Параллелограмм решу егэ профиль


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

В параллелограмме ABCD AB  =  3, AD  =  21,  синус A= дробь: числитель: 6, знаменатель: 7 конец дроби . Найдите большую высоту параллелограмма.


2

Найдите площадь квадрата, если его диагональ равна 1.


3

Площадь прямоугольника равна 18. Найдите его большую сторону, если она на 3 больше меньшей стороны.


4

Найдите периметр прямоугольника, если его площадь равна 18, а отношение соседних сторон равно 1:2.

Кодификатор ФИПИ/Решу ЕГЭ: 5.1.2 Параллелограмм, прямоугольник, ромб, квадрат, 5.5.3 Длина отрезка, ломаной, окружности, периметр многоугольника, 5.5.5 Площадь треугольника, параллелограмма, трапеции, круга, сектора


5

Периметр прямоугольника равен 42, а площадь 98. Найдите большую сторону прямоугольника.

Пройти тестирование по этим заданиям

Поиск

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 801    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь равна половине площади прямоугольника. Ответ дайте в градусах.


Стороны параллелограмма равны 9 и 15. Высота, опущенная на первую сторону, равна 10. Найдите высоту, опущенную на вторую сторону параллелограмма.

Источник: Досрочный ЕГЭ по математике (Центр) 30.03.2018, ЕГЭ по математике 28.03.2016. Досрочная волна, вариант 3


Две стороны параллелограмма относятся как 3 : 4, а периметр его равен 70. Найдите большую сторону параллелограмма.


Площадь параллелограмма ABCD равна 153. Найдите площадь параллелограмма A’B’C’D’, вершинами которого являются середины сторон данного параллелограмма.


Площадь параллелограмма ABCD равна 176. Точка E  — середина стороны CD. Найдите площадь треугольника ADE.

Источник: Пробный экзамен по математике Санкт-Петербург 2014. Вариант 1.


Площадь параллелограмма ABCD равна 14. Найдите площадь параллелограмма A’B’C’D’, вершинами которого являются середины сторон данного параллелограмма.


Найдите площадь параллелограмма, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Периметр параллелограмма равен 46. Одна сторона параллелограмма на 3 больше другой. Найдите меньшую сторону параллелограмма.


Периметр параллелограмма равен 94. Одна сторона параллелограмма на 41 больше другой. Найдите меньшую сторону параллелограмма.


Стороны параллелограмма равны 38 и 76. Высота, опущенная на первую сторону, равна 57. Найдите высоту, опущенную на вторую сторону параллелограмма.


Периметр параллелограмма равен 70. Меньшая сторона равна 16. Найдите большую сторону параллелограмма.

Раздел: Планиметрия


Найдите площадь параллелограмма, изображённого на клетчатой бумаге с размером клетки 1 см × 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Стороны параллелограмма равны 24 и 27. Высота, опущенная на меньшую из этих сторон, равна 18. Найдите высоту, опущенную на бо́льшую сторону параллелограмма.


Площадь параллелограмма равна 40, две его стороны равны 5 и 10. Найдите большую высоту этого параллелограмма.


Две стороны параллелограмма относятся как 1 : 4, а периметр его равен 30. Найдите большую сторону параллелограмма.


Две стороны параллелограмма относятся как 9 : 11, а периметр его равен 40. Найдите большую сторону параллелограмма.


Площадь параллелограмма ABCD равна 189. Точка E  — середина стороны AD. Найдите площадь трапеции AECB.


Площадь параллелограмма ABCD равна 123. Точка E  — середина стороны AB. Найдите площадь трапеции EBCD.


В основании правильной четырёхугольной пирамиды MABCD лежит квадрат ABCD со стороной 6. Противоположные боковые рёбра пирамиды попарно перпендикулярны. Через середины рёбер MA и MB проведена плоскость α, параллельная ребру MC.

а)  Докажите, что сечение плоскостью α пирамиды MABC является параллелограммом.

б)  Найдите площадь сечения пирамиды MABC плоскостью α.


В основании правильной четырёхугольной пирамиды MABCD лежит квадрат ABCD со стороной 10. Противоположные боковые рёбра пирамиды попарно перпендикулярны. Через середины рёбер MA и MB проведена плоскость  альфа , параллельная ребру MC.

а)  Докажите, что сечение плоскостью α пирамиды MABC является параллелограммом.

б)  Найдите площадь сечения пирамиды MABC плоскостью  альфа .

Всего: 801    1–20 | 21–40 | 41–60 | 61–80 …

3. Геометрия на плоскости (планиметрия). Часть I


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Параллелограмм и его свойства

Сумма внутренних углов любого четырехугольника равна (360^circ).

Свойства параллелограмма:

(blacktriangleright) Противоположные стороны попарно равны;

(blacktriangleright) Диагонали точкой пересечения делятся пополам;

(blacktriangleright) Противоположные углы попарно равны, а сумма соседних равна (180^circ).

Признаки параллелограмма.
Если для выпуклого четырехугольника выполнено одно из следующих условий, то это – параллелограмм:

(blacktriangleright) если противоположные стороны попарно равны;

(blacktriangleright) если две стороны равны и параллельны;

(blacktriangleright) если диагонали точкой пересечения делятся пополам;

(blacktriangleright) если противоположные углы попарно равны.

Площадь параллелограмма

Площадь параллелограмма равна произведению высоты на основание, к которому проведена эта высота.


Задание
1

#1783

Уровень задания: Легче ЕГЭ

Периметр параллелограмма равен (100), его большая сторона равна (32). Найдите меньшую сторону параллелограмма.

Так как у параллелограмма противоположные стороны равны, то его периметр равен удвоенной сумме его непараллельных сторон, тогда сумма большей и меньшей сторон равна (100 : 2 = 50), значит, меньшая сторона параллелограмма равна (50 — 32 = 18).

Ответ: 18


Задание
2

#1784

Уровень задания: Равен ЕГЭ

Периметр параллелограмма равен (15). При этом одна сторона этого параллелограмма на (5) больше другой. Найдите меньшую сторону параллелограмма.

У параллелограмма противоположные стороны равны. Пусть (BC = AB +
5)
, тогда периметр параллелограмма (ABCD) равен (AB + BC + CD + AD =
AB + AB + 5 + AB + AB + 5 = 4cdot AB + 10 = 15)
, откуда находим (AB
= 1,25)
. Тогда меньшая сторона параллелограмма равна (1,25).

Ответ: 1,25


Задание
3

#273

Уровень задания: Равен ЕГЭ

В параллелограмме (ABCD): (BE) – высота, (BE = ED = 5). Площадь параллелограмма (ABCD) равна 35. Найдите длину (AE).

Площадь параллелограмма равна произведению основания на высоту, проведённую к этому основанию, тогда (35 = BE cdot AD = 5cdot(5 + AE)), откуда находим (AE = 2).

Ответ: 2


Задание
4

#1785

Уровень задания: Равен ЕГЭ

Из точки (C) параллелограмма (ABCD) опустили перпендикуляр на продолжение стороны (AD) за точку (D). Этот перпендикуляр пересёк прямую (AD) в точке (E), причём (CE = DE). Найдите (angle B) параллелограмма (ABCD). Ответ дайте в градусах.

В равнобедренном треугольнике углы при основании равны, тогда (angle EDC = angle DCE). Так как (angle DEC = 90^{circ}), а сумма углов треугольника равна (180^{circ}), то (angle EDC =
45^{circ})
, тогда (angle ADC = 180^{circ} — 45^{circ} =
135^{circ})
. Так как в параллелограмме противоположные углы равны, то (angle B = angle ADC = 135^{circ}).

Ответ: 135


Задание
5

#1686

Уровень задания: Равен ЕГЭ

Диагональ (BD) параллелограмма (ABCD) перпендикулярна стороне (DC) и равна (4). Найдите площадь параллелограмма (ABCD), если (AD=5).

По теореме Пифагора находим: (AB^2=AD^2 — BD^2 = 25 — 16 = 9) (Rightarrow) (AB = 3). (S_{ABCD} = 4cdot3 = 12).

Ответ: 12


Задание
6

#1685

Уровень задания: Равен ЕГЭ

В параллелограмме (ABCD): (P_{triangle AOB} = 8) , (P_{triangle AOD} = 9), а сумма смежных сторон равна (7). Найдите произведение этих сторон параллелограмма (ABCD).

(P_{triangle AOB} = AO + OB + AB), (P_{triangle AOD} = AO + OD + AD), (BO = OD) (Rightarrow) (P_{triangle AOD} — P_{triangle AOB} = AD — AB = 1), но (AD + AB = 7) (Rightarrow) (AD = 4), (AB = 3) (Rightarrow) (ADcdot AB = 12).

Ответ: 12


Задание
7

#3617

Уровень задания: Равен ЕГЭ

Стороны параллелограмма равны (9) и (15). Высота, опущенная на первую сторону, равна (10). Найдите высоту, опущенную на вторую сторону параллелограмма.

Площадь параллелограмма равна произведению высоты на сторону, к которой высота проведена. Следовательно, с одной стороны, площадь (S=9cdot 10), с другой стороны, (S=15cdot h), где (h) – высота, которую нужно найти.
Следовательно, [9cdot 10=15cdot hquadLeftrightarrowquad h=6]

Ответ: 6

Задачи из раздела «Геометрия на плоскости» являются обязательной частью аттестационного экзамена у выпускников средней школы. Теме «Параллелограмм и его свойства» в ЕГЭ традиционно отводится сразу несколько заданий. Они могут требовать от школьника как краткого, так и развернутого ответа с построением чертежа. Поэтому если одним из ваших слабых мест являются именно задачи на вычисление площадей параллелограмма или его сторон и углов, то вам непременно стоит повторить или вновь разобраться в материале.

Сделать это легко и эффективно вам поможет образовательный портал «Школково». Наши опытные специалисты подготовили необходимый теоретический материал, изложив его таким образом, чтобы школьники с любым уровнем подготовки смогли восполнить пробелы в знаниях и легко решить задачи ЕГЭ на вычисление площадей, сторон, углов или свойства биссектрисы параллелограмма. Найти базовую информацию вы можете в разделе «Теоретическая справка».

Чтобы успешно решить задачи ЕГЭ по теме «Параллелограмм и его свойства», предлагаем попрактиковаться в выполнении соответствующих упражнений. Большая подборка заданий представлена в блоке «Каталог». Специалисты портала «Школково» регулярно дополняют и обновляют данный раздел.

Последовательно выполнять упражнения учащиеся из Москвы и других городов могут в режиме онлайн. При необходимости любое задание можно сохранить в разделе «Избранное» и в дальнейшем вернуться к нему, чтобы обсудить с преподавателем.

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 6. Найдите его большую сторону.

ЕГЭ 3 Параллелограмм

Решение:

Давайте найдем здесь пары накрест лежащих углов – это углы 2 и 5; 3 и 6. Напомню, что накрест лежащие углы равны.

Параллелограмм

Методом пристального взгляда замечаем, что ∆ABE и ∆ECD – равнобедренные треугольники, тогда AB=AE=DC=DE.

ЕГЭ № 3

BC – большая сторона. AD – большая сторона. 

BC = AD = AE+ED = AB+CD = AB+AB = 2AB = 12

Ответ: 12

ЕГЭ Профиль

Планиметрия: задачи, связанные с углами

Параллелограммы

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 1001

В па­рал­ле­ло­грам­ме ABCD AB = 3, AD = 21,  $$sin a = frac{6}{7} $$ . Най­ди­те боль­шую вы­со­ту па­рал­ле­ло­грам­ма.

Ответ: 18

Задание 1003

Пло­щадь пря­мо­уголь­ни­ка равна 18. Най­ди­те его боль­шую сто­ро­ну, если она на 3 боль­ше мень­шей сто­ро­ны.

Ответ: 6

Задание 1004

Най­ди­те пе­ри­метр пря­мо­уголь­ни­ка, если его пло­щадь равна 18, а от­но­ше­ние со­сед­них сто­рон равно 1:2.

Ответ: 18

Задание 1011

Диагонали ромба равны $$2sqrt{5}$$ и $$4sqrt{5}$$ . Найдите радиус вписанной в ромб окружности.

Ответ: 2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Площадь ромба вычисляется как половина произведения диагоналей. То есть $$S = 0.5 *2sqrt{5}*4sqrt{5}=20$$

С другой стороны, площадь равна произведению основания на высоту, а высота равна двум радиусам вписанной окружности. То есть S = AB * 2 OH = AB * 2r

Найдем AB по теореме Пифагора из треугольника ABO (его катеты равны половинам диагоналей): $$AB = sqrt{sqrt{5}^{2}+2sqrt{5}^{2}}=sqrt{5+20}=5$$

Приравняем площади: 20 = 5 * 2r, r = 2

Задание 1019

Периметр прямоугольника равен 42, а площадь 98. Найдите большую сторону прямоугольника.

Ответ: 14

Задание 1020

Пе­ри­метр пря­мо­уголь­ни­ка равен 28, а диа­го­наль равна 10. Най­ди­те пло­щадь этого пря­мо­уголь­ни­ка.

Ответ: 48

Задание 1021

Пе­ри­метр пря­мо­уголь­ни­ка равен 34, а пло­щадь равна 60. Най­ди­те диа­го­наль этого пря­мо­уголь­ни­ка.

Ответ: 13

Задание 1022

Па­рал­ле­ло­грамм и пря­мо­уголь­ник имеют оди­на­ко­вые сто­ро­ны. Най­ди­те ост­рый угол па­рал­ле­ло­грам­ма, если его пло­щадь равна по­ло­ви­не пло­ща­ди пря­мо­уголь­ни­ка. Ответ дайте в гра­ду­сах.

Ответ: 30

Задание 1023

Сто­ро­ны па­рал­ле­ло­грам­ма равны 9 и 15. Вы­со­та, опу­щен­ная на первую сто­ро­ну, равна 10. Най­ди­те вы­со­ту, опу­щен­ную на вто­рую сто­ро­ну па­рал­ле­ло­грам­ма.

Ответ: 6

Задание 1024

Пло­щадь па­рал­ле­ло­грам­ма равна 40, две его сто­ро­ны равны 5 и 10. Най­ди­те боль­шую вы­со­ту этого па­рал­ле­ло­грам­ма

Ответ: 8

Задание 1025

Най­ди­те пло­щадь ромба, если его вы­со­та равна 2, а ост­рый угол 30°.

Ответ: 8

Задание 1027

Пло­щадь ромба равна 18. Одна из его диа­го­на­лей равна 12. Най­ди­те дру­гую диа­го­наль.

Ответ: 3

Задание 1028

Пло­щадь ромба равна 6. Одна из его диа­го­на­лей в 3 раза боль­ше дру­гой. Най­ди­те мень­шую диа­го­наль.

Ответ: 2

Задание 1029

Диа­го­наль па­рал­ле­ло­грам­ма об­ра­зу­ет с двумя его сто­ро­на­ми углы 24 и 36. Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма. Ответ дайте в гра­ду­сах.

Ответ: 120

Задание 1030

Пе­ри­метр па­рал­ле­ло­грам­ма равен 46. Одна сто­ро­на па­рал­ле­ло­грам­ма на 3 боль­ше дру­гой. Най­ди­те мень­шую сто­ро­ну па­рал­ле­ло­грам­ма.

Ответ: 10

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Параллелограмм егэ профиль теория
  • Параллелограмм все формулы для егэ
  • Паразиты черви егэ
  • Паразиты егэ биология
  • Паразиты для егэ

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии