Параметр показательная функция егэ


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Найдите все значения параметра k, при каждом из которых уравнение  дробь: числитель: 1 плюс левая круглая скобка 2 минус 2k правая круглая скобка синус t, знаменатель: косинус t минус синус t конец дроби = 2k имеет хотя бы одно решение на интервале  левая круглая скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая круглая скобка .


2

Найдите все значения k, при каждом из которых уравнение

 дробь: числитель: 6k минус левая круглая скобка 2 минус 3k правая круглая скобка косинус t, знаменатель: синус t минус косинус t конец дроби =2

имеет хотя бы одно решение на отрезке  левая квадратная скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая квадратная скобка .

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 4. (Часть C).


3

Определите, при каких значениях параметра a уравнение

|x минус 2|=a логарифм по основанию 2 |x минус 2|

имеет ровно два решения.

Источник: РЕШУ ЕГЭ — Предэкзаменационная работа 2014 по математике.


4

Найдите все значения параметра a, при каждом из которых уравнение

|x минус a в квадрате плюс a плюс 2| плюс |x минус a в квадрате плюс 3a минус 1|=2a минус 3

имеет корни, но ни один из них не принадлежит интервалу (4; 19).


5

Найдите все значения параметра a, при каждом из которых уравнение

|x минус a в квадрате плюс 4a минус 2| плюс |x минус a в квадрате плюс 2a плюс 3|=2a минус 5

имеет хотя бы один корень на отрезке [5; 23].

Пройти тестирование по этим заданиям

Показательные и логарифмические уравнения с параметром

Показательные уравнения c параметром

Как правило, чтобы решить показательные уравнения с параметром нужно привести их квадратному или линейному уравнению. Обычно это можно сделать при помощи метода замены переменных. Но надо быть внимательным – при замене (t=a^x), новая переменная (t) всегда положительна.

Найдите все значения параметра (a), при которых уравнение ((a+1)(4^x+4^<-x>)=5) имеет единственное решение.

Заметим, что (a+1 > 0), так как (4^x+4^ <-x>> 0). Сделаем замену (t=4^x); (t > 0) $$ (a+1)(t+frac<1>)=5;$$ $$(a+1)t^2-5t+a+1=0$$ $$_<1,2>=frac<5±sqrt<25-4(a+1)^2>> <2(a+1)>.$$
Уравнение будет иметь единственное решение, если $$D=25-4(a+1)^2=0 $$ $$a+1=±frac<5><2>$$ (a=-3.5 -) не подходит;
(a=1.5;)

Логарифмические уравнения с параметром

Чтобы решить логарифмические уравнения, надо обязательно записывать ОДЗ, а затем провести необходимые равносильные преобразования или сделать замену, чтобы свести уравнение к более простому.

Решите уравнение (log_a (x^2)+2log_a (x+1)=2) для каждого (a).

Перейдем от суммы логарифмов к их произведению:

При условии, что (1-4a≥0 ⇔ 0 0).

При условии, что $$ 1+4a>0 ⇔ a>0$$ корень $$x=frac<1><2>-frac<sqrt<1+4a>><2>$$ не подходит, так как ( x>0.)

Найдите все значения параметра (a), при которых уравнение (log_4 (16^x+a)=x) имеет два действительных и различных корня.

При помощи равносильного преобразования приведем наше уравнение к виду:

Сделаем замену: (t=4^x>0 ⇔ t^2-t+a=0,)

Полученное квадратное уравнение должно иметь корни (0 0, \D≥0, \D>0, \ _<0>>0; end $$ $$ begin a>0, \1-4a>0, \ 1/2>0; end $$ $$ begin a>0, \a

Параметрические уравнения, неравенства и системы, часть С

Теория к заданию 18 из ЕГЭ по математике (профильной)

Параметрические уравнения

Уравнение, которое кроме неизвестной величины содержит также другую дополнительную величину, которая может принимать различные значения из некоторой области, называется параметрическим. Эта дополнительная величина в уравнении называется параметр. На самом деле с каждым параметрическим уравнением может быть написано множество уравнений.

Способ решения параметрических уравнений

  1. Находим область определения уравнения.
  2. Выражаем a как функцию от $х$.
  3. В системе координат $хОа$ строим график функции, $а=f(х)$ для тех значений $х$, которые входят в область определения данного уравнения.
  4. Находим точки пересечения прямой, $а=с$, где $с∈(-∞;+∞)$ с графиком функции $а=f(х)$. Если прямая, а=с пересекает график, $а=f(х)$, то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение вида, $а=f(х)$ относительно $х$.
  5. Записываем ответ.

Общий вид уравнения с одним параметром таков:

При различных значениях, а уравнение $F(x, a) = 0$ может иметь различные множества корней, задача состоит в том, чтобы изучить все случаи, выяснить, что будет при любом значении параметра. При решении уравнений с параметром обычно приходится рассматривать много различных вариантов. Своевременное обнаружение хотя бы части невозможных вариантов имеет большое значение, так как освобождает от лишней работы.

Поэтому при решении уравнения $F(x, a) = 0$ целесообразно под ОДЗ понимать область допустимых значений неизвестного и параметра, то есть множество всех пар чисел ($х, а$), при которых определена (имеет смысл) функция двух переменных $F(x, а)$. Отсюда естественная геометрическая иллюстрация ОДЗ в виде некоторой области плоскости $хОа$.

ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):

1. Выражение, стоящее в знаменателе, не должно равняться нулю.

2. Подкоренное выражение должно быть неотрицательным.

3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.

4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.

Алгебраический способ решения квадратных уравнений с параметром $ax^2+bx+c=0$

Квадратное уравнение $ax^2+bx+c=0, а≠0$ не имеет решений, если $D 0$;

Квадратное уравнение имеет один корень, если $D=0$

Тригонометрические тождества

3. $sin^<2>α+cos^<2>α=1$ (Основное тригонометрическое тождество)

Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса

Решение показательных уравнений с параметрами

Разделы: Математика

Цели урока: Учащиеся должны знать способы решений уравнений вида – показательная функция и уметь применять при решении задач.

Ход урока.

Для первой группы учащихся выдавались следующие задания.

Для каждого значения a решить уравнения:

Задания для второй группы учащихся.

Указать число решений в зависимости от параметра а.

Третья группа решает уравнения, сводящиеся к квадратным.

Задание 1. Решить уравнение p · 4 x – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.

Задание 2. При каких a уравнение 9 x + (2a + 4) · 3 x + 8a + 1 = 0 имеет единственное решение.

Задание 3. Указать число решений уравнения 49 x + 2p · 7 x + p 2 – 1 = 0 в зависимости от параметра p.

Задание 4. При каких значениях p уравнение 4 x – (5p – 3) · 2 x + 4p 2 – 3p = 0 имеет единственное решение.

Выступление первой группы – решение показательных уравнений вида

Докладывает лидер первой группы и привлекает к своему докладу участников этой группы. То есть диалог идёт ученик – ученик.

Решение исходного уравнения сводится к решению линейного уравнения с параметрами kx = b.

Если k = 0, b = 0, то 0 · x = 0, – любое действительное число.

Если k = 0, b ≠ 0, то 0 · x = b – нет решений.

Если k ≠ 0, то , один корень.

Задание 1. Решить уравнение .

Докладчик решает у доски с комментариями, остальные записывают в тетрадях.

Значит уравнение (1) можно представить в виде (a – 1)(a + 4)x = (a – 1)(a – 1)(a – 3).

Исследуем полученное уравнение:

Ответ:

На этом выступление первой группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 1.

Выступление второй группы – решение уравнений вида

Докладывает лидер второй группы и привлекает к обсуждению этого вопроса всех учащихся. Исходное уравнение равносильно уравнению ax 2 + bx + c1 = c0, или ax 2 + bx + c = 0.

Далее идёт диалог ученик–ученик.

  1. Какое уравнение получили? – Это уравнение степени не выше второй.
  2. При a = 0, bx + c = 0, получили линейное уравнение, которое может иметь одно решение, не иметь корней, или иметь бесконечное множество решений.
  3. При a ≠ 0, ax 2 + bx + c = 0, квадратное уравнение.
  4. От чего зависит число решений квадратного уравнения? – Число решений квадратного уравнения зависит от дискриминанта. Если D = 0 то квадратное уравнение имеет одно решение. Если D > 0, то два решения. Если D 2 + 2(a + 3)x + a + 2 = 0.

Ответ:

На этом выступление второй группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 2.

Выступление третьей группы – решение уравнений вида af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.

Слово предоставляется выступающему от третьей группы. Он докладывает, что их группа решала уравнения вида: (1) af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.

Исходное уравнение (1) равносильно

Далее докладчик задаёт вопросы, а учащиеся отвечают на них.

При каких условиях уравнение (1) имеет один корень?

  1. При a = 0 уравнение (2) становится линейным, значит может иметь только один корень, и он должен быть положительным.
  2. Если D = 0, уравнение (2) имеет один корень, и он должен быть положительным.
  3. Если D > 0, уравнение (2) имеет два корня, но они должны быть различных знаков.
  4. Если D > 0, уравнение (2) имеет два корня, но один из низ нуль. А второй положительный.

При каких условиях уравнение (1) имеет два корня?

Исходное уравнение имеет два корня, если уравнение (2) имеет два корня и оба они положительны.

При каких условиях уравнение (1) не имеет корней?

    Если Dx – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.

Ответим на вопрос: При каких значениях p уравнение (1) имеет один корень?

  • Если одно решение. Обсуждается вопрос какие ещё могли быть варианты при t = 0 – нет решений, при t 0.

Уравнение будет иметь единственное решение при условии. Что дискриминант уравнения (2) есть число положительное, но корни при этом имеют различные знаки. Эти условия достигаются с помощью теоремы Виета. Чтобы корни квадратного трёхчлена были действительными и имели различные знаки, необходимо и достаточно выполнение соотношений.

Итак, уравнение (1) имеет единственное решение при p ≤ 0, p = 4.

Теперь остаётся ответить на вопрос. При каких условиях исходное уравнение (2) имеет два решения? Это возможно, если уравнение (2) имеет два корня и оба они положительны. По теореме Виета для того, чтобы корни квадратного трёхчлена были действительными и при этом оба были положительными, необходимо и достаточно выполнение соотношений.

Исходное уравнение имеет два корня при 0 0, то уравнение (2) имеет корни, но они оба отрицательны.

Итак, D 4. При p > 4 – нет решений. Второе условие равносильно следующим соотношениям.

Значит уравнение (1) не имеет решений при p > 4.

Ответ:

  1. При p = 4, p ≤ 0 одно решение.
  2. При 0 4 нет решений.

На этом выступление третьей группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 3.

Домашнее задание.

Задание 1. Найти все значения параметра a, при которых уравнение (a – 3) · 4 x – 8 · 6 x + (a +3) 9 x = 0 не имеет корней.

Задание 2.Указать число решений уравнения p · 2 x + 2 –x – 5 = 0 в зависимости от параметра p.

Задание 3. Выяснить при каких значениях a уравнение . имеет решения, найти эти решения.

Задание 4. Найти все значения p при которых уравнение (p – 1) · 4 x – 4 · 2 x + (p + 2) = 0 имеет хотя бы одно решение.

Задание 5. Указать число решений уравнения a · 12 |x| = 2 – 12 |x| в зависимости от параметра a.

источники:

http://examer.ru/ege_po_matematike/teoriya/parametricheskie_uravneniya

http://urok.1sept.ru/articles/518184

Показательные уравнения c параметром

Как правило, чтобы решить показательные уравнения с параметром нужно привести их квадратному или линейному уравнению. Обычно это можно сделать при помощи метода замены переменных. Но надо быть внимательным – при замене (t=a^x), новая переменная (t) всегда положительна.

Пример 1

Найдите все значения параметра (a), при которых уравнение ((a+1)(4^x+4^{-x})=5) имеет единственное решение.

Решение:

Заметим, что (a+1 > 0), так как (4^x+4^{-x} > 0). Сделаем замену (t=4^x); (t > 0) $$ (a+1)(t+frac{1}{t})=5;$$ $$(a+1)t^2-5t+a+1=0$$ $${t}_{1,2}=frac{5±sqrt{25-4(a+1)^2}}{2(a+1)} .$$

Уравнение будет иметь единственное решение, если $$D=25-4(a+1)^2=0 $$
$$a+1=±frac{5}{2}$$
(a=-3.5 -) не подходит;

(a=1.5;)

Ответ: (a=1.5.)

Логарифмические уравнения с параметром

Чтобы решить логарифмические уравнения, надо обязательно записывать ОДЗ, а затем провести необходимые равносильные преобразования или сделать замену, чтобы свести уравнение к более простому.

Пример 2

Решите уравнение (log_a (x^2)+2log_a (x+1)=2) для каждого (a).

Решение:

Найдем ОДЗ: (a>0;) (a≠1); (x>-1); (x≠0).

Перейдем от суммы логарифмов к их произведению:

(x^2 (x+1)^2=a^2 ⇔ |x|(x+1)=a. )

1 случай: (x∈(-1,0).)

Получаем уравнение:

$$-x(x+1)=a ⇔ -x^2-x-a=0,$$
$$D=1-4a;$$
$$ {x}_{1,2}=frac{1±sqrt{1-4a}}{-2};$$

При условии, что (1-4a≥0 ⇔ 0< a ≤ frac{1}{4} )Оба корня лежат в промежутке (x∈(-1,0)).

2 случай: (x>0).

Получаем:

$$ x(x+1)=a, $$
$$ x^2+x-a=0,$$
$$ D=1+4a;$$
$$ {x}_{3,4}=frac{-1±sqrt{1+4a}}{-2};$$

При условии, что $$ 1+4a>0 ⇔ a>0$$ корень $$x=frac{1}{2}-frac{sqrt{1+4a}}{2}$$ не подходит, так как ( x>0.)

Ответ:
При (a≤0) решений нет;
при (0 < a ≤ frac{1}{4}:) $$ {x}_{1,2}=frac{1±sqrt{1-4a}}{-2}$$ $$x_3=frac{-1-sqrt{1+4a}}{-2};$$
при (a > frac{1}{4}:) $$ x_3= frac{-1-sqrt{1+4a}}{-2}.$$

Пример 3

Найдите все значения параметра (a), при которых уравнение (log_4 (16^x+a)=x) имеет два действительных и различных корня.

Решение:

При помощи равносильного преобразования приведем наше уравнение к виду:

$$ 16^x+a=4^x, $$
$$ 16^x-4^x+a=0;$$

Сделаем замену: (t=4^x>0 ⇔ t^2-t+a=0,)

Полученное квадратное уравнение должно иметь корни (0 < {t}_{1} < {t}_{2}). Ветки данной параболы направлены вверх. Пусть (f(t)=t^2-t+a).

При помощи таблицы (см. таблицу):

$$ begin{cases} f(0)>0, \D≥0, \D>0, \ {x}_{0}>0; end{cases} $$
$$ begin{cases} a>0, \1-4a>0, \ 1/2>0; end{cases} $$
$$ begin{cases} a>0, \a<1/4. end{cases} $$

Ответ: (a∈(0;1/4).)

Параметрические уравнения

Уравнение, которое кроме неизвестной величины содержит также другую дополнительную величину, которая может принимать различные значения из некоторой области, называется параметрическим. Эта дополнительная величина в уравнении называется параметр. На самом деле с каждым параметрическим уравнением может быть написано множество уравнений.

Способ решения параметрических уравнений

  1. Находим область определения уравнения.
  2. Выражаем a как функцию от $х$.
  3. В системе координат $хОа$ строим график функции, $а=f(х)$ для тех значений $х$, которые входят в область определения данного уравнения.
  4. Находим точки пересечения прямой, $а=с$, где $с∈(-∞;+∞)$ с графиком функции $а=f(х)$. Если прямая, а=с пересекает график, $а=f(х)$, то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение вида, $а=f(х)$ относительно $х$.
  5. Записываем ответ.

Общий вид уравнения с одним параметром таков:

$F(x, a) = 0$

При различных значениях, а уравнение $F(x, a) = 0$ может иметь различные множества корней, задача состоит в том, чтобы изучить все случаи, выяснить, что будет при любом значении параметра. При решении уравнений с параметром обычно приходится рассматривать много различных вариантов. Своевременное обнаружение хотя бы части невозможных вариантов имеет большое значение, так как освобождает от лишней работы.

Поэтому при решении уравнения $F(x, a) = 0$ целесообразно под ОДЗ понимать область допустимых значений неизвестного и параметра, то есть множество всех пар чисел ($х, а$), при которых определена (имеет смысл) функция двух переменных $F(x, а)$. Отсюда естественная геометрическая иллюстрация ОДЗ в виде некоторой области плоскости $хОа$.

ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):

1. Выражение, стоящее в знаменателе, не должно равняться нулю.

${f(x)}/{g(x)}; g(x)≠0$

2. Подкоренное выражение должно быть неотрицательным.

$√{g(x)}; g(x)≥0$.

3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.

${f(x)}/{√{g(x)}}; g(x) > 0$

4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.

$log_{f(x)}g(x) {tableg(x) > 0; f(x) > 0; f(x)≠1;$

Алгебраический способ решения квадратных уравнений с параметром $ax^2+bx+c=0$

Квадратное уравнение $ax^2+bx+c=0, а≠0$ не имеет решений, если $D < 0$;

Квадратное уравнение имеет два различных корня, когда $D > 0$;

Квадратное уравнение имеет один корень, если $D=0$

Тригонометрические тождества

1. $tgα={sinα}/{cosα}$

2. $ctgα={cosα}/{sinα}$

3. $sin^{2}α+cos^{2}α=1$ (Основное тригонометрическое тождество)

Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса

$sinα=±√{1-cos^{2}α}$

$cosα=±√{1-sin^{2}α$

4. $tgα·ctgα=1$

5. $1+tg^{2}α={1}/{cos^{2}α}$

6. $1+ctg^{2}α={1}/{sin^{2}α}$

Формулы двойного угла

1. $sin2α=2sinα·cosα$

2. $cos2α=cos^{2}α-sin^{2}α=2cos^{2}α-1=1-2sin^{2}α$

3. $tg2α={2tgα}/{1-tg^{2}α}$

Формулы суммы и разности

$cosα+cosβ=2cos{α+β}/{2}·cos{α-β}/{2}$

$cosα-cosβ=2sin{α+β}/{2}·sin{β-α}/{2}$

$sinα+sinβ=2sin{α+β}/{2}·cos{α-β}/{2}$

$sinα-sinβ=2sin{α-β}/{2}·cos{α+β}/{2}$

Формулы произведения

$cosα·cosβ={cos{α-β}+cos{α+β}}/{2}$

$sinα·sinβ={cos{α-β}-cos{α+β}}/{2}$

$sinα·cosβ={sin{α+β}+sin{α-β}}/{2}$

Формулы сложения

$cos(α+β)=cosα·cosβ-sinα·sinβ$

$cos(α-β)=cosα·cosβ+sinα·sinβ$

$sin(α+β)=sinα·cosβ+cosα·sinβ$

$sin(α-β)=sinα·cosβ-cosα·sinβ$

Решение тригонометрического уравнения с параметром рассмотрим на примере.

Пример:

Найдите все значения параметра с, при каждом из которых уравнение $3cos⁡2x-2sin⁡2x=c$ имеет решение.

Решение:

Преобразуем данное уравнение к виду

$√{3^2+(-2)^2}(cos⁡2xcosφ-sin⁡2xsinφ)=c$

Воспользуемся тригонометрической формулой и свернем второй множитель как косинус суммы

$√{13}cos⁡(2x+φ)=c$, где $φ=arccos{3}/{√{13}}$

Уравнение $√{13}cos⁡(2x+φ)=c$ имеет решения тогда и только тогда, когда $-1≤ {c}/{√{13}} ≤ 1$, домножим полученное неравенство на $√{13}$ и получим

$-√{13} ≤ c ≤ √{13}$

Ответ: $-√{13} ≤ c ≤ √{13}$

Неравенства с параметром

Если имеется неравенство вида $F(a,x) ≤ G(a,x)$ то оно будет иметь одно решение, если $F'(a, x)=G'(a, x)$.

Системы уравнений:

Выделяют четыре основных метода решения систем уравнений:

  1. Метод подстановки: из какого-либо уравнения системы выражаем одно неизвестное через другое и подставляем во второе уравнение системы.
  2. Метод алгебраического сложения: путем сложения двух уравнений получить уравнение с одной переменной.
  3. Метод введения новых переменных: ищем в системе некоторые повторяющиеся выражения, которые обозначим новыми переменными, тем самым упрощая вид системы.
  4. Графический метод решения: из каждого уравнения выражается $«у»$, получаются функции, графики которых необходимо построить и посмотреть координаты точек пересечения.

Логарифмические уравнения и системы уравнений

Основное логарифмическое тождество:

$a^{log_{a}b}=b$

Это равенство справедливо при $b> 0, a> 0, a≠1$

Свойства логарифмов:

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любых действительных чисел $m$ и $n$ справедливы равенства:

$log_{а}b^m=mlog_{a}b$;

$log_{a^m}b={1}/{m}log_{a}b$.

$log_{a^n}b^m={m}/{n}log_{a}b$

2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.

$log_a(bc)=log_{a}b+log_{a}c$

3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию

$log_a{b}/{c}=log_{a}b-log_{a}c$

4. При умножении двух логарифмов можно поменять местами их основания

$log_{a}b·log_{c}d=log_{c}b·log_{a}d$, если $a, b, c, d >0, a≠1, b≠1$.

5. $c^{log_{a}b}=b^{log_{a}b}$, где $а, b, c > 0, a≠1$

6. Формула перехода к новому основанию

$log_{a}b={log_{c}b}/{log_{c}a}$

7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение

$log_{a}b={1}/{log_{b}a}$

При решении систем, содержащих логарифмические уравнения, часто удается, избавившись от логарифма, заменить одно или оба уравнения системы рациональными уравнениями. После этого надо выразить одну переменную через другую и после постановки получить уравнение с одной переменной. Кроме того, часто встречаются задачи на замену переменной в пределах одного или обоих уравнений системы и системы, требующие отбора решений.

Логарифмические неравенства:

1. Определить ОДЗ неравенства.

2. По свойствам логарифма преобразовать неравенство к простому виду, желательно получить с двух сторон логарифмы по одинаковому основанию.

3. Перейти к подлогарифмическим выражениям, при этом надо помнить, что:

а) если основание больше единицы, то при переходе к подлогарифмическим выражениям знак неравенства остается прежним;

b) если основание меньше единицы, то при переходе к подлогарифмическим выражениям знак неравенства меняется на противоположный;

с) если в основании находится переменная, надо рассмотреть оба варианта.

4. Решить неравенство.

5. Выбрать решения с учетом ОДЗ из п.1

При решении логарифмических неравенств с переменной в основании легче всего воспользоваться тождественными преобразованиями:

$log_{a}f > b ↔ {table (f-a^b)(a-1) > 0; f > 0; a > 0;$

$log_{a}f+log_{a}g > 0 ↔ {table(fg-1)(a-1)> 0; f > 0,g > 0; a > 0;$

$log_{a}f+b > 0 ↔ {table(fa^b-1)(a-1) > 0; f > 0; a > 0;$

Системы, содержащие показательные уравнения

Свойства степеней

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

$a^n·a^m=a^{n+m}$

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются

$a^n:a^m=a^{n-m}$

3. При возведении степени в степень основание остается прежним, а показатели перемножаются

$(a^n)^m=a^{n·m}$

4. При возведении в степень произведения в эту степень возводится каждый множитель

$(a·b)^n=a^n·b^n$

5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

$({a}/{b})^n={a^n}/{b^n}$

6. При возведении любого основания в нулевой показатель степени результат равен единице

$a^0=1$

Основные методы решения систем, содержащих показательные уравнения, ничем принципиально не отличаются от методов решения других систем: это метод алгебраического сложения, замена переменной в пределах одного уравнения или всей системы, подстановка. Единственная особенность – положительность выражения $a^{f(x)}$, которую полезно учитывать, вводя соответствующее ограничение при замене переменной.

Показательные неравенства, сводящиеся к виду $a^{f(x)} ≥ a^{g(x)}$:

1. Преобразовать показательное уравнение к виду $a^{f(x)} ≥ a^{g(x)}$

2. Перейти показателям степеней, при этом если основание степени меньше единицы, то знак неравенства меняется на противоположный, если основание больше единицы – знак неравенства остается прежним.

3. Решить полученное неравенство.

4. Записать результат.

Показательные неравенства, которые можно разложить на множители или сделать замену переменной.

1. Для данного метода во всем неравенстве по свойству степеней надо преобразовать степени к одному виду $a^{f(x)}$.

2. Сделать замену переменной $a^{f(x)}=t, t>0$.

3. Получаем рациональное неравенство, которое можно решить методом интервалов путем разложения на множители выражения.

4. Делаем обратную замену с учетом того, что $t>0$. Получаем простейшее показательное неравенство $a^{f(x)}=t$, решаем его и результат записываем в ответ.

Уравнения с многочленами

Многочлен может обозначаться записью $Р(х)$ — это означает, что многочлен зависит от «х», если записать $Р(х+1)$ — это означает, что в многочлене вместо «х» надо сделать замену на скобку $(х+1)$

Пример:

Найдите значение выражения: $4(p(2x)−2p(x+3))$, если $p(x)=x−6$

Решение:

В данном условии задан многочлен, зависящий от «х», как $p(x)=x−6$.

Чтобы было понятнее, назовем исходный многочлен основной формулой, тогда, чтобы записать $p(2x)$, в основной формуле заменим «х» на «2х».

$p(2x)=2х-6$

Аналогично $p(x+3)=(х+3)-6=х+3-6=х-3$

Соберем все выражение: $4(p(2x)−2p(x+3))=4((2х-6)-2(х-3))$

Далее осталось раскрыть скобки и привести подобные слагаемые

$4((2х-6)-2(х-3))=4(2х-6-2х+6)=4·0=0$

Ответ: $0$

Системы иррациональных уравнений

Основные методы решения систем, содержащих иррациональные уравнения, ничем принципиально не отличаются от методов решения других систем: это метод алгебраического сложения, замена переменной в пределах одного уравнения или всей системы, подстановка. Единственная особенность – надо расписать ОДЗ каждого уравнения, а в конце решения выбрать решение системы с учетом ОДЗ.

Чтобы решить иррациональное уравнение, необходимо:

1. Преобразовать заданное иррациональное уравнение к виду

$√{f(x)}=g(x)$ или $√{f(x)}=√{g(x)}$

2. Обе части уравнение возвести в квадрат

$√{f(x)}^2={g(x)}^2$ или $√{f(x)}^2=√{g(x)}^2$

3. Решить полученное рациональное уравнение.

4. Сделать проверку корней, так как возведение в четную степень может привести к появлению посторонних корней. (Проверку можно сделать при помощи подстановки найденных корней в исходное уравнение.)

Показательные и логарифмические уравнения с параметром

Показательные уравнения c параметром

Как правило, чтобы решить показательные уравнения с параметром нужно привести их квадратному или линейному уравнению. Обычно это можно сделать при помощи метода замены переменных. Но надо быть внимательным – при замене (t=a^x), новая переменная (t) всегда положительна.

Найдите все значения параметра (a), при которых уравнение ((a+1)(4^x+4^<-x>)=5) имеет единственное решение.

Заметим, что (a+1 > 0), так как (4^x+4^ <-x>> 0). Сделаем замену (t=4^x); (t > 0) $$ (a+1)(t+frac<1>)=5;$$ $$(a+1)t^2-5t+a+1=0$$ $$_<1,2>=frac<5±sqrt<25-4(a+1)^2>> <2(a+1)>.$$
Уравнение будет иметь единственное решение, если $$D=25-4(a+1)^2=0 $$ $$a+1=±frac<5><2>$$ (a=-3.5 -) не подходит;
(a=1.5;)

Логарифмические уравнения с параметром

Чтобы решить логарифмические уравнения, надо обязательно записывать ОДЗ, а затем провести необходимые равносильные преобразования или сделать замену, чтобы свести уравнение к более простому.

Решите уравнение (log_a (x^2)+2log_a (x+1)=2) для каждого (a).

Перейдем от суммы логарифмов к их произведению:

При условии, что (1-4a≥0 ⇔ 0 0).

При условии, что $$ 1+4a>0 ⇔ a>0$$ корень $$x=frac<1><2>-frac<sqrt<1+4a>><2>$$ не подходит, так как ( x>0.)

Найдите все значения параметра (a), при которых уравнение (log_4 (16^x+a)=x) имеет два действительных и различных корня.

При помощи равносильного преобразования приведем наше уравнение к виду:

Сделаем замену: (t=4^x>0 ⇔ t^2-t+a=0,)

Полученное квадратное уравнение должно иметь корни (0 0, \D≥0, \D>0, \ _<0>>0; end $$ $$ begin a>0, \1-4a>0, \ 1/2>0; end $$ $$ begin a>0, \a

Решение показательных уравнений с параметрами

Разделы: Математика

Цели урока: Учащиеся должны знать способы решений уравнений вида – показательная функция и уметь применять при решении задач.

Ход урока.

Для первой группы учащихся выдавались следующие задания.

Для каждого значения a решить уравнения:

Задания для второй группы учащихся.

Указать число решений в зависимости от параметра а.

Третья группа решает уравнения, сводящиеся к квадратным.

Задание 1. Решить уравнение p · 4 x – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.

Задание 2. При каких a уравнение 9 x + (2a + 4) · 3 x + 8a + 1 = 0 имеет единственное решение.

Задание 3. Указать число решений уравнения 49 x + 2p · 7 x + p 2 – 1 = 0 в зависимости от параметра p.

Задание 4. При каких значениях p уравнение 4 x – (5p – 3) · 2 x + 4p 2 – 3p = 0 имеет единственное решение.

Выступление первой группы – решение показательных уравнений вида

Докладывает лидер первой группы и привлекает к своему докладу участников этой группы. То есть диалог идёт ученик – ученик.

Решение исходного уравнения сводится к решению линейного уравнения с параметрами kx = b.

Если k = 0, b = 0, то 0 · x = 0, – любое действительное число.

Если k = 0, b ≠ 0, то 0 · x = b – нет решений.

Если k ≠ 0, то , один корень.

Задание 1. Решить уравнение .

Докладчик решает у доски с комментариями, остальные записывают в тетрадях.

Значит уравнение (1) можно представить в виде (a – 1)(a + 4)x = (a – 1)(a – 1)(a – 3).

Исследуем полученное уравнение:

Ответ:

На этом выступление первой группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 1.

Выступление второй группы – решение уравнений вида

Докладывает лидер второй группы и привлекает к обсуждению этого вопроса всех учащихся. Исходное уравнение равносильно уравнению ax 2 + bx + c1 = c0, или ax 2 + bx + c = 0.

Далее идёт диалог ученик–ученик.

  1. Какое уравнение получили? – Это уравнение степени не выше второй.
  2. При a = 0, bx + c = 0, получили линейное уравнение, которое может иметь одно решение, не иметь корней, или иметь бесконечное множество решений.
  3. При a ≠ 0, ax 2 + bx + c = 0, квадратное уравнение.
  4. От чего зависит число решений квадратного уравнения? – Число решений квадратного уравнения зависит от дискриминанта. Если D = 0 то квадратное уравнение имеет одно решение. Если D > 0, то два решения. Если D 2 + 2(a + 3)x + a + 2 = 0.

Ответ:

На этом выступление второй группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 2.

Выступление третьей группы – решение уравнений вида af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.

Слово предоставляется выступающему от третьей группы. Он докладывает, что их группа решала уравнения вида: (1) af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.

Исходное уравнение (1) равносильно

Далее докладчик задаёт вопросы, а учащиеся отвечают на них.

При каких условиях уравнение (1) имеет один корень?

  1. При a = 0 уравнение (2) становится линейным, значит может иметь только один корень, и он должен быть положительным.
  2. Если D = 0, уравнение (2) имеет один корень, и он должен быть положительным.
  3. Если D > 0, уравнение (2) имеет два корня, но они должны быть различных знаков.
  4. Если D > 0, уравнение (2) имеет два корня, но один из низ нуль. А второй положительный.

При каких условиях уравнение (1) имеет два корня?

Исходное уравнение имеет два корня, если уравнение (2) имеет два корня и оба они положительны.

При каких условиях уравнение (1) не имеет корней?

    Если Dx – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.

Ответим на вопрос: При каких значениях p уравнение (1) имеет один корень?

  • Если одно решение. Обсуждается вопрос какие ещё могли быть варианты при t = 0 – нет решений, при t 0.

Уравнение будет иметь единственное решение при условии. Что дискриминант уравнения (2) есть число положительное, но корни при этом имеют различные знаки. Эти условия достигаются с помощью теоремы Виета. Чтобы корни квадратного трёхчлена были действительными и имели различные знаки, необходимо и достаточно выполнение соотношений.

Итак, уравнение (1) имеет единственное решение при p ≤ 0, p = 4.

Теперь остаётся ответить на вопрос. При каких условиях исходное уравнение (2) имеет два решения? Это возможно, если уравнение (2) имеет два корня и оба они положительны. По теореме Виета для того, чтобы корни квадратного трёхчлена были действительными и при этом оба были положительными, необходимо и достаточно выполнение соотношений.

Исходное уравнение имеет два корня при 0 0, то уравнение (2) имеет корни, но они оба отрицательны.

Итак, D 4. При p > 4 – нет решений. Второе условие равносильно следующим соотношениям.

Значит уравнение (1) не имеет решений при p > 4.

Ответ:

  1. При p = 4, p ≤ 0 одно решение.
  2. При 0 4 нет решений.

На этом выступление третьей группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 3.

Домашнее задание.

Задание 1. Найти все значения параметра a, при которых уравнение (a – 3) · 4 x – 8 · 6 x + (a +3) 9 x = 0 не имеет корней.

Задание 2.Указать число решений уравнения p · 2 x + 2 –x – 5 = 0 в зависимости от параметра p.

Задание 3. Выяснить при каких значениях a уравнение . имеет решения, найти эти решения.

Задание 4. Найти все значения p при которых уравнение (p – 1) · 4 x – 4 · 2 x + (p + 2) = 0 имеет хотя бы одно решение.

Задание 5. Указать число решений уравнения a · 12 |x| = 2 – 12 |x| в зависимости от параметра a.

Показательные уравнения, неравенства и системы с параметром

п.1. Примеры

Пример 1. Решите уравнение:
a) (3cdot 4^+27=a+acdot 4^)
(3cdot 4^-acdot 4^=a-27)
(4^(3-a)=a-27)
(4^=frac<3-a>)
По свойствам показательной функции дробь справа должна быть положительной:
(frac<3-a>gt 0Rightarrowfraclt 0)

(3lt alt 27)
(x-2=log_4frac<3-a>)
(x=2+log_4frac<3-a>)
Ответ:
При (aleq 3cup ageq 27) решений нет, (xinvarnothing)
При (3lt alt 27, x=2+log_4frac<3-a>)

2) (D=0) при (a=1, t=frac22=1)
(11^<|x|>=1=11^0Rightarrow |x|=0Rightarrow x=0) — один корень

3) (Dgt 0) при (alt 1, t_<1,2>=frac<2pm 2sqrt<1-a>><2>=1pm sqrt<1-a>)
Корень (t_2=1+sqrt<1-a>) положительный при всех (alt 1)
Получаем для (x: 11^<|x|>=1+sqrt<1-a>Rightarrow |x|=log_<11>(1+sqrt<1-a>))
(log_<11>(1+sqrt<1-a>)geq 0,) т.к. (1+sqrt<1-a>geq 1), логарифм может быть равен модулю.
Получаем пару решений: (x=pm log_<11>(1+sqrt<1-a>))

Для корня (t_1=1-sqrt<1-a>) решаем неравенство (учитывая (alt 1)):
( 1-sqrt<1-a>gt 0Rightarrowsqrt<1-a>lt 1Rightarrow begin 1-alt 1\ alt 1 end Rightarrow begin agt 0\ alt 1 end Rightarrow 0lt alt 1 )
Тогда (|x|=log_<11>(1-sqrt<1-a>), но log_11⁡(log_<11>(1-sqrt<1-a>lt 0) и не может быть равен модулю. Значит, для корня (t_1) решений нет.

Ответ:
При (agt 1) решений нет, (xinvarnothing)
При (a=1) один корень (x=0)
При (alt 1) два корня (x=pm log_<11>⁡(1+sqrt<(1-a)>)

Пример 2. При каких значениях (a) неравенство (4^x-acdot 2^x-a+3leq 0) имеет хотя бы одно решение?
Замена: (t=2^x)
Функция (f(t)=t^2-at-a+3) – это парабола ветками вверх, которая будет иметь отрицательную область значений, если (Dgt 0) и будет равна 0 при (D=0).
Неравенство будет иметь решение, когда у соответствующего уравнения появятся корни.
(D=a^2-4cdot (-a+3)=a^2+4a-12geq 0)
((a+6)(a-2)geq 0)

(aleq -6cup aleq 2)

Решение квадратного уравнения: (t_<1,2>=frac><2>)
По свойству показательной функции, (t) должно быть положительным.
Для первого корня: begin a-sqrtgt 0Rightarrow sqrtlt aRightarrow begin agt 0\ a^2+4a-12geq 0\ a^2+4a-12lt a^2 end Rightarrow \ begin agt 0\ aleq -6cup ageq 2\ alt 3 end Rightarrow begin 0lt alt 3\ aleq -6cup ageq 2 end Rightarrow 2leq alt 3 end Для второго корня: begin a+sqrtgt 0Rightarrow sqrtgt -aRightarrow left[ begin begin -alt 0\ a^2+4a-12geq 0 end \ begin -ageq 0\ a^2+4a-12gt (-a)^2 end end right. Rightarrow\ Rightarrow left[ begin begin agt 0\ aleq -6cup ageq 2 end \ begin aleq 0\ agt 3 end end right. Rightarrow ageq 2 end Таким образом, у неравенства будет хотя бы одно решение при (ageq 2)
Ответ: (ainleft.left[2;+inftyright.right))

Пример 3. При каких значениях (a) оба корня уравнения (16^x-acdot 4^x+2=0) принадлежат отрезку [0;1]?

Замена: (t=4^xgt 0)
(t^2-at+2=0)
(D=a^2-8)
(Dgeq 0) при (|a|geq 2sqrt<2>)
Решение уравнения: (t_<1,2>=frac><2>)
По условию (0leq x_<1,2>leq 1,) что для замены даёт (4^0leq 4^>leq 4^1, 1leq t_<1,2>leq 4)
Условие выполняется, если одновременно ( begin t_1geq 1\ t_2leq 4 end )
Решаем систему: begin begin frac><2>geq 1\ frac><2>leq 4 end Rightarrow begin a-sqrtgeq 2\ sqrtleq 4-a end Rightarrow\ Rightarrow begin begin a-2geq 0\ a^2-8geq 0\ a^2-8leq (a-2)^2 end \ begin 4-ageq 0\ a^2-8geq 0\ a^2-8leq (4-a)^2 end end Rightarrow begin ageq 2\ aleq 4\ aleq -2sqrt<2>cup ageq 2sqrt<2>\ a^2-8leq a^2-4a+4\ a^2-8leq 16-8a+a^2 end Rightarrow begin 2sqrt<2>leq aleq 4\ aleq 3\ aleq 3 end Rightarrow \ Rightarrow 2sqrt<2>leq aleq 3 end Ответ: (ain[2sqrt<2>;3])

Пример 4. При каких значениях (a) система ( begin 2^x-y+1=0\ |x|+|y|=a end ) имеет ровно одно решение?
Запишите это решение.

Решаем графически.
(y=2^x+1) – это кривая показательной функции (y=2^x), поднятая на 1 вверх.
(|x|+|y|=a) — это множество квадратов с центром в начале координат и вершинами на осях в точках ((pm a;0),(0;pm a)).

Одна точка пересечения при (a=2). Решение – точка ( begin x=0\ y=2 end )
При (alt 2) решений нет.
При (agt 2) — два решения.

источники:

http://urok.1sept.ru/articles/518184

http://reshator.com/sprav/algebra/10-11-klass/pokazatelnye-uravneniya-neravenstva-i-sistemy-s-parametrom/

п.1. Примеры

Пример 1. Решите уравнение:
a) (3cdot 4^{x-2}+27=a+acdot 4^{x-2})
(3cdot 4^{x-2}-acdot 4^{x-2}=a-27)
(4^{x-2}(3-a)=a-27)
(4^{x-2}=frac{a-27}{3-a})
По свойствам показательной функции дробь справа должна быть положительной:
(frac{a-27}{3-a}gt 0Rightarrowfrac{a-27}{a-3}lt 0)
Пример 1a
(3lt alt 27)
(x-2=log_4frac{a-27}{3-a})
(x=2+log_4frac{a-27}{3-a})
Ответ:
При (aleq 3cup ageq 27) решений нет, (xinvarnothing)
При (3lt alt 27, x=2+log_4frac{a-27}{3-a})

б) (121^{|x|}-2cdot 11^{|x|}+a=0)
Замена: (t=11^{|x|})
(t^2-2t+a=0)
(D=4-4a=4(1-a))
1) (Dlt 0) при (agt 1), решений нет

2) (D=0) при (a=1, t=frac22=1)
(11^{|x|}=1=11^0Rightarrow |x|=0Rightarrow x=0) — один корень

3) (Dgt 0) при (alt 1, t_{1,2}=frac{2pm 2sqrt{1-a}}{2}=1pm sqrt{1-a})
Корень (t_2=1+sqrt{1-a}) положительный при всех (alt 1)
Получаем для (x: 11^{|x|}=1+sqrt{1-a}Rightarrow |x|=log_{11}(1+sqrt{1-a}))
(log_{11}(1+sqrt{1-a})geq 0,) т.к. (1+sqrt{1-a}geq 1), логарифм может быть равен модулю.
Получаем пару решений: (x=pm log_{11}(1+sqrt{1-a}))

Для корня (t_1=1-sqrt{1-a}) решаем неравенство (учитывая (alt 1)):
( 1-sqrt{1-a}gt 0Rightarrowsqrt{1-a}lt 1Rightarrow begin{cases} 1-alt 1\ alt 1 end{cases} Rightarrow begin{cases} agt 0\ alt 1 end{cases} Rightarrow 0lt alt 1 )
Тогда (|x|=log_{11}(1-sqrt{1-a}), но log_11⁡(log_{11}(1-sqrt{1-a}lt 0) и не может быть равен модулю. Значит, для корня (t_1) решений нет.

Ответ:
При (agt 1) решений нет, (xinvarnothing)
При (a=1) один корень (x=0)
При (alt 1) два корня (x=pm log_{11}⁡(1+sqrt{(1-a)})

Пример 2. При каких значениях (a) неравенство (4^x-acdot 2^x-a+3leq 0) имеет хотя бы одно решение?
Замена: (t=2^x)
Функция (f(t)=t^2-at-a+3) – это парабола ветками вверх, которая будет иметь отрицательную область значений, если (Dgt 0) и будет равна 0 при (D=0).
Неравенство будет иметь решение, когда у соответствующего уравнения появятся корни.
(D=a^2-4cdot (-a+3)=a^2+4a-12geq 0)
((a+6)(a-2)geq 0)
Пример 2
(aleq -6cup aleq 2)

Решение квадратного уравнения: (t_{1,2}=frac{apmsqrt{a^2+4a-12}}{2})
По свойству показательной функции, (t) должно быть положительным.
Для первого корня: begin{gather*} a-sqrt{a^2+4a-12}gt 0Rightarrow sqrt{a^2+4a-12}lt aRightarrow begin{cases} agt 0\ a^2+4a-12geq 0\ a^2+4a-12lt a^2 end{cases} Rightarrow \ begin{cases} agt 0\ aleq -6cup ageq 2\ alt 3 end{cases} Rightarrow begin{cases} 0lt alt 3\ aleq -6cup ageq 2 end{cases} Rightarrow 2leq alt 3 end{gather*} Для второго корня: begin{gather*} a+sqrt{a^2+4a-12}gt 0Rightarrow sqrt{a^2+4a-12}gt -aRightarrow left[ begin{array}{l l} begin{cases} -alt 0\ a^2+4a-12geq 0 end{cases} \ begin{cases} -ageq 0\ a^2+4a-12gt (-a)^2 end{cases} end{array} right. Rightarrow\ Rightarrow left[ begin{array}{l l} begin{cases} agt 0\ aleq -6cup ageq 2 end{cases} \ begin{cases} aleq 0\ agt 3 end{cases} end{array} right. Rightarrow ageq 2 end{gather*} Таким образом, у неравенства будет хотя бы одно решение при (ageq 2)
Ответ: (ainleft.left[2;+inftyright.right))

Пример 3. При каких значениях (a) оба корня уравнения (16^x-acdot 4^x+2=0) принадлежат отрезку [0;1]?

Замена: (t=4^xgt 0)
(t^2-at+2=0)
(D=a^2-8)
(Dgeq 0) при (|a|geq 2sqrt{2})
Решение уравнения: (t_{1,2}=frac{apmsqrt{a^2-8}}{2})
По условию (0leq x_{1,2}leq 1,) что для замены даёт (4^0leq 4^{x_{1,2}}leq 4^1, 1leq t_{1,2}leq 4)
Условие выполняется, если одновременно ( begin{cases} t_1geq 1\ t_2leq 4 end{cases} )
Решаем систему: begin{gather*} begin{cases} frac{a-sqrt{a^2-8}}{2}geq 1\ frac{a+sqrt{a^2-8}}{2}leq 4 end{cases} Rightarrow begin{cases} a-sqrt{a^2-8}geq 2\ sqrt{a^2-8}leq 4-a end{cases} Rightarrow\ Rightarrow begin{cases} begin{cases} a-2geq 0\ a^2-8geq 0\ a^2-8leq (a-2)^2 end{cases} \ begin{cases} 4-ageq 0\ a^2-8geq 0\ a^2-8leq (4-a)^2 end{cases} end{cases} Rightarrow begin{cases} ageq 2\ aleq 4\ aleq -2sqrt{2}cup ageq 2sqrt{2}\ a^2-8leq a^2-4a+4\ a^2-8leq 16-8a+a^2 end{cases} Rightarrow begin{cases} 2sqrt{2}leq aleq 4\ aleq 3\ aleq 3 end{cases} Rightarrow \ Rightarrow 2sqrt{2}leq aleq 3 end{gather*} Ответ: (ain[2sqrt{2};3])

Пример 4. При каких значениях (a) система ( begin{cases} 2^x-y+1=0\ |x|+|y|=a end{cases} ) имеет ровно одно решение?
Запишите это решение.

Решаем графически.
(y=2^x+1) – это кривая показательной функции (y=2^x), поднятая на 1 вверх.
(|x|+|y|=a) — это множество квадратов с центром в начале координат и вершинами на осях в точках ((pm a;0),(0;pm a)).
Пример 4
Одна точка пересечения при (a=2). Решение – точка ( begin{cases} x=0\ y=2 end{cases} )
При (alt 2) решений нет.
При (agt 2) — два решения.

Ответ: При (a=2, begin{cases} x=0\ y=2 end{cases} )


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Задачи с параметром


Задание
1

#1220

Уровень задания: Легче ЕГЭ

Решите уравнение (ax+3=0) при всех значениях параметра (a).

Уравнение можно переписать в виде (ax=-3). Рассмотрим два случая:

1) (a=0). В этом случае левая часть равна (0), а правая – нет, следовательно, уравнение не имеет корней.

2) (ane 0). Тогда (x=-dfrac{3}{a}).

Ответ:

(a=0 Rightarrow xin varnothing; \
ane 0 Rightarrow
x=-dfrac{3}{a})
.


Задание
2

#1221

Уровень задания: Легче ЕГЭ

Решите уравнение (ax+a^2=0) при всех значениях параметра (a).

Уравнение можно переписать в виде (ax=-a^2). Рассмотрим два случая:

1) (a=0). В этом случае левая и правая части равны (0), следовательно, уравнение верно при любых значениях переменной (x).

2) (ane 0). Тогда (x=-a).

Ответ:

(a=0 Rightarrow xin mathbb{R}; \
ane 0 Rightarrow x=-a)
.


Задание
3

#1222

Уровень задания: Легче ЕГЭ

Решите неравенство (2ax+5cosdfrac{pi}{3}geqslant 0) при всех значениях параметра (a).

Неравенство можно переписать в виде (axgeqslant -dfrac{5}{4}). Рассмотрим три случая:

1) (a=0). Тогда неравенство принимает вид (0geqslant
-dfrac{5}{4})
, что верно при любых значениях переменной (x).

2) (a>0). Тогда при делении на (a) обеих частей неравенства знак неравенства не изменится, следовательно, (xgeqslant
-dfrac{5}{4a})
.

3) (a<0). Тогда при делении на (a) обеих частей неравенства знак неравенства изменится, следовательно, (xleqslant -dfrac{5}{4a}).

Ответ:

(a=0 Rightarrow xin mathbb{R}; \
a>0 Rightarrow xgeqslant -dfrac{5}{4a}; \
a<0 Rightarrow xleqslant -dfrac{5}{4a})
.


Задание
4

#1223

Уровень задания: Легче ЕГЭ

Решите неравенство (a(x^2-6) geqslant (2-3a^2)x) при всех значениях параметра (a).

Преобразуем неравенство к виду: (ax^2+(3a^2-2)x-6a geqslant 0). Рассмотрим два случая:

1) (a=0). В этом случае неравенство становится линейным и принимает вид: (-2x geqslant 0 Rightarrow xleqslant 0).

2) (ane 0). Тогда неравенство является квадратичным. Найдем дискриминант:

(D=9a^4-12a^2+4+24a^2=(3a^2+2)^2).

Т.к. (a^2 geqslant 0 Rightarrow D>0) при любых значениях параметра.

Следовательно, уравнение (ax^2+(3a^2-2)x-6a = 0) всегда имеет два корня (x_1=-3a, x_2=dfrac{2}{a}). Таким образом, неравенство примет вид:

[(ax-2)(x+3a) geqslant 0]

Если (a>0), то (x_1<x_2) и ветви параболы (y=(ax-2)(x+3a)) направлены вверх, значит, решением являются (xin (-infty; -3a]cup
big[dfrac{2}{a}; +infty))
.

Если (a<0), то (x_1>x_2) и ветви параболы (y=(ax-2)(x+3a)) направлены вниз, значит, решением являются (xin big[dfrac{2}{a};
-3a])
.

Ответ:

(a=0 Rightarrow xleqslant 0; \
a>0 Rightarrow xin (-infty; -3a]cup big[dfrac{2}{a}; +infty);
\
a<0 Rightarrow xin big[dfrac{2}{a}; -3abig])
.


Задание
5

#1851

Уровень задания: Легче ЕГЭ

При каких (a) множество решений неравенства ((a^2-3a+2)x
-a+2geqslant 0)
содержит полуинтервал ([2;3)) ?

Преобразуем неравенство: ((a-1)(a-2)x geqslant a-2). Получили линейное неравенство. Рассмотрим случаи:

1) (a=2). Тогда неравенство примет вид (0 geqslant 0), что верно при любых значениях (x), следовательно, множество решений содержит полуинтервал ([2;3)).

2) (a=1). Тогда неравенство примет вид (0 geqslant -1), что верно при любых значениях (x), следовательно, множество решений содержит полуинтервал ([2;3)).

3) ((a-1)(a-2)>0 Leftrightarrow ain (-infty;1)cup (2;+infty)). Тогда:

(xgeqslant dfrac{1}{a-1}). Для того, чтобы множество решений содержало полуинтервал ([2;3)), необходимо, чтобы

(dfrac{1}{a-1} leqslant 2 Leftrightarrow dfrac{3-2a}{a-1}
leqslant 0
Rightarrow ain (-infty; 1)cup [1,5; +infty))
.

Учитывая условие (ain (-infty;1)cup (2;+infty)), получаем (ain
(-infty;1)cup (2;+infty))
.

4) ((a-1)(a-2)<0 Leftrightarrow ain (1;2)). Тогда:

(xleqslant dfrac{1}{a-1} Rightarrow dfrac{1}{a-1} geqslant 3).

Действуя аналогично случаю 3), получаем (ain (1;
dfrac{4}{3}big])
.

Ответ:

(ain (-infty;dfrac{4}{3}big]cup [2;+infty)).


Задание
6

#1361

Уровень задания: Легче ЕГЭ

Определить количество корней уравнения (ax^2+(3a+1)x+2=0) при всех значениях параметра (a).

Рассмотрим два случая:

1) (a=0). Тогда уравнение является линейным: (x+2=0 Rightarrow
x=-2)
. То есть уравнение имеет один корень.

2) (ane 0). Тогда уравнение является квадратным. Найдем дискриминант: (D=9a^2-2a+1).

Рассмотрим уравнение (9a^2-2a+1=0): (D’=4-36<0), следовательно, уравнение (9a^2-2a+1=0) не имеет корней. Значит, выражение ((9a^2-2a+1)) принимает значения строго одного знака: либо всегда положительно, либо отрицательно. В данном случае оно положительно при любых (a) (в этом можно убедиться, подставив вместо (a) любое число).

Таким образом, (D=9a^2-2a+1>0) при всех (ane 0). Значит, уравнение (ax^2+(3a+1)x+2=0) всегда имеет два корня: (x_{1,2}=dfrac{-3a-1pm
sqrt D}{2a})

Ответ:

(a=0Rightarrow) один корень

(ane 0 Rightarrow) два корня.


Задание
7

#1363

Уровень задания: Легче ЕГЭ

Решить уравнение (sqrt{x+2a}cdot (3-ax-x)=0) при всех значениях параметра (a).

Данное уравнение равносильно системе:

[begin{cases}
xgeqslant -2a\
left[ begin{gathered} begin{aligned}
&x=-2a \
&3-(a+1)x=0 qquad (*)
end{aligned} end{gathered} right.
end{cases}]

Рассмотрим два случая:

1) (a+1=0 Rightarrow a=-1). В этом случае уравнение ((*)) равносильно (3=0), то есть не имеет решений.

Тогда вся система равносильна (
begin{cases}
xgeqslant 2\
x=2
end{cases} Leftrightarrow x=2)

2) (a+1ne 0 Rightarrow ane -1). В этом случае система равносильна: [begin{cases}
xgeqslant -2a\
left[ begin{gathered} begin{aligned}
&x_1=-2a \
&x_2=dfrac3{a+1}
end{aligned} end{gathered} right.
end{cases}]

Данная система будет иметь одно решение, если (x_2leqslant -2a), и два решения, если (x_2>-2a):

2.1) (dfrac3{a+1}leqslant -2a Rightarrow a<-1 Rightarrow ) имеем один корень (x=-2a).

2.2) (dfrac3{a+1}>-2a Rightarrow a>-1 Rightarrow ) имеем два корня (x_1=-2a, x_2=dfrac3{a+1}).

Ответ:

(ain(-infty;-1) Rightarrow x=-2a\
a=-1 Rightarrow x=2\
ain(-1;+infty) Rightarrow xin{-2a;frac3{a+1}})

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Параметр окружности егэ
  • Параметр какой номер в егэ
  • Параметр какое задание егэ
  • Параметр егэ трушин
  • Параметр егэ профиль теория

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии