Относительное движение физика егэ

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 36    1–20 | 21–36

Добавить в вариант

На гладком горизонтальном столе покоится брусок с прикреплённой к нему гладкой изогнутой в вертикальной плоскости тонкой жёсткой трубкой (см. рис.). Общая масса бруска с трубкой равна M = 0,8 кг. В верхний конец вертикальной части трубки, находящийся на высоте H = 70 см над бруском, опускают без начальной скорости маленький шарик массой m = 50 г. Другой конец трубки наклонён к горизонту под углом α = 30° и находится на высоте h = 20 см над бруском. Найдите модуль скорости, с которой будет двигаться брусок после того, как шарик вылетит из трубки.

Какие законы Вы используете для описания движения и взаимодействия трубки и шарика? Обоснуйте их применение к данному случаю.

Источник: Тренировочная работа по физике 28.04.2017, вариант ФИ10503


Задания Д1 B1 № 131

Лодка должна попасть на противоположный берег реки по кратчайшему пути в системе отсчета, связанной с берегом. Скорость течения реки u, а скорость лодки относительно воды  v . Чему должен быть равен модуль скорости лодки относительно берега?

1)   v плюс u

2)   v минус u

3)   корень из v в квадрате плюс u в квадрате

4)   корень из v в квадрате минус u в квадрате


Автобус везёт пассажиров по прямой дороге со скоростью 10 м/с. Пассажир равномерно идёт по салону автобуса со скоростью 1 м/с относительно автобуса, двигаясь от задней двери к кабине водителя. Чему равен модуль скорости пассажира относительно дороги? (Ответ дайте в метрах в секунду.)


Задания Д29 C2 № 9072

На гладком горизонтальном столе покоится брусок с прикреплённой к нему гладкой изогнутой в вертикальной плоскости тонкой жёсткой трубкой (см. рис.). Общая масса бруска с трубкой равна M = 0,8 кг. В верхний конец вертикальной части трубки, находящийся на высоте H = 70 см над бруском, опускают без начальной скорости маленький шарик массой m = 50 г. Другой конец трубки наклонён к горизонту под углом α = 30° и находится на высоте h = 20 см над бруском. Найдите модуль скорости, с которой будет двигаться брусок после того, как шарик вылетит из трубки.


Задания Д1 B1 № 5952

Два камня одновременно бросили из одной точки: первый  — вертикально вверх, второй  — под углом 45° к горизонту. Сопротивление воздуха пренебрежимо мало. Как движется первый камень в системе отсчёта, связанной со вторым камнем?

1)  покоится

2)  движется по параболе

3)  движется равномерно и прямолинейно

4)  движется по дуге окружности


Задания Д1 B1 № 5987

Два камня одновременно бросили из одной точки: первый  — вертикально вверх, второй  — под углом 30° к горизонту. Сопротивление воздуха пренебрежимо мало. Как движется второй камень в системе отсчёта, связанной с первым камнем?

1)  покоится

2)  движется по параболе

3)  движется равномерно и прямолинейно

4)  движется по дуге окружности


Мотоцикл едет по прямой дороге с постоянной скоростью 50 км/ч. По той же дороге навстречу ему едет автомобиль с постоянной скоростью 70 км/ч. Чему равен модуль скорости движения мотоцикла относительно автомобиля? (Ответ дайте в километрах в час.)


Мотоцикл едет по прямой дороге с постоянной скоростью 50 км/ч. По той же дороге в том же направлении едет автомобиль с постоянной скоростью 70 км/ч. Чему равен модуль скорости движения мотоцикла относительно автомобиля? (Ответ дайте в километрах в час.)


Задания Д2 B2 № 6637

Маша взяла в руку монету и, стоя в комнате своей квартиры, выпустила её из пальцев без начальной скорости. Монета полетела вдоль вертикали и упала на пол комнаты. Затем Маша вышла из дома, села в подъехавший автобус и, дождавшись, пока он начнёт двигаться равномерно и прямолинейно по горизонтальной дороге, повторила опыт с бросанием монеты. Оказалось, что монета в равномерно движущемся автобусе падает точно так же, как и в квартире. Иллюстрацией какого закона или принципа может служить этот опыт?

1)  первого закона Ньютона

2)  второго закона Ньютона

3)  третьего закона Ньютона

4)  принципа относительности Галилея


Задания Д2 B2 № 6676

Саша взял в руку монету и, стоя в равномерно движущемся вниз лифте, выпустил её из пальцев без начальной скорости. Монета полетела вдоль вертикали и упала на пол лифта. Затем Саша вышел из дома, сел в подъехавший автобус и, дождавшись, пока он начнёт двигаться равномерно и прямолинейно по горизонтальной дороге, повторил опыт с бросанием монеты. Оказалось, что монета в равномерно движущемся автобусе падает точно так же, как и в равномерно опускающемся лифте. Иллюстрацией какого закона или принципа может служить этот опыт?

1)  Первого закона Ньютона

2)  Второго закона Ньютона

3)  Третьего закона Ньютона

4)  принципа относительности Галилея


Задания Д1 B1 № 125

Вертолет поднимается вертикально вверх. Какова траектория движения точки на конце лопасти винта вертолета в системе отсчета, связанной с винтом?

1)  точка

2)  прямая

3)  окружность

4)  винтовая линия


Задания Д3 B3 № 4412

Два бруска массой m и 2m равномерно движутся вдоль прямой OX (см. рис.). В системе отсчёта, связанной с бруском 1, модуль импульса второго бруска равен

1)  6mV

2)  4mV

3)  3mV

4)  2mV


Задания Д3 B3 № 4447

Два бруска массой m и 2m равномерно движутся вдоль прямой OX (см. рис.). В системе отсчёта, связанной с бруском 2, модуль импульса первого бруска равен

1)  mV

2)  2mV

3)  3mV

4)  4mV


Из двух городов навстречу друг другу с постоянной скоростью движутся два автомобиля. На графике показано изменение расстояния между автомобилями с течением времени. Каков модуль скорости первого автомобиля в системе отсчёта, связанной со вторым автомобилем? Ответ приведите в метрах в секунду.

Источник: Демонстрационная версия ЕГЭ—2020 по физике.



Задания Д1 B1 № 3357

Вертолет равномерно поднимается вертикально вверх. Какова траектория крайней точки лопасти вертолета в системе отсчета, связанной с корпусом вертолета?

1)  прямая линия

2)  винтовая линия

3)  окружность

4)  эллипс


Пловец плывет по течению реки. Определите скорость пловца относительно берега, если скорость пловца относительно воды 0,4 м/с, а скорость течения реки 0,3 м/с. (Ответ дайте в метрах в секунду.)


Из незакреплённой пушки стреляют снарядом массой 20 кг, который вылетает из ствола в горизонтальном направлении со скоростью 102 м/с относительно пушки. Пушка при этом откатывается, приобретая относительно земли скорость 2 м/с. Чему равна масса пушки, если массой сгоревшего порохового заряда можно пренебречь? Ответ дайте в килограммах.


Из незакреплённой пушки массой 800 кг стреляют снарядом, который вылетает из ствола в горизонтальном направлении со скоростью 102 м/с относительно пушки. Пушка при этом откатывается, приобретая относительно земли скорость 2 м/с. Чему равна масса снаряда, если массой сгоревшего порохового заряда можно пренебречь? Ответ дайте в килограммах.


Пароход движется по реке против течения со скоростью 5 м/с относительно берега. Определите скорость течения реки, если скорость парохода относительно берега при движении в обратном направлении равна 8 м/с. (Ответ дайте в метрах в секунду.)

Всего: 36    1–20 | 21–36


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Относительное движение

Скорость точки относительно неподвижной системы отсчета равна векторной сумме скорости движущейся системы и скорости точки относительно движущейся системы.

(v) — абсолютная скорость

(vec{u}) — переносная скорость

(v’) — относительная скорость

[vec{v}=vec{u}+vec{v} ‘]

Автобус везёт пассажиров по прямой дороге со скоростью 10 м/с. Пассажир равномерно идёт по салону автобуса со скоростью 1 м/с относительно автобуса, двигаясь от задней двери к кабине водителя. Чему равен модуль скорости пассажира относительно дороги? (Ответ дайте в метрах в секунду.)

Так как пассажир идет в том же направлении, что и автобус, то вектора их скоростей складываются, поэтому абсолютная скорость равна [upsilon_{text{абс}}=upsilon_{text{пер}}+upsilon_{text{отн}}=10text{ м/с}+1text{ м/с}=11text{ м/с}]

Ответ: 11

По прямой дороге с постоянной скоростью 100 км/ч едет мотоциклист и в том же направлении едет автомобиль с постоянной скоростью 70 км/ч. Чему равен модуль скорости движения мотоцикла относительно автомобиля? (Ответ дайте в километрах в час.)

[upsilon_{text{отн}}=upsilon_{text{абс}}-upsilon_{text{пер}}=100text{ км/ч}-70text{ км/ч}=30text{ км/ч}]

Ответ: 30

Катер плывёт по прямой реке, двигаясь относительно берега перпендикулярно береговой линии. Модуль скорости катера относительно берега равен 8 км/ч. Река течёт со скоростью 6 км/ч. Чему равен модуль скорости катера относительно воды? Ответ выразите в км/ч.


Чтобы катер двигался перпендикулярно относительно берега, относительно воды ему надо двигаться под углом. По закону сложения скоростей: [vec{v_{text{абс}}}=vec{v_{text{пер}}}+vec{v_{text{отн}}}] [vec{u}=vec{v_{text{теч}}}+vec{v_{text{кат}}}]
По теореме Пифагора найдем скорость катера относительно воды: [v_{text{кат}}=sqrt{u^2+v_{text{теч}}^2}=sqrt{8^2+6^2}=10 text{ км/ч}]

Ответ: 10

Пассажир зашел в автобус через заднюю дверь. Автобус поехал с постоянной скоростью (upsilon_1=25) м/с, а пассажир пошел к передней части автобуса. Скорость пассажира относительно автобуса равна (upsilon_{2}=3) м/с. С какой скоростью едет автобус относительно пассажира?

Скорость первого тела относительного второго равна скорости второго тела относительно первого и направлена в противоположную сторону. [vec{v}_{text{абс}}=vec{v}_{text{отн}}+vec{v}_{text{пер}}] [vec{v}_{text{1}}=vec{v}_{text{12}}+vec{v}_{text{2}}] [vec{v}_{text{2}}=vec{v}_{text{21}}+vec{v}_{text{1}}] [vec{v}_{text{12}}=-vec{v}_{text{21}}] Таким образом, автобус относительно пассажира едет со скоростью 3 м/с в обратную сторону.

Ответ: 3

Вася идет по прямой дороге со скоростью (upsilon_1=3text{ км/ч}.) Навстречу ему движется грузовик со скоростью (upsilon_2=30text{ км/ч}). С какой скоростью (upsilon_3) (по модулю) должен двигаться велосипедист навстречу Васе, чтобы модули его скорости относительно автомобиля и относительно Васи были одинаковы? Ответ дайте в км/ч.

По закону сложения скоростей относительно автомобиля: [vec{upsilon}_3=vec{upsilon}_2+vec{upsilon}_{32},] [Ox: upsilon_3=upsilon_2+upsilon_{32},] где в данном случае (upsilon_2) — скорость системы отсчета, а (upsilon_{32}) — скорость велосипедиста относительно автомобиля. Выразим (upsilon_{32}): [upsilon_{32}=upsilon_{3}-upsilon_{2}] (upsilon_{3}<upsilon_{2}) (автомобиль явно быстрее велосипеда), значит: [|upsilon_{32}|=|upsilon_{3}-upsilon_{2}|=upsilon_{2}-upsilon_{3}quad(1)] По закону сложения скоростей относительно Васи (Учитывая, что велосипедист двигается в противоположном направлении от Васи): [vec{upsilon}_{3}=vec{upsilon}_{1}+vec{upsilon}_{23},] [Ox: upsilon_{3}=-upsilon_{1}+upsilon_{23},] где в данном случае (upsilon_{1}) — скорость системы отсчета, а (upsilon_{23}) — скорость велосипедиста относительно Васи. Выразим (upsilon_{23}): [upsilon_{23}=upsilon_{1}+upsilon_{3}quad(2)] По условию: [|upsilon_{32}|=|upsilon_{23}|] Подсавив сюда ((1)) и ((2)), получим: [upsilon_{2}-upsilon_{3}=upsilon_{1}+upsilon_{3}] Выразим (upsilon_3): [upsilon_3=dfrac{upsilon_2-upsilon_1}{2}=dfrac{30text{ км/ч}-3text{ км/ч}}{2}=13,5text{ км/ч}]

Ответ: 13,5

Пароход плывет по прямой реке. Его скорость относительно реки равна (v_1=5) км/ч и направлена перпендикулярно береговой линии. Река течет со скоростью (v_2=4) км/ч. Чему равен модуль скорости (v) (в км/ч) парохода относительно Земли? Ответ округлите до десятых.

Рассмотрим рисунок: векторы cкорости (v_1) и (v_2) составляют друг с другом угол (90^{circ}). Значит (v) можно найти по теореме Пифагора: [v^2=v_1^2+v_2^2] Отсюда: [v=sqrt{v_1^2+v_2^2}=sqrt{(5text{ км/ч})^2+4text{ км/ч})^2}approx6,4text{ км/ч}]

Ответ: 6,4

Дейнерис вылетела на драконе Дрогоне из Королевской Гавани в Браавос со скоростью (upsilon_text{д}=43,2) км/ч. Перпендикулярной Ее Величеству Джон Сноу вылетел в Винтерфелл на драконе Рейгале со скоростью (upsilon_text{р}=3,5) м/с. С какой скоростью в м/с они удаляются друг от друга?

Переведем скорость Дрогона в м/с: [upsilon_text{д}=frac{43,2text{ км/ч}cdot1000}{3600}=12text{ м/с}]
Изобразим:
Отсюда видно, что скорость удаления двух драконов (тел) друг от друга — это модуль относительной скорости: [|vec{upsilon}_text{у}|=|vec{upsilon_text{д}}-vec{upsilon_text{р}}|=sqrt{upsilon_text{д}^2+upsilon_text{р}^2}]
Подставим исходные данные: [upsilon_y=sqrt{3,5^2+12^2}=sqrt{156,25}=12,5text{ м/с}]

Ответ: 12,5

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Задачи ЕГЭ на относительность движения

Задачи на относительность движения — пожалуй, самые сложные из задач кинематики. Здесь надо очень хорошо представлять себе, как будет выглядеть картина движения, если ты находишься на этом самом корабле и ощущаешь ветер на своем лице, или ты едешь на конце движущегося стержня и можешь видеть второй его конец. То есть нужно уметь поставить себя на место другого, и вообразить, что он ощущает или видит — это всегда сложно, и в задаче, и в жизни.

Задача 1.

Один корабль идет по морю на север с постоянной скоростью 20 узлов, а другой – навстречу ему, на юг, с такой же скоростью. Корабли проходят на малом расстоянии друг от друга. Шлейф дыма от первого корабля вытянулся в направлении на запад, а от второго – на северо-запад. Определите модуль Задачи ЕГЭ на относительность движения скорости ветра. 1 узел – 1 морская миля в час, 1 морская миля – 1852 м. Ответ выразить в км/ч и округлить до целых. Для начала переведем скорость судов в км/ч: Задачи ЕГЭ на относительность движения узлов/ час Задачи ЕГЭ на относительность движения км/чЗадачи ЕГЭ на относительность движения км/ч.

Стержень_дым2

К задаче 1. Корабли и ветер

Пусть ветер дует под углом Задачи ЕГЭ на относительность движения по отношению к направлению на север. Так как первый корабль оставляет дым строго слева от себя, то это означает, что его скорость равна проекции скорости ветра на северное направление. Таким образом, корабль и ветер в этом направлении двигаются с одинаковой скоростью и скорость корабля «гасит» скорость ветра. Поэтому можем записать: Задачи ЕГЭ на относительность движения Скорость второго корабля, наоборот, накладывается на скорость ветра, на его борту «ветер сильнее». Результатом сложения скоростей ветра и корабля является направление сноса дыма. Чтобы найти скорость ветра в неподвижной системе, нужно из скорости дыма  вычесть скорость корабля, который здесь – подвижная система отсчета. Тогда: Задачи ЕГЭ на относительность движения

Стержень_дым3

Вектора дымов и кораблей

Проекция скорости ветра на северное направление тогда равна Задачи ЕГЭ на относительность движения Проекция скорости ветра на западное направление равна Задачи ЕГЭ на относительность движения, и, следовательно, Задачи ЕГЭ на относительность движения Задачи ЕГЭ на относительность движения Задачи ЕГЭ на относительность движения Задачи ЕГЭ на относительность движения Тогда скорость ветра равна: Задачи ЕГЭ на относительность движения Ответ: 83 км/ч  

Задача 2.

Стержень скользит по инерции по гладкому горизонтальному столу. В некоторый момент времени в неподвижной системе отсчета скорости концов стержня составляют с направлением стержня углы Задачи ЕГЭ на относительность движения и Задачи ЕГЭ на относительность движения. Какой угол Задачи ЕГЭ на относительность движения образует со стержнем в этот момент скорость его центра? Пусть скорость одного конца стержня равна Задачи ЕГЭ на относительность движения, а второго Задачи ЕГЭ на относительность движения. Стержень участвует в двух движениях: в поступательном и вращательном. Если спроецировать скорости концов на направление стержня, то можно определить скорость поступательного движения, а проекции скорости, перпендикулярные направлению стержня, дадут возможность найти мгновенный центр вращения.

Стержень_дым1

К задаче 2. Стержень

Проекции скорости на направление стержня обязаны быть равными, так как стержень не претерпевает растяжения: Задачи ЕГЭ на относительность движения Проекции скоростей на перпендикулярное стержню направление относятся так же, как расстояния концов стержня до мгновенного центра вращения: Задачи ЕГЭ на относительность движения Отсюда Задачи ЕГЭ на относительность движения Теперь можем найти скорость середины стержня, и угол, под которым она направлена к стержню. Проекция скорости центра на направление стержня такая же, как и у концов: Задачи ЕГЭ на относительность движения. Найдем перпендикулярную составляющую. Для этого составим пропорцию: Задачи ЕГЭ на относительность движения Задачи ЕГЭ на относительность движения Задачи ЕГЭ на относительность движения Задачи ЕГЭ на относительность движения Задачи ЕГЭ на относительность движения Проекция скорости центра стержня на направление стержня такая же, как у концов: Задачи ЕГЭ на относительность движения Сам угол равен Задачи ЕГЭ на относительность движения Задачи ЕГЭ на относительность движения Задачи ЕГЭ на относительность движения Ответ: Задачи ЕГЭ на относительность движения.

Механическое движение.

 

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: механическое движение и его виды, относительность механического движения, скорость, ускорение.

Понятие движения является чрезвычайно общим и охватывает самый широкий круг явлений. В физике изучают различные виды движения. Простейшим из них является механическое движение. Оно изучается в механике.
Механическое движение — это изменение положение тела (или его частей) в пространстве относительно других тел с течением времени.

Если тело A меняет своё положение относительно тела B, то и тело B меняет своё положение относительно тела A. Иначе говоря, если тело A движется относительно тела B, то и тело B движется относительно тела A. Механическое движение является относительным — для описания движения необходимо указать, относительно какого тела оно рассматривается.

Так, например, можно говорить о движении поезда относительно земли, пассажира относительно поезда, мухи относительно пассажира и т. д. Понятия абсолютного движения и абсолютного покоя не имеют смысла: пассажир, покоящийся относительно поезда, будет двигаться с ним относительно столба на дороге, совершать вместе с Землёй суточное вращение и двигаться вокруг Солнца.
Тело, относительно которого рассматривается движение, называется телом отсчёта.

Основной задачей механики является определение положения движущегося тела в любой момент времени. Для решения этой задачи удобно представить движение тела как изменение координат его точек с течением времени. Чтобы измерить координаты, нужна система координат. Чтобы измерять время, нужны часы. Всё это вместе образует систему отсчёта.

Система отсчёта — это тело отсчёта вместе с жёстко связанной с ним («вмороженной»» в него) системой координат и часами.
Система отсчёта показана на рис. 1. Движение точки M рассматривается в системе координат OXYZ . Начало координат O является телом отсчёта.

Рисунок 1.

Вектор vec{r} = overrightarrow{OM} называется радиус-вектором точки M. Координаты x, y, z точки M являются в то же время координатами её радиус-вектора r.
Решение основной задачи механики для точки M состоит в нахождении её координат как функций времени: x = x(t), y = y(t), z = z(t).
В ряде случаев можно отвлечься от формы и размеров изучаемого объекта и рассматривать его просто как движущуюся точку.

Материальная точка — это тело, размерами которого можно пренебречь в условиях данной задачи.
Так, поезд можно считать материальной точкой при его движении из Москвы в Саратов, но не при посадке в него пассажиров. Землю можно считать материальной точкой при описании её движения вокруг Солнца, но не её суточного вращения вокруг собственной оси.

К характеристикам механического движения относятся траектория, путь, перемещение, скoрость и ускорение.

Траектория, путь, перемещение.

В дальнейшем, говоря о движущемся (или покоящемся) теле, мы всегда полагаем, что тело можно принять за материальную точку. Случаи, когда идеализацией материальной точки пользоваться нельзя, будут специально оговариваться.

Траектория — это линия, вдоль которой движется тело. На рис. 1 траекторией точки M является синяя дуга, которую описывает в пространстве конец радиус-вектора r.
Путь — это длина участка траектории, пройденного телом за данный промежуток времени.
Перемещение — это вектор, соединяющий начальное и конечное положение тела.
Предположим, что тело начало движение в точке A и закончило движение в точке B (рис. 2). Тогда путь, пройденный телом, это длина траектории ACB. Перемещение тела — это вектор overrightarrow{AB} = overrightarrow{OM}.

Рисунок 2.

Скорость и ускорение.

Рассмотрим движение тела в прямоугольной системе координат с базисом vec{i}, vec{j}, vec{k} (рис. 3).

Рисунок 3.

Пусть в момент времени t тело находилось в точке M(x, y, z) с радиус-вектором
overrightarrow{OM}=vec{r}=xvec{i}+yvec{j}+zvec{k}
Спустя малый промежуток времени Delta t тело оказалось в точке N(x+Delta x,y+Delta y,z+Delta z) с
радиус-вектором

overrightarrow{ON}=vec{r}+Delta vec{r}=(x+Delta x)vec{i}+(y+Delta y)vec{j}+(z+Delta z)vec{k}

Перемещение тела:

Delta r=overrightarrow{MN}=overrightarrow{ON}-overrightarrow{OM}=(Delta x)vec{i}+(Delta y)vec{j}+(Delta z)vec{k} (1)

Мгновенная скорость Delta v в момент времени t — это предел отношения перемещения Delta vec{r} к интервалу времени Delta t, когда величина этого интервала стремится к нулю; иными словами, скорость точки — это производная её радиус-вектора:

vec{v}=frac{displaystyle Delta vec{displaystyle r}}{displaystyle Delta displaystyle t}=frac{displaystyle dvec{r}}{displaystyle dt} (2)

Из (2) и (1) получаем:

vec{v}=lim_{Delta trightarrow 0}left ( frac{displaystyle Delta displaystyle x}{displaystyle Delta displaystyle t}vec{displaystyle i}+frac{displaystyle Delta displaystyle y}{displaystyle Delta displaystyle t}vec{displaystyle j}+frac{displaystyle Delta displaystyle z}{displaystyle Delta displaystyle t}vec{displaystyle k} right )

Коэффициенты при базисных векторах в пределе дают производные:

dot{x}=lim_{Delta trightarrow 0}frac{displaystyle Delta displaystyle x}{displaystyle Delta displaystyle t}, dot{y}=lim_{Delta trightarrow 0}frac{displaystyle Delta displaystyle y}{displaystyle Delta displaystyle t}, dot{z}=lim_{Delta trightarrow 0}frac{displaystyle Delta displaystyle z}{displaystyle Delta displaystyle t}

(Производная по времени традиционно обозначается точкой над буквой.) Итак,

vec{v}=xvec{i}+yvec{j}+zvec{k}

Мы видим, что проекции вектора скорости на координатные оси являются производными координат точки:

displaystyle v_{displaystyle x}=dot{x}, displaystyle v_{displaystyle y}=dot{y}, displaystyle v_{displaystyle z}=dot{z}.

Когда Delta t стремится к нулю, точка N приближается к точке M и вектор перемещения Delta vec{r} разворачивается в направлении касательной. Оказывается, что в пределе вектор Delta vec{v} направлен точно по касательной к траектории в точке M. Это и показано на рис. 3.

Понятие ускорения вводится похожит образом. Пусть в момент времени t скорость тела равна vec{v}, а спустя малый интервал Delta t скорость стала равна vec{v}+Delta vec{v}.
Ускорение vec{a} — это предел отношения изменения скорости Delta vec{v} к интервалу Delta {t}, когда этот интервал стремится к нулю; иначе говоря, ускорение — это производная скорости:
vec{a}=lim_{Delta trightarrow 0}frac{displaystyle Delta vec{displaystyle v}}{displaystyle Delta displaystyle t}=frac{displaystyle dvec{displaystyle a}}{displaystyle dt}.

Ускорение, таким образом, есть «cкорость изменения скорости». Имеем:

vec{a}=frac{displaystyle d}{displaystyle dt}(displaystyle v_{displaystyle x}vec{displaystyle i}+displaystyle v_{displaystyle y}vec{displaystyle j}+displaystyle v_{displaystyle z}vec{displaystyle k})=dot{displaystyle v_{displaystyle x}}vec{displaystyle i}+dot{displaystyle v_{displaystyle y}}vec{displaystyle j}+dot{v_{displaystyle z}}vec{displaystyle k}.

Следовательно, проекции ускорения являются производными проекций скорости (и, стало быть, вторыми производными координат):

displaystyle a_{displaystyle x}=dot{displaystyle v_{displaystyle x}}=ddot{displaystyle x}, displaystyle a_{displaystyle y}=dot{displaystyle v_{displaystyle y}}=ddot{displaystyle y}, displaystyle a_{displaystyle z}=dot{displaystyle v_{displaystyle z}}=ddot{displaystyle z}.

Закон сложения скоростей.

Пусть имеются две системы отсчёта. Одна из них связана с неподвижным телом отсчёта O. Эту систему отсчёта обозначим K и будем называть неподвижной.
Вторая система отсчёта, обозначаемая {K} , связана с телом отсчёта {O}, которое движется относительно тела O со скоростью vec{u} . Эту систему отсчёта называем движущейся. Дополнительно предполагаем, что координатные оси системы {K} перемещаются параллельно самим себе (нет вращения системы координат), так что вектор vec{u} можно считать скоростью движущейся системы относительно неподвижной.

Неподвижная система отсчёта K обычно связана с землёй. Если поезд плавно едет по рельсам со скоростью vec{u}, это система отсчёта, связанная с вагоном поезда, будет движущейся системой отсчёта {K}.

Заметим, что скорость любой точки вагона (кроме вращающихся колёс!) равна vec{u}. Если муха неподвижно сидит в некоторой точке вагона, то относительно земли муха движется со скоростью vec{u}. Муха переносится вагоном, и потому скорость vec{u} движущейся системы относительно неподвижной называется переносной скоростью.

Предположим теперь, что муха поползла по вагону. Скорость мухи относительно вагона (то есть в движущейся системе {K}) обозначается {vec{v}} и называется относительной скоростью. Скорость мухи относительно земли (то есть в неподвижной системе K ) обозначается vec{v} и называется абсолютной скоростью.

Выясним, как связаны друг с другом эти три скорости — абсолютная, относительная и переносная.
На рис. 4 муха обозначена точкой M.Далее:
vec{r} — радиус-вектор точки M в неподвижной системе K;
{vec{r}} — радиус-вектор точки M в движущейся системе {K};
vec{R} — радиус-вектор тела отсчёта {O} в неподвижной системе K.

Рисунок 4.

Как видно из рисунка,

vec{r}=vec{R}+{vec{r}}

Дифференцируя это равенство, получим:

frac{displaystyle dvec{displaystyle r}}{displaystyle dt}=frac{displaystyle dvec{displaystyle R}}{displaystyle dt}+frac{displaystyle d{vec{displaystyle r}} (3)

(производная суммы равна сумме производных не только для случая скалярных функций, но и для векторов тоже).
Производная dvec{r}/dt есть скорость точки M в системе K, то есть абсолютная скорость:

frac{displaystyle dvec{displaystyle r}}{displaystyle dt}=vec{v}.

Аналогично, производная d{vec{r}} есть скорость точки M в системе {K}, то есть относительная скорость:

frac{displaystyle d{vec{displaystyle r}}
А что такое dvec{R}/dt? Это скорость точки {O} в неподвижной системе, то есть — переносная скорость vec{u} движущейся системы относительно неподвижной:

frac{displaystyle dvec{displaystyle R}}{displaystyle dt}=vec{u}

В результате из (3) получаем:

vec{v}=vec{u}+{vec{v}}

Закон сложения скоростей. Скорость точки относительно неподвижной системы отсчёта равна векторной сумме скорости движущейся системы и скорости точки относительно движущейся системы. Иными словами, абсолютная скорость есть сумма переносной и относительной скоростей.

Таким образом, если муха ползёт по движущемуся вагону, то скорость мухи относительно земли равна векторной сумме скорости вагона и скорости мухи относительно вагона. Интуитивно очевидный результат!

Виды механического движения.

Простейшими видами механического движения материальной точки являются равномерное и прямолинейное движения.
Движение называется равномерным, если модуль вектора скорости остаётся постоянным (направление скорости при этом может меняться).

Движение называется прямолинейным, если направление вектора скорости остаётся постоянным (а величина скорости при этом может меняться). Траекторией прямолинейного движения служит прямая линия, на которой лежит вектор скорости.
Например, автомобиль, который едет с постоянной скоростью по извилистой дороге, совершает равномерное (но не прямолинейное) движение. Автомобиль, разгоняющийся на прямом участке шоссе, совершает прямолинейное (но не равномерное) движение.

А вот если при движении тела остаются постоянными как модуль скорости, так и его направление, то движение называется равномерным прямолинейным.

В терминах вектора скорости можно дать более короткие определения данным типам движения:

Важнейшим частным случаем неравномерного движения является равноускоренное движение, при котором остаются постоянными модуль и направление вектора ускорения:

  • равноускоренное движение Leftrightarrow vec{a}=const

Наряду с материальной точкой в механике рассматривается ещё одна идеализация — твёрдое тело.
Твёрдое тело это система материальных точек, расстояния между которыми не меняются со временем. Модель твёрдого тела применяется в тех случаях, когда мы не можем пренебречь размерами тела, но можем не принимать во внимание изменение размеров и формы тела в процессе движения.

Простейшими видами механического движения твёрдого тела являются поступательное и вращательное движения.
Движение тела называется поступательным, если всякая прямая, соединяющая две какие-либо точки тела, перемещается параллельно своему первоначальному направлению. При поступательном движении траектории всех точек тела идентичны: они получаются друг из друга параллельным сдвигом (рис. 5).

Рисунок 5.

Движение тела называется вращательным, если все его точки описывают окружности, лежащие в параллельных плоскостях. При этом центры данных окружностей лежат на одной прямой, которая перпендикулярна всем этим плоскостям и называется осью вращения.

На рис. 6 изображён шар, вращающийся вокруг вертикальной оси. Так обычно рисуют земной шар в соответствующих задачах динамики.

Рисунок 6.

Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Механическое движение.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Под относительностью понимают зависимость чего-либо от выбора системы отсчета. Так, покой и движение тела, его положение в пространстве всегда относительны. Человек, сидящий внутри движущегося автомобиля, покоится относительно этого автомобиля. Но относительно предметов снаружи он движется с некоторой скоростью.

Относительность перемещения

Пусть движение материальной точки (МТ) описывается относительно двух систем отсчета: подвижной (ПСО) и неподвижной (НСО). Зная, как эта точка движется относительно ПСО, и, как ПСО движется относительно НСО, можно вычислить перемещение точки относительно НСО. В этом заключается правило сложения перемещений:

s′ = s1 + s2

s′ — перемещение МТ относительно НСО, s1— перемещение МТ относительно ПСО, s2 — перемещение ПСО относительно НСО.

Чтобы применять правило сложения перемещений, нужно уметь складывать вектора.

Полезные факты

  • Если тело движется в направлении движения ПСО, то модуль его перемещения относительно НСО равен сумме модулей перемещения этого тела относительно ПСО и перемещения ПСО относительно НСО:

s′ = s1 + s2

  • Если тело движется противоположно движению ПСО, то модуль его перемещения относительно НСО равен разности модулей перемещения этого тела относительно ПСО и перемещения ПСО относительно НСО:

s′ = s1 – s2

  • Если тело движется под прямым углом по отношению к направлению движения ПСО, то модуль его перемещения относительно НСО равен корню из суммы квадратов перемещений этого тела относительно ПСО и перемещения ПСО относительно НСО:

s′ = √(s12 + s22)

  • Если относительно ПСО тело покоится, то его перемещение относительно НСО равно перемещению ПСО относительно НСО: при s1=0, перемещение s′ = s2
  • Если тело движется относительно двух НСО, то его перемещение относительно НСО1 равно перемещению движения относительно НСО2. В этом случае одну из систем можно принять за ПСО с нулевой скоростью. Тогда ее перемещение относительно НСО будет равно 0. При s2=0, перемещение s′ = s1

Пример №1. Человек прошел в автобусе 2 метра в направлении заднего выхода. За это же время автобус успел переместиться относительно остановки на 10 м. Найти перемещение человека относительно автобусной остановки.

Так как человек двигался в сторону конца автобуса, он двигался противоположно его движению. В этом случае его перемещение будет равно модулю разности перемещений, совершенных человеком относительно автобуса и автобусом относительно остановки:

s′=|s1 – s2|=|10 – 2|=8 (м).

Относительность скорости в ПСО и НСО

Тела и системы отсчета могут двигаться с различной скоростью. Но, зная скорость движения МТ относительно ПСО и скорость движения ПСО относительно НСО, можно вычислить скорость движения МТ относительно НСО. В этом заключается правило сложения скоростей:

v′ = v + u

v′ — скорость МТ относительно НСО, v — скорость МТ относительно ПСО, u — скорость движения ПСО относительно НСО.

Складывая векторы скоростей, нужно пользоваться правилами сложения векторов.

Полезные факты

  • Если тело движется в направлении движения ПСО, то модуль его скорости относительно НСО равен сумме модулей скорости этого тела относительно ПСО и скорости ПСО относительно НСО:

v′ = v + u

  • Если тело движется противоположно движению ПСО, то модуль его скорости относительно НСО равен разности модуля скорости этого тела относительно ПСО и скорости ПСО относительно НСО:

v′ = v – u

  • Если тело движется под прямым углом по отношению к направлению движения ПСО, то модуль его скорости относительно НСО равен корню из суммы квадратов скорости этого тела относительно ПСО и скорости ПСО относительно НСО:

v′ = √(v2 + u2)

  • Если относительно ПСО тело покоится, то его скорость относительно НСО равна скорости ПСО относительно НСО: при v=0, скорость v′ = u
  • Если тело движется относительно двух НСО, то его скорость относительно НСО1 равна скорости движения относительно НСО2. В этом случае одну из неподвижных систем можно принять за ПСО с нулевой скоростью. При u=0, скорость v′ = u

Пример №2. Моторная лодка должна пересечь реку, скорость течения которой равна 5 км/ч, по кратчайшему пути. Собственная скорость лодки равна 10 км/ч. Определить, под каким углом к берегу должна быть направлена лодка, чтобы она не отклонялась от кратчайшего пути.

Кратчайшим путем между двумя параллельными линиями является отрезок, заключенный между этими линиями при условии, что он лежит на прямой, пересекающей эти линии под прямым углом. На рисунке этот путь отметим отрезком АВ.

Лодка движется прямолинейно. Поэтому направление ее скорости относительно берега совпадает с направлением перемещения:

Векторы скоростей образуют прямоугольный треугольник, и собственная скорость лодки направлена к берегу под некоторым углом α. Косинус этого угла равен отношению прилегающего катета (скорости лодки относительно реки) к гипотенузе (скорости течения реки):

Косинусу 0,5 соответствует угол, равный 60 градусам.

Относительная скорость двух тел

Понятие относительной скорости вводится, когда рассматривается движение двух тел относительно друг друга внутри одной и той же системы отсчета (СО). Примером служат два движущихся автомобиля, в то время как их движение рассматривается относительно неподвижного объекта.

Относительная скорость равна векторной разности скоростей первого и второго тела относительно СО:

vотн = v1v2

vотн — относительная скорость, или скорость первого тела относительно второго, v1 и v2 — скорость первого и второго тела относительно СО.

Варианты обозначения относительной скорости и их проекций:

  • v12 — скорость первого тела относительно второго. Ее проекция равна:

v12x = v1x – v2x

  • v21 — скорость второго тела относительно первого. Ее проекция равна v21x = v2x – v1x

Для вычисления относительной скорости движения тела важно уметь применять правила вычитания векторов.

Полезные факты

  • Если тела движутся в одном направлении, то относительная скорость равна модулю разности скоростей первого и второго тела:

vотн = |v1 – v2|

  • Если тела движутся в противоположных направлениях, то относительная скорость равна сумме скоростей первого и второго тела:

vотн = |v1 + v2|

  • Если тела движутся взаимно перпендикулярно, то относительная скорость равна корню из суммы квадратов скоростей первого и второго тела:

vотн = √(v12 + v22)

Пример №3. Два автомобиля движутся противоположно друг другу. Скорость первого автомобиля относительно дороги равна 100 км/ч. Скорость второго автомобиля относительно первого равна 180 км/ч. Найти модуль скорости второго автомобиля относительно дороги.

Так как автомобили движутся в противоположном направлении, относительная скорость равна сумме скоростей первого и второго автомобиля. Поэтому скорость второго равна разности относительной скорости и скорости движения второго тела, которым в данном случае является первый автомобиль:

Скорость второго автомобиля относительно дороги равна 80 км/час.

Правила сложения векторов

Эта таблица иллюстрирует правила сложения векторов на примере векторов a и b. Результатом их сложения является вектор c .

Сложение двух сонаправленных векторов
Суммой двух сонаправленных векторов является вектор, направленный в ту же сторону.

Его длина равна сумме длин слагаемых векторов: c = a + b.

Сложение двух противоположно направленных векторов
Суммой двух противоположно направленных векторов является вектор, направленный в сторону большего по модулю вектора. Его длина равна модулю разности длин слагаемых векторов: c = |a – b|.
Сложение двух векторов, расположенных друг к другу под углом
Суммой двух векторов, расположенных друг к другу под углом является вектор, направление которого определяется графически методом треугольника или параллелограмма. Его длина зависит от величины угла, под которым расположены два слагаемых векторов.
Если слагаемые векторы перпендикулярны, для вычисления длины вектора их суммы используется теорема Пифагора:

.

Если слагаемые векторы расположены под тупым углом α, для вычисления длины вектора их суммы используется теорема косинусов:

.

Если слагаемые векторы расположены под острым углом α, для вычисления длины вектора их суммы используется теорема косинусов:

.

Правила вычитания векторов

Эта таблица иллюстрирует правила вычитания векторов на примере векторов Результатом их вычитания является вектор .

Вычитание двух сонаправленных векторов
Разностью двух сонаправленных векторов является вектор, направленный в сторону большего по модулю вектора.

Его длина равна модулю разности длин вычитаемых векторов: c = |a – b|.

Вычитание двух противоположно направленных векторов
Разность двух противоположно направленных векторов есть вектор, направленный в сторону уменьшаемого вектора. Его длина равна сумме длин вычитаемых векторов: c = a + b.
Вычитание двух векторов, расположенных друг к другу под углом
Разностью двух векторов, расположенных друг к другу под углом является вектор, являющийся обратным вектору, образующемуся при сложении этих векторов. Его направление определяется графически. Его длина зависит от величины угла, под которым расположены два слагаемых векторов.
Если вычитаемые векторы перпендикулярны, для вычисления длины вектора их разности используется теорема Пифагора:

.

Если вычитаемые векторы расположены под углом α, для вычисления длины вектора их разности используется теорема косинусов:

.

Задание EF17727

Два автомобиля движутся по прямому шоссе, первый — со скоростью v, второй — со скоростью –4v. Найти скорость второго автомобиля относительно первого.


Алгоритм решения

  1. Записать данные в определенной системе отсчета.
  2. Изобразить графическую модель ситуации задачи.
  3. Записать классический закон сложения скоростей в векторном виде.
  4. Записать классический закон сложения скоростей в векторном виде применительно к условиям задачи.
  5. Найти искомую величину.

Решение

Записываем данные относительно Земли:

  • Скорость первого автомобиля относительно оси ОХ: v1 = v.
  • Скорость второго автомобиля относительно оси ОХ: v2 = –4v.

Изображаем графическую модель ситуации. Так как у второго автомобиля перед вектором скорости стоит знак «–», первый и второй автомобили движутся во взаимно противоположных направлениях.

Записываем закон сложения скоростей в векторном виде:

v′ = v + u

v — скорость второго автомобиля относительно оси ОХ (v2), v — скорость второго автомобиля относительно системы отсчета, связанной с первым автомобилем, u — скорость движения первого автомобиля относительно оси ОХ (v1).

Закон сложения скоростей в векторном виде применительно к условиям задачи будет выглядеть так:

v2 = v + v1

Отсюда:

v = v2v1 = –4vv = –5v

Ответ: -5v

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF17518

Два автомобиля движутся в одном направлении. Относительно Земли скорость первого автомобиля 110 км/ч, второго 60 км/ч. Чему равен модуль скорости первого автомобиля в системе отсчёта, связанной со вторым автомобилем?


Алгоритм решения

  1. Записать данные в определенной системе отсчета.
  2. Изобразить графическую модель ситуации задачи.
  3. Записать классический закон сложения скоростей в векторном виде.
  4. Выбрать систему отсчета.
  5. Записать классический закон сложения скоростей в скалярном виде.
  6. Найти искомую величину.

Решение

Записываем данные относительно Земли:

  • Скорость первого автомобиля относительно неподвижной системы отсчета: v1 = 110 км/ч;
  • Скорость второго автомобиля относительно Земли: v2 = 60 км/ч.

Изображаем графическую модель ситуации:

Записываем закон сложения скоростей в векторном виде:

v′ = v + u

v — скорость автомобиля относительно земли (v1), v — скорость второго автомобиля относительно системы отсчета, связанной со вторым автомобилем, u — скорость движения второго автомобиля относительно земли (v2).

По условию задачи в качестве системы отсчета нужно выбрать второй автомобиль. Так как система отсчета, связанная со вторым автомобилем, и первый автомобиль движутся в одном направлении, классический закон сложения скоростей в скалярном виде будет выглядеть так:

v’ = v + u

Отсюда скорость первого автомобиля в системе отсчёта, связанной со вторым автомобилем:

v = v’ – u = v1 – v2 = 110 – 60 = 50 (км/ч).

По условию задачи ответом должен быть модуль этой скорости. Модуль числа 50 есть 50.Ответ: 50

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алиса Никитина | Просмотров: 7.1k

Видео: Механическое движение. Системы отсчета. Траектория, путь и перемещение

Лекция: Механическое движение. Относительность механического движения. Система отсчета

Механическое движение
     

Механическое движение характеризуется изменением положения тела в пространстве с истечением времени.

Существуют следующие виды механического движения     

Поступательное – это движение, при котором все части тела двигаются параллельно друг другу.

Если велосипедист двигается по прямолинейному участку дороги, то он двигается поступательно. При этом его колеса постоянно двигаются вокруг своей оси, поэтому движение колес назвать поступательным нельзя.

Криволинейное – движение тела по кривым линиям. 

Частным примером криволинейного движения является движение тела по окружности. Криволинейным можно назвать движение кончика секундной стрелки на часах, движение Земли вокруг своей оси.

Колебательное – периодическое движение, при котором происходит повторение состояний системы, то есть тела периодически возвращается в исходное положение.

Колебательным можно назвать движение верхушек деревьев на ветру, движение маятника, движение отпущенной растянутой пружины.

Относительность движения

Вокруг нас все тела находятся в постоянном движении, даже, если Вы сейчас сидите на стуле в неподвижном состоянии, то нельзя сказать, что вы не совершаете механическое движение. Вы вместе с планетой двигаетесь вокруг оси и вокруг светила, то есть на данный момент Вы совершаете несколько видов движения одновременно.

Относительность движения – это разница перемещения, скорости и других параметров в зависимости от выбранной системы отсчета.


Материальная точка

Для определения кинематических параметров совершенно не обязательно знать размеры двигающегося тела. Например, для того, чтобы узнать, за какое время грузовик пройдет 100 км пути со скоростью 50 км/ч нам абсолютно не обязательно знать количество его колес, его вес или форму.
   

 Материальная точка – это тело, размеры и формы которого не учитываются для решения основной задачи кинематики.

Если мы рассматриваем человека, находящегося в поезде и определяем его параметры относительно Земли, то нам не важны размеры поезда, следовательно мы можем принять его за материальную точку. Но если же задача сужается до определения времени, за которое человек пройдет от начала до конца поезда, то принимать поезд за материальную точку нельзя, поскольку нам важна его продолжительность.

Система отсчета
     

Система отсчета – это система, которая включает в себя тело отсчета, систему координат и средство измерения времени.

В качестве системы отсчета можно выбирать, как подвижные, так и неподвижные тела.

Механическое движение. Относительность движения

Код ОГЭ 1.1. Механическое движение. Относительность движения. Траектория. Путь. Перемещение. Равномерное и неравномерное движение. Средняя скорость. Формула для вычисления средней скорости.

Внимание! Это конспект для 9 класса! Чтобы прочитать конспект «Механическое движение» для 7 класса перейдите по ссылке.



Механическим движением называется изменение положения тела в пространстве относительно других тел с течением времени.

Материальной точкой считается тело, размеры которого малы по сравнению с другими характерными размерами, встречающимися при решении поставленной задачи.

Траектория – воображаемая линия, вдоль которой движется тело.

Относительность механического движения:

  1. Механическое движение можно наблюдать только относительно других тел. Тело, относительно которого рассматривается механическое движение, называется телом отсчёта.
  2. В различных системах отсчёта скорость и перемещение, характеризующие движение одного и того же тела, могут иметь разные модули и направления.
  3. Координаты тела, траектория движения, путь зависят от выбора системы отсчёта, то есть для одного и того же тела могут быть разными.

Основные физические величины, характеризующие механическое движениеОтносительность движения

  1. Путь   – длина траектории.   Внимание! Путь не может быть отрицательным!
  1. Перемещение   – направленный отрезок прямой (вектор), соединяющий начальное положение тела с его последующим положением.

Проекция вектора перемещения на координатную ось sx = x – x0 , где х0 – начальная координата тела, х – конечная координата тела.

Модуль вектора перемещения может не совпадать по числовому значению с длиной пути. Его можно рассчитать с помощью проекций вектора перемещения на координатные оси 

  1. Средняя путевая скорость   равна отношению всего пути, пройденного телом, к промежутку времени, в течение которого этот путь пройден: ʋср = l/t.  Внимание! Не является векторной величиной!
  1. Вектор средней скорости   равен отношению вектора перемещения к промежутку времени, в течение которого это перемещение произошло: . В проекциях на координатную ось 0х .   Внимание! Вектор средней скорости сонаправлен с вектором перемещения.
  1. Мгновенная скорость  – скорость тела в данной точке пространства в данный момент времени.

Внимание!  1). Вектор мгновенной скорости направлен по касательной к траектории движения в каждой её точке. 2). Проекция перемещения на соответствующую координатную ось численно равна площади под графиком зависимости проекции скорости на эту ось от времени.

  1. Ускорение  – векторная физическая величина, характеризующая изменение скорости с течением времени. Для равноускоренного движения вектор ускорения равен отношению вектора изменения скорости к тому промежутку времени, в течение которого это изменение произошло:  . В проекциях на координатную ось  .  Физический смысл: численно равно изменению скорости за 1 с.

Относительность движения


Конспект урока в 9 классе «Механическое движение. Относительность движения».

Дополнительные материалы (конспекты 7 класса): 1) Механическое движение. Траектория и путь.  2) Прямолинейное движение  3) Неравномерное движение. Средняя скорость.  4) ЗАДАЧИ на движение с решениями.

Следующая тема для 9 класса: «Равномерное прямолинейное движение» (код ОГЭ 1,2).

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Относительная влажность воздуха егэ география
  • Относись к людям так как хочешь чтобы они относились к тебе сочинение
  • Отнимать прорастать горловое егэ
  • Отметьте фразу содержащую положительную оценку научного сочинения
  • Отр экзамен в киргизии

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии