приближенно равная 16,7 км/с, дает возможность преодолеть гравитационное притяжение Земли и Солнца и покинуть пределы Солнечной системы.

А если скорость меньше первой космической? Значит, тонны металла, топлива и дорогостоящей аппаратуры рухнут на землю, сопровождаемые репликой растерянного комментатора: «Кажется, что-то пошло не так».

Скорость космического корабля можно — параметр, от которого зависит его дальнейшая траектория и судьба. Конечно, это не единственный параметр. В реальных задачах науки и техники, задействованы уравнения, включающие функции многих переменных и параметров, а также производные этих функций.

1. Теперь пример из школьной математики.

Все мы помним, что такое квадратное уравнение. Это уравнение вида ax^2 + bx + c = 0, где коэффициент а не равен нулю.

Количество корней квадратного уравнения зависит от знака выражения, которое называется дискриминант.

Дискриминант квадратного уравнения: D=b^2-4ac.

Если , квадратное уравнение имеет два корня: x_1=frac{-b+sqrt{D}}{2a} и x_2=frac{-b-sqrt{D}}{2a}.

Если D = 0, квадратное уравнение имеет единственный корень {mathbf x}{mathbf =-}frac{{mathbf b}}{{mathbf 2}{mathbf a}}.

Если , квадратное уравнение не имеет действительных корней. Рассмотрим уравнение x^2 + 2x + c = 0. Его дискриминант равен 4 - 4c. Если , то есть , это квадратное уравнение имеет два корня.

Если 4 - 4c = 0 при c = 1, уравнение имеет единственный корень.

Если , то есть с > 1, корней нет.

В нашем уравнении с — параметр, величина, которая принимать любые значения. Но от этого параметра с зависит количество корней данного уравнения.

Для того чтобы уверенно решать задачи с параметрами, необходимо отличное знание и алгебры, и планиметрии.

И еще две простые задачи с параметром.

2. Найдите значение параметра p, при котором уравнение 3x^2-2px-p+6=0 имеет 2 различных корня.

Квадратное уравнение имеет два различных корня, когда .

Найдем дискриминант уравнения 3x^2-2px-p+6=0.

В нем a=3, , b=-2p, , c=6-p.

D=b^2-4ac={left(-2pright)}^2-4cdot 3cdot left(6-pright)=4p^2+12p-72.

Т.к. , получим:

4p^2+12p-72 , textgreater, 0 Leftrightarrow p^2+3p-18 , textgreater, 0.

Вспомним, как решаются квадратичные неравенства (вы проходили это в 9 классе).

Найдем корни квадратного уравнения p^2+3p-18=0. Это p=3 и p=-6.

Разложим левую часть неравенства на множители:

p^2+3p-18=left(p-3right)left(p+6right).

Значит,

p^2+3p-18 , textgreater ,0 Leftrightarrow (p-3)(p+6), textgreater , 0

Рисуем параболу с ветвями вверх. Она пересекает ось р в точках p=-6 и p=3.

Записываем ответ: p in left(-infty ;-6right)cup left(3;+infty right)

3. При каких значениях параметра k система уравнений left{begin{matrix} kx+5y=3\2x+y=4 hfill end{matrix}right. не имеет решений?

Оба уравнения системы — линейные. График линейного уравнения — прямая. Запишем уравнения системы в привычном для нас виде, выразив у через х:

left{begin{matrix} y=-frac{k}{5}x+frac{3}{5}\ y=-2x+4 end{matrix}right.

Первое уравнение задает прямую с угловым коэффициентом -frac{k}{5}. Второе уравнение — прямую с угловым коэффициентом -2.

Система уравнений не имеет решений, если эти прямые не пересекаются, то есть параллельны. Это значит, что -frac{k}{5}=-2 и k = 10.

Действительно, в этом случае первое уравнение задает прямую y = - 2x +frac{3}{5}, а второе — параллельную ей прямую y = - 2x + 4.

Ответ: 10

Читаем дальше:

Графический метод решения задач с параметрами.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Что такое параметр? Простые задачи с параметрами» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Сразу оговорюсь — для того, чтобы научиться решать задачи с параметром, не выйдет просто прочитать краткую инструкцию с указаниями, что вам делать. Нужно потратить некоторое время, чтобы научиться решать такие задачи. Здесь необходимо развитое аналитическое мышление (задачи бывают совершенно разные и нужно уметь анализировать разные функции), отличное умение решать все типы уравнений и неравенств (если вы не можете решить любое задание С1 или С3, то для вас будет очень сложно решить и С6), знание, как ведут себя различные функции и умение строить их графики. Как видите, все не так уж просто, но и 4 первичных балла дают не просто так. Тем не менее, решить С6 более чем реально, нужно набраться терпения. На самом деле, не так уж и много материала, да и раз вы задумались о С6, скорее всего, большинство необходимых знаний у вас есть, в основном придется потратить время на отработку практических навыков и разбор различных методов решения. Материал разбит на несколько частей, и я рекомендую внимательно их изучить, разбирая представленные примеры.

Решение уравнения или неравенства с параметром обычно предполагает несколько случаев, и ни один из них нельзя потерять.
Для того, чтобы решить задачу с параметром, необходимо для начала преобразовать заданное выражение к более простому виду, если это, конечно, возможно. При этом необходимо понимать, какие преобразования являются равносильными, а какие нет. В противном случае могут появиться посторонние корни, которые будет нужно проверить (это не всегда просто, поэтому рекомендую стараться использовать равносильные преобразования).

Рекомендации к выполнению задания 18 ЕГЭ:

  1. Надо избавиться от логарифмов, модулей, показательных степеней и т.д.
  2. Еще раз внимательно прочитать задание. Понять, что от вас требуется.
  3. Попытаться проанализировать получившееся после преобразований выражение на наличие каких-либо специальных свойств функции (периодичность, возрастание/убывание, четность/нечетность и т.д.)
  4. Часто решить задачу с параметром можно и удобно при помощи графиков. Иногда удобно выполнять построения на обычной координатной плоскости (Х, У), а иногда удобно построить графики в плоскости (Х, а), где а – параметр. Данный способ решения возможен, если вы видите знакомые функции (параболы, прямые, гиперболы, окружности и т.д.). Разумеется, бывает несколько способов решения поставленной задачи, но графический, как правило, наименее громоздок и прост для понимания. Ведь графики показывают поведение функций, и весь необходимый анализ появится у вас перед глазами.
  5. Важно помнить, что методы решения уравнения или неравенства зависят от степени многочлена. Для этого необходимо рассматривать те значения параметра, при которых (если это возможно) обращается в нуль коэффициент при старшей степени. Пример: (a*x^2-3*x+1=0), при (a=0) выражение принимает вид (-3*x+1=0), т.е. превращается в линейную функцию, а способы решения квадратного и линейного уравнений различны.

Задание № 18 варианта КИМ ЕГЭ по математике профильного уровня

Задача с параметром – для обычного школьника одна из самых сложных задач варианта КИМ ЕГЭ: в программах по математике для общеобразовательных школ (за исключением профильных и специализированных классов, школ и лицеев) таким задачам либо не уделяется должного внимания, либо они не рассматриваются вовсе. Несмотря на это, знание набора методов и подходов к решению таких задач и определенная практика их решения позволяют продвинуться в решении задачи с параметром достаточно далеко и если уж не решить ее полностью, то хотя бы получить за нее некоторое количество баллов на экзамене.

Ранее, до появления единого государственного экзамена, задачи с параметрами входили в варианты вступительных экзаменов по математике в ведущие вузы, а сегодня входят в вариант КИМ ЕГЭ профильного уровня. Дело в том, что эти задачи обладают высокой диагностической ценностью: они позволяют не только определить, насколько хорошо выпускник знает основные разделы школьного курса математики, но и проверить, насколько высок уровень его математического и логического мышления, насколько сильны первоначальные навыки математической исследовательской деятельности, а главное – насколько успешно он сможет овладеть курсом математики в вузе.

«Научите меня решать задачи с параметром», – такую просьбу я часто слышу от своих учеников. Что ж, эта задача потребует от выпускника немало интеллектуальных усилий. С чего начать изучение? С освоения методов решения задач с параметром. Собственно, если вы внимательно читали наши рекомендации, как подготовиться к решению сложных задач варианта КИМ ЕГЭ, то заметили, что это универсальный совет. Именно так построен наш курс «1С:Репетитор»: изучаем как можно более широкий спектр методов и приемов решения задач и тренируемся в применении этих методов на практике.

Чему нужно научиться, решая задачи с параметром

В первую очередь – правильно применять равносильные преобразования уравнений, неравенств и их систем. То есть понять, при каких ограничениях, накладываемых на параметр, можно выполнять то или иное преобразование. Лучше всего начать с заданий вида: «Для каждого значения параметра решить…» и рассмотреть по возможности все основные элементарные функции, встречающиеся в школьном курсе математики.

Если с несложными задачами такого вида школьник справляется неплохо, то можно переходить к изучению аналитических методов решения задач, содержательно усложняя и классифицируя задачи с точки зрения применения к ним этих методов исследования. Имеется в виду знакомство с подходами к решению задач, содержащих формулировки типа: «При каких значениях параметра уравнение (неравенство, система) имеет одно (два, три, бесконечно много и т.д.) решений», «При каких значениях параметра решением уравнения (неравенства, системы) является некоторое подмножество множества действительных чисел» и т.д.

Следующий шаг, который мы рекомендуем, – тщательно изучить схему исследования квадратичной функции. Поскольку квадратичная функция является одной из самых хорошо изученных в школьном курсе математики, на ее основе можно предложить большое количество исследовательских задач, разнообразных по форме и содержанию, чем и пользуются составители вариантов КИМ ЕГЭ.

Мы рекомендуем подойти к рассмотрению данных задач по следующей схеме:

  • задачи, основанные на свойствах дискриминанта и старшего коэффициента квадратного трехчлена;
  • применение теоремы Виета в задачах с параметром;
  • расположение корней квадратного трехчлена относительно заданных точек;
  • более сложные задачи, сводящиеся к исследованию квадратного трехчлена.
  • Следующая тема курса – графические методы решения задач с параметром

    Существует два принципиально различных подхода – построение графиков функций или уравнений в плоскости (x; y) или в плоскости (x; a). Кроме того, для графического метода решения задач с параметром в плоскости (x; y) необходимо рассмотреть различные виды преобразования графиков – обычно это параллельный перенос, поворот прямой и гомотетия. Есть класс задач, решение которых основано на аналитических свойствах функций (области определения, области значений, четности, периодичности и т.д.), эти свойства и приемы их использования тоже нужно знать.

    На этом перечень методов решения задач с параметрами, разумеется, не заканчивается, но анализ вариантов КИМ ЕГЭ профильного уровня и практика показывают, что в настоящее время этого достаточно для успешного решения задачи № 18 на экзамене.

    В заключение отметим, что выстроить подобный курс самостоятельно, без преподавателя, обычный школьник не сможет, даже имея под рукой хорошие учебные пособия по методам решения задач с параметром. Здесь необходима помощь опытного наставника, который сможет подобрать нужные задачи и выстроить траекторию движения школьника по ним.

    Заметим, кстати, что весьма эффективным инструментом для изучения именно методов решения задач с параметром являются интерактивные тренажеры с пошаговым разбором решения.

    Тренажер с пошаговым решением

    Работая с таким тренажером, школьник одновременно учится выстраивать логику решения задачи с параметром и контролирует правильность выполнения каждого шага решения. Это очень важное умение, так как одна из основных сложностей в решении задачи с параметром состоит в том, что необходимо на каждом шаге решения понимать, что означают уже полученные результаты и что (в зависимости от этих результатов) еще остается сделать, чтобы довести решение до конца.

    Регулярно тренируйтесь в решении задач

    Чтобы начать заниматься на портале «1С:Репетитор», достаточно Зарегистрироваться.
    Вы можете:

    • Начать заниматься бесплатно.

    • Купить доступ
      к этой задаче в составе
      экспресс-курса «Алгебра» и научиться решать задачи №13, №15, №17, №18 и №19 на максимальный балл.

    Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.

    Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.

    Здесь ключевые фразы, чтобы поисковые роботы лучше находили наши советы:
    Разбор задач с параметрами из ЕГЭ по математике, по теме задачи с параметром ЕГЭ, как решать задание 18 в экзамене ЕГЭ, задачи с параметром ЕГЭ, задания с параметром ЕГЭ, задача 18 ЕГЭ, модуль и окружности, решение параметров ЕГЭ, решение задачи 18, система уравнений с параметром, научиться решать задачи с параметрами, сложных задач варианта КИМ ЕГЭ, начертить графики функций, ЕГЭ по математике профильного уровня, методы решения уравнений и неравенств, выпускникам 11 класса в 2018 году, поступающим в технический вуз.

    23 апреля 2017

    В закладки

    Обсудить

    Жалоба

    Параметры. От простого к сложному. Практикум по решению задач

    Решение задач с параметрами является одним из самых трудных разделов школьной математики и требует большого количества времени на их изучение.

    Теоретическое изучение физических процессов, решение экономических задач часто приводит к различным уравнениям или неравенствам, содержащим параметры, и необходимой частью их решения является исследование характера процесса в зависимости от значений параметров. Таким образом, задачи с параметрами представляют собой небольшие исследовательские задачи.

    Автор: Агашкова Надежда Анатольевна.

    pr-sl-p.pdf

    12
    Июл 2016

    Категория: 17 (С6) Параметры*

    Путеводитель по задачам с параметром

    Елена Репина
    2016-07-12
    2021-06-13

    Автор: egeMax |

    Нет комментариев

    Чтобы не потерять страничку, вы можете сохранить ее у себя:

    Печать страницы

    Добавить комментарий

    • Материалы для подготовки к ЕГЭ
    •    

    • Рубрики
      • 01 Геометрия (13)
      • 02 Стереометрия (9)
      • 03 Теория вероятностей ч.1 (1)
      • 04 Теория вероятностей ч.2 (1)
      • 05 Простейшие уравнения (5)
      • 06 Вычисления (5)
      • 07 Производная, ПО (4)
      • 08 «Прикладные» задачи (5)
      • 09 Текстовые задачи (7)
      • 10 Графики функций (7)
      • 11 Исследование функции (2)
      • 12 (С1) Уравнения (78)
      • 13 (С2) Стереометр. задачи (94)
      • 14 (С3) Неравенства (89)
      • 15 (С4) Практич. задачи (71)
      • 16 (С5) Планиметр. задачи (86)
      • 17 (С6) Параметры* (79)
      • 18 (С7) Числа, их свойства (38)
      • A1 Простейшие текст/задачи (нет в ЕГЭ-22) (3)
      • A2 Читаем графики (нет в ЕГЭ-22) (1)
      • Видеоуроки (44)
      • ГИА (11)
        • II часть (11)
      • ЕГЭ (диагностич. работы) (70)
      • Иррациональные выражения, уравнения и неравенства (15)
      • Логарифмы (39)
      • МГУ (12)
      • Метод интервалов (4)
      • Метод рационализации (18)
      • Модуль (9)
      • Параметр (40)
      • Переменка (5)
      • Планиметрия (60)
      • Показательные выражения, уравнения и неравенства (8)
      • Разложение на множители (1)
      • Рациональные выражения, уравнения и неравенства (10)
      • Справочные материалы (92)
      • Стереометрия (52)
      • Т/P A. Ларина (443)
      • Текстовые задачи (12)
      • Теория чисел (2)
      • Тесты по темам (80)
      • Тригонометрические выражения, уравнения и неравенства (43)
      • Функции и графики (10)
    • Дружественные сайты

      Сайт А. Ларина
      ЕгэТренер – О. Себедаш
      Математика?Легко!
      Егэ? Ок! – И. Фельдман

    • Свежие записи
      • Тест «Гиперболы»
      • Тест. Графики функций. Комбинированные задачи
      • 10. Графики функций. Комбинированные задачи
      • Тест. Тригонометрические функции
      • 10. Тригонометрическая функция
      • Тест. Кусочно-линейная функция
      • 10. Кусочно-линейная функция
    • Архивы Архивы

    • Главная


    • Теория ЕГЭ


    • Математика — теория ЕГЭ



    • Решение уравнений с параметрами ЕГЭ по математике

    Решение уравнений с параметрами ЕГЭ по математике

    22.05.2014

    Замечательная, наглядная теория по заданиям с параметрами (по математике).

    Краткой и последовательно рассказывается о том, как научиться решать уравнения с параметрами, которые встречаются в заданиях ЕГЭ по математике.

    Смотреть в PDF:

    Или прямо сейчас: Скачайте в pdf файле.

    Сохранить ссылку:

    Комментарии (0)
    Добавить комментарий

    Добавить комментарий

    Комментарии без регистрации. Несодержательные сообщения удаляются.

    Имя (обязательное)

    E-Mail

    Подписаться на уведомления о новых комментариях

    Отправить

    Задачи с параметром, ЕГЭ №17 (бывшая №18) считаются чуть ли не самыми сложными на ЕГЭ и за них дают целых 4 первичных балла!

    В этой статье вы найдете несколько вебинаров на решение задач с параметром. Посмотрите их и вы поймете, что это не такая уж и сложная штука.

    Мы будем добавлять сюда новые вебинары на задачу с параметром по мере их поступления. Заходите сюда и делитесь этой статьей с друзьями.

    Или смотрите наши бесплатные вебинары на нашем YouTube канале:

    Задачи с параметром. Исследование уравнений и неравенств при всех значениях параметра. ЕГЭ №17 (18)

    Это первый вебинар по теме “Параметры” нашего курса подготовки к ЕГЭ по математике. А всего по этой теме у нас 9 вебинаров, где мы научим вас решать любую задачу с параметром.

    А сейчас мы научимся решать “обычные” уравнения с параметром, то есть такие, в которых мы забываем про параметр, считаем его как бы известным числом.

    А потом научимся анализировать ответ – определять, при каких значениях параметра у нашего ответа появляются особенности (типа деления на 0).

    Поехали!

    Задача с параметром. Мартовский статград 2021. ЕГЭ №17 (18)

    Почему задача с параметром ЕГЭ17 по математике самая важная для ЕГЭ? В чем ее особенность?

    Мы привыкли, что задача с параметром на ЕГЭ – это какое-то уравнение окружности, которую надо нарисовать и смотреть, где она пересекается с другими фигурами или осями координат. Но иногда задача №17 бывает совсем другой – никаких графиков и геометрии, чистая алгебра: нужно решать уравнение или неравенство (или их систему).

    И такие задачи мы уже научились решать на нашем курсе.

    Далеко не всегда это уравнение или неравенство решается “по-обычному”: иногда нам приходится включать анализ функций, вспоминать их свойства (такие как непрерывность, монотонность, чётность, периодичность), либо применять особые методы (например, менять параметр и переменную ролями).

    Все эти методы и свойства мы разберем на этом вебинаре.

    А важная она потому, что задача с параметром включает в себя практически все математические навыки. И научившись решать любую задачу с параметром, вы очень хорошо подготовитесь к ЕГЭ!

    Этот такая лакмусовая бумажка, готовы ли вы к ЕГЭ, умеете ли вы решать задачу с параметром?

    Что скажите? Как вам задача с параметром?

    Мы собрали на этой странице некоторые вебинары по 17-й задаче.

    Возьмите ручку и бумагу и решайте задачи вместе с Алексеем Шевчуком – так вы получите от вебинара максимум.

    Как вам эта задачи и эти вебинары? Напишите в комментариях.

    Удачи на экзамене!

    Наши курсы по подготовке к ЕГЭ по математике, информатике и физике

    Алексей Шевчук – ведущий мини-групп

    математика, информатика, физика

    +7 (905) 541-39-06 – WhatsApp/Телеграм для записи

    alexei.shevchuk@youclever.org – email для записи

    • тысячи учеников, поступивших в лучшие ВУЗы страны
    • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
    • закончил МФТИ, преподавал на малом физтехе;
    • репетиторский стаж – c 2003 года;
    • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов – как обычно дурацкая ошибка:);
    • отзыв на Профи.ру: “Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами”.

    Понравилась статья? Поделить с друзьями:

    Новое и интересное на сайте:

  • Параметры егэ критерии оценивания
  • Параметры егэ высоцкий скачать
  • Параметры егэ видео
  • Параметры егэ 2022 математика профильный
  • Параметры егэ 2019

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии