Открытый банк заданий егэ по математике тригонометрия

Skip to content

ЕГЭ по математике — Профиль 2022. Открытый банк заданий с ответами.

ЕГЭ по математике — Профиль 2022. Открытый банк заданий с ответами.admin2022-08-27T23:17:48+03:00

23 марта 2022

В закладки

Обсудить

Жалоба

Задачи ЕГЭ с тригонометрией

Подборка заданий для тренировки профильного уровня.

Без ответов.

Задание 1. Простейшие уравнения
Задание 4. Вычисления и преобразования
Задание 7. Задачи с прикладным содержанием
Задание 11. Наибольшее и наименьшее значение функций
Задание 12

s-tr.pdf

Источник: vk.com/trigonometrics2122

1. Найдите значение выражения .

2. Найдите значение выражения .

3. Найдите , если  и .

4. Найдите значение выражения .

5. Найдите значение выражения .

6. Найдите значение выражения .

7. Найдите , если  и .

8. Найдите значение выражения .

9. Найдите значение выражения .

10. Найдите , если .

11. Найдите , если  и .

12. Найдите значение выражения .

13. Найдите значение выражения 

14. Найдите значение выражения .

15. Найдите значение выражения .

16. Найдите , если .

17. Найдите , если  и .

18. Найдите значение выражения .

19. Найдите значение выражения .

20. Найдите значение выражения , если .

21. Найдите , если  и .

22. Найдите , если  и .

23. Найдите , если  и .

24. Найдите значение выражения .

25. Найдите значение выражения .

26. Найдите значение выражения .

27. Найдите , если .

28. Найдите значение выражения .

29. Найдите , если 

30. Найдите значение выражения .

31. Найдите значение выражения .

32. Найдите значение выражения .

33. Найдите значение выражения .

34. Найдите значение выражения .

35. Найдите , если .

36. Найдите , если  и .

37. Найдите , если  и .

38. Найдите значение выражения .

39. Найдите значение выражения .

40. Найдите значение выражения .

41. Найдите значение выражения .

42. Найдите значение выражения 

43. Найдите значение выражения .

44. Найдите , если .

45. Найдите значение выражения .

46. Найдите значение выражения .

47. Найдите значение выражения .

48. Найдите значение выражения 

49. Найдите , если .

50 Найдите значение выражения .

51. Найдите значение выражения .

52. Найдите значение выражения .

53. Найдите значение выражения 

54. Найдите значение выражения 

55. Найдите , если .

56. Найдите , если .

57. Найдите , если 

58. Найдите , если .

59. Найдите , если  и 

60. Найдите значение выражения 

61. Найдите значение выражения .

62. Найдите значение выражения .

63. Найдите , если  и .

64. Найдите , если 

65. Найдите , если .

66. Найдите , если  и .

67. Найдите значение выражения .

68. Найдите значение выражения .

69. Найдите , если .

70. Найдите значение выражения .

71. Найдите значение выражения .

72. Найдите значение выражения .

73. Найдите значение выражения , если .

74. Найдите значение выражения .

75. Найдите , если  и .

76. Найдите , если  и .

77. Найдите значение выражения .

78. Найдите значение выражения .

79. Найдите значение выражения .

80. Найдите значение выражения .

81. Найдите значение выражения .

82. Найдите значение выражения , если .

83. Найдите значение выражения .

84. Найдите значение выражения .

85 Найдите значение выражения .

86. Найдите значение выражения .

87. Найдите , если .

88. Найдите значение выражения .

89. Найдите значение выражения .

90. Найдите значение выражения .

91. Найдите значение выражения: 

92. Найдите , если .

93. Найдите , если  и .

94. Найдите значение выражения .

95. Найдите значение выражения .

96. Найдите значение выражения .

97. Найдите значение выражения .

98. Найдите значение выражения .

99. Найдите значение выражения .

100. Найдите значение выражения .

101. Найдите значение выражения .

102. Найдите значение выражения .

103. Найдите значение выражения: .

104. Найдите значение выражения: .

105. Найдите значение выражения .

106. Найдите значение выражения .

107. Найдите значение выражения .

109. Найдите корень уравнения . В ответе напишите наименьший положительный корень.

Задача 3. Начала теории вероятностей

Задача 3. Начала теории вероятностей

Задача 4. Вероятности сложных событий

Задача 4. Вероятности сложных событий

Задача 5. Простейшие уравнения

Задача 5. Простейшие уравнения

Задача 6. Вычисления и преобразования

Задача 6. Вычисления и преобразования

Задача 7. Производная и первообразная

Задача 7. Производная и первообразная

Задача 8. Задачи с прикладным содержанием

Задача 8. Задачи с прикладным содержанием

Задача 9. Текстовые задачи

Задача 9. Текстовые задачи

Задача 10. Графики функций

Задача 10. Графики функций

Задача 11. Наибольшее и наименьшее значение функций

Задача 11. Наибольшее и наименьшее значение функций

������� ����������

��������-������� ������� ����������

������� ������� ����������

���� ����������� � ���� ������������ �������� �������, � ������� ��������� �������������� ������� � ������������� ������� ��� ���������� � ���������� ������� �� ����������.

������-������������ ����������

������-������������ ����������

��������� � ����������-������������ ������������, ������� ���������, ���������, ��������� ���������� ������, �������� �����, �����������.

����� � ��������

����� � ��������

������� � ����� �������� �������������� ����� � ��������, �������� ������� �� ���� � ��������� ��� �������, ������ ��� ������� ������� ��������� ����� ������� ���������� �������.

��������-������

��������-������

������ �������� �� ����������� ����� � �������� ������������� ����������� � ��������-������� �� �����, � ������� ����� ����������� ��������� � ������ ������, ���������; �������� (� ��������) ������ ����� ������� ���� ������.

�������� �� ����������

��������

� ��������� ����� 12600 ������� �� ����� ��������� ����� ����������, ���� ����������� ������ ������������ ����������� ������� � ��������� ��������� � �����������.

��������� �  ����� ����������

��������� � �����

������� ������, ������������� ����� � ������ ������� �������, ������� ������ ������������ �� ������, �������� � ���������.

��������

������ ��������������� ������� (���) �� ����������

������������ �����, ���, ���

������������ �����

���������� � ��������� � ������� ���������������� ��������� � ������������ ������, ������� ����������� �������� ������������� ������������.

��������� �� �������

��������� �� �������

������ �����, �������������� ��������������, 
�������, ��������, �������������� ������, 
�������, �������, 
�������������, 
����������, �����������, �������������

��������� �� ���������

�������� �� ����������

�����������

����������� �������� ����������

��� ��������� ������� ������� �� ���� ������-������������ �������� �������� ���������� ������ ��������� �����������.

� �����

��� ������� �����������

������������ ����� — ��� ������� �����������, �������� �������������� ����, ������� ������ ���������, ���������� ������ ���������� ��.

�����-��������

temaplan.ru

������� ��������

�������� ����� ���������� ������������
������� �������� ����������� �����-���������
���������� ������ ����������� �����-���������
��������� ������ �������� �������� ����� �������
��������� ��� �������� �������
������� ������� ���������� ��������
���������� ��������� ������������ ����������
����ԣ�� �.�.-�������� �.�. ������
������ ������ ���������� ������������
��������� ������� ������������� ������-���, ���������� ����� ��
�������� ������� ������� ���������
��������� ����� ��������� �����-���������
�������� ������� ���������� ������������
�������� ����� ���������� �������
������� ���� ���������� ���
���������� ������ ������������� ������-���
�������� ���� ����������� �����-���������
������� ������ �������� ������� ����
������� �������� ���������� �������
������� ������ ���������� �������

������ � �����

�� ������ ������ ������ ������������� �����, ���������� ��� ������, ��� �����-���� �������������� ������.

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Тригонометрические уравнения»

Открытый банк заданий по теме тригонометрические уравнения. Задания C1 из ЕГЭ по математике (профильный уровень)

Стереометрия. Расстояния и углы в пространстве

Задание №1179

Условие

а) Решите уравнение 2(sin x-cos x)=tgx-1.

б) Укажите корни этого уравнения, принадлежащие промежутку left[ frac{3pi }2;,3pi right].

Показать решение

Решение

а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 sin x-2 cos x-tg x=0. Учитывая, что cos x neq 0, слагаемое 2 sin x можно заменить на 2 tg x cos x, получим уравнение 1+2 tg x cos x-2 cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 cos x)=0.

1) 1-tg x=0,  tg x=1, x=fracpi 4+pi n, n in mathbb Z;

2) 1-2 cos x=0,  cos x=frac12, x=pm fracpi 3+2pi n, n in mathbb Z.

б) С помощью числовой окружности отберём корни, принадлежащие промежутку left[ frac{3pi }2;, 3pi right].

Отбор корней принадлежащих промежутку с помощью числовой окружности

x_1=fracpi 4+2pi =frac{9pi }4,

x_2=fracpi 3+2pi =frac{7pi }3,

x_3=-fracpi 3+2pi =frac{5pi }3.

Ответ

а) fracpi 4+pi n, pmfracpi 3+2pi n, n in mathbb Z;

б) frac{5pi }3,  frac{7pi }3,  frac{9pi }4.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1178

Условие

а) Решите уравнение (2sin ^24x-3cos 4x)cdot sqrt {tgx}=0.

б) Укажите корни этого уравнения, принадлежащие промежутку left( 0;,frac{3pi }2right] ;

Показать решение

Решение

а) ОДЗ: begin{cases} tgxgeqslant 0\xneq fracpi 2+pi k,k in mathbb Z. end{cases}

Исходное уравнение на ОДЗ равносильно совокупности уравнений

left[!!begin{array}{l} 2 sin ^2 4x-3 cos 4x=0,\tg x=0. end{array}right.

Решим первое уравнение. Для этого сделаем замену cos 4x=t,  t in [-1; 1]. Тогда sin^24x=1-t^2. Получим:

2(1-t^2)-3t=0,

2t^2+3t-2=0,

t_1=frac12, t_2=-2, t_2notin [-1; 1].

cos 4x=frac12,

4x=pm fracpi 3+2pi n,

x=pm fracpi {12}+frac{pi n}2, n in mathbb Z.

Решим второе уравнение.

tg x=0,, x=pi k, k in mathbb Z.

При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.

Нахождение решений с помощью единичной окружности

Знаком «+» отмечены 1-я и 3-я четверти, в которых tg x>0.

Получим: x=pi k, k in mathbb Z; x=fracpi {12}+pi n, n in mathbb Z; x=frac{5pi }{12}+pi m, m in mathbb Z.

б) Найдём корни, принадлежащие промежутку left( 0;,frac{3pi }2right].

Корни, принадлежащие промежутку на числовой окружности

x=fracpi {12}, x=frac{5pi }{12}; x=pi ; x=frac{13pi }{12}; x=frac{17pi }{12}.

Ответ

а) pi k, k in mathbb Z; fracpi {12}+pi n, n in mathbb Z; frac{5pi }{12}+pi m, m in mathbb Z.

б) pi; fracpi {12}; frac{5pi }{12}; frac{13pi }{12}; frac{17pi }{12}.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1177

Условие

а) Решите уравнение: cos ^2x+cos ^2fracpi 6=cos ^22x+sin ^2fracpi 3;

б) Укажите все корни, принадлежащие промежутку left( frac{7pi }2;,frac{9pi }2right].

Показать решение

Решение

а) Так как sin fracpi 3=cos fracpi 6, то sin ^2fracpi 3=cos ^2fracpi 6, значит, заданное уравнение равносильно уравнению cos^2x=cos ^22x, которое, в свою очередь, равносильно уравнению cos^2x-cos ^2 2x=0.

Но cos ^2x-cos ^22x= (cos x-cos 2x)cdot (cos x+cos 2x) и

cos 2x=2 cos ^2 x-1, поэтому уравнение примет вид

(cos x-(2 cos ^2 x-1)),cdot (cos x+(2 cos ^2 x-1))=0,

(2 cos ^2 x-cos x-1),cdot (2 cos ^2 x+cos x-1)=0.

Тогда либо 2 cos ^2 x-cos x-1=0, либо 2 cos ^2 x+cos x-1=0.

Решая первое уравнение как квадратное уравнение относительно cos x, получаем:

(cos x)_{1,2}=frac{1pmsqrt 9}4=frac{1pm3}4. Поэтому либо cos x=1, либо cos x=-frac12. Если cos x=1, то x=2kpi , k in mathbb Z. Если cos x=-frac12, то x=pm frac{2pi }3+2spi , s in mathbb Z.

Аналогично, решая второе уравнение, получаем либо cos x=-1, либо cos x=frac12.Если cos x=-1, то корни x=pi +2mpi , m in mathbb Z. Если cos x=frac12, то x=pm fracpi 3+2npi , n in mathbb Z.

Объединим полученные решения:

x=mpi , m in mathbb Z; x=pm fracpi 3 +spi , s in mathbb Z.

б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.

Отбор корней заданного промежутка на числовой окружности

Получим: x_1 =frac{11pi }3,  x_2=4pi ,  x_3 =frac{13pi }3.

Ответ

а) mpi, m in mathbb Z; pm fracpi 3 +spi , s in mathbb Z;

б) frac{11pi }3,  4pi ,  frac{13pi }3.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1176

Условие

а) Решите уравнение 10cos ^2frac x2=frac{11+5ctgleft( dfrac{3pi }2-xright) }{1+tgx}.

б) Укажите корни этого уравнения, принадлежащие интервалу left( -2pi ; -frac{3pi }2right).

Показать решение

Решение

а) 1. Согласно формуле приведения, ctgleft( frac{3pi }2-xright) =tgx. Областью определения уравнения будут такие значения x, что cos x neq 0 и tg x neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 cos ^2 frac x2=1+cos x. Получим уравнение: 5(1+cos x) =frac{11+5tgx}{1+tgx}.

Заметим, что frac{11+5tgx}{1+tgx}= frac{5(1+tgx)+6}{1+tgx}= 5+frac{6}{1+tgx}, поэтому уравнение принимает вид: 5+5 cos x=5 +frac{6}{1+tgx}. Отсюда cos x =frac{dfrac65}{1+tgx}, cos x+sin x =frac65.

2. Преобразуем sin x+cos x по формуле приведения и формуле суммы косинусов: sin x=cos left(fracpi 2-xright), cos x+sin x= cos x+cos left(fracpi 2-xright)= 2cos fracpi 4cos left(x-fracpi 4right)= sqrt 2cos left( x-fracpi 4right) = frac65.

Отсюда cos left(x-fracpi 4right) =frac{3sqrt 2}5. Значит, x-fracpi 4= arccos frac{3sqrt 2}5+2pi k, k in mathbb Z,

или x-fracpi 4= -arccos frac{3sqrt 2}5+2pi t, t in mathbb Z.

Поэтому x=fracpi 4+arccos frac{3sqrt 2}5+2pi k,k in mathbb Z,

или x =fracpi 4-arccos frac{3sqrt 2}5+2pi t,t in mathbb Z.

Найденные значения x принадлежат области определения.

б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=fracpi 4+arccos frac{3sqrt 2}5 и b=fracpi 4-arccos frac{3sqrt 2}5.

1. Докажем вспомогательное неравенство:

frac{sqrt 2}{2}<frac{3sqrt 2}2<1.

Действительно, frac{sqrt 2}{2}=frac{5sqrt 2}{10}<frac{6sqrt2}{10}=frac{3sqrt2}{5}.

Заметим также, что left( frac{3sqrt 2}5right) ^2=frac{18}{25}<1^2=1, значит frac{3sqrt 2}5<1.

2. Из неравенств (1) по свойству арккосинуса получаем:

arccos 1<arccos frac{3sqrt 2}5<arccos frac{sqrt 2}2,

0<arccosfrac{3sqrt2}{5}<frac{pi}{4}.

Отсюда fracpi 4+0<fracpi 4+arccos frac{3sqrt 2}5<fracpi 4+fracpi 4,

0<fracpi 4+arccos frac{3sqrt 2}5<fracpi 2,

0<a<fracpi 2.

Аналогично, -fracpi 4<arccosfrac{3sqrt2}{5}<0,

0=fracpi 4-fracpi 4<fracpi 4-arccos frac{3sqrt 2}5< fracpi 4<fracpi 2,

0<b<fracpi 2.

При k=-1 и t=-1 получаем корни уравнения a-2pi и b-2pi.

Bigg( a-2pi =-frac74pi +arccos frac{3sqrt 2}5,, b-2pi =-frac74pi -arccos frac{3sqrt 2}5Bigg). При этом -2pi <a-2pi <-frac{3pi }2,

-2pi <b-2pi <-frac{3pi }2. Значит, эти корни принадлежат заданному промежутку left( -2pi , -frac{3pi }2right).

При остальных значениях k и t корни уравнения не принадлежат заданному промежутку.

Действительно, если kgeqslant 1 и tgeqslant 1, то корни больше 2pi. Если kleqslant -2 и tleqslant -2, то корни меньше -frac{7pi }2.

Ответ

а) fracpi4pm arccosfrac{3sqrt2}5+2pi k, kinmathbb Z;

б) -frac{7pi}4pm arccosfrac{3sqrt2}5.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1175

Условие

а) Решите уравнение sin left( fracpi 2+xright) =sin (-2x).

б) Найдите все корни этого уравнения, принадлежащие промежутку [0; pi ];

Показать решение

Решение

а) Преобразуем уравнение:

cos x =-sin 2x,

cos x+2 sin x cos x=0,

cos x(1+2 sin x)=0,

cos x=0,

x =fracpi 2+pi n, n in mathbb Z;

1+2 sin x=0,

sin x=-frac12,

x=(-1)^{k+1}cdot fracpi 6+pi k, k in mathbb Z.

б) Корни, принадлежащие отрезку [0; pi ], найдём с помощью единичной окружности.

Нахождение корней отрезка на единичной окружности

Указанному промежутку принадлежит единственное число fracpi 2.

Ответ

а) fracpi 2+pi n, n in mathbb Z; (-1)^{k+1}cdot fracpi 6+pi k, k in mathbb Z;

б) fracpi 2.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1174

Условие

а) Решите уравнение frac{sin x-1}{1+cos 2x}=frac{sin x-1}{1+cos (pi +x)}.

б) Найдите все корни этого уравнения, принадлежащие отрезку left[ -frac{3pi }{2}; -frac{pi }2 right].

Показать решение

Решение

а) Найдём ОДЗ уравнения: cos 2x neq -1, cos (pi +x) neq -1; Отсюда ОДЗ: x neq frac pi 2+pi k,

k in mathbb Z, x neq 2pi n, n in mathbb Z. Заметим, что при sin x=1, x=frac pi 2+2pi k, k in mathbb Z.

Полученное множество значений x не входит в ОДЗ.

Значит, sin x neq 1.

Разделим обе части уравнения на множитель (sin x-1), отличный от нуля. Получим уравнение frac 1{1+cos 2x}=frac 1{1+cos (pi +x)}, или уравнение 1+cos 2x=1+cos (pi +x). Применяя в левой части формулу понижения степени, а в правой — формулу приведения, получим уравнение 2 cos ^2 x=1-cos x. Это уравнение с помощью замены cos x=t, где -1 leqslant t leqslant 1 сводим к квадратному: 2t^2+t-1=0, корни которого t_1=-1 и t_2=frac12. Возвращаясь к переменной x, получим cos x = frac12 или cos x=-1, откуда x=frac pi 3+2pi m, m in mathbb Z, x=-frac pi 3+2pi n, n in mathbb Z, x=pi +2pi k, k in mathbb Z.

б) Решим неравенства

1) -frac{3pi }2 leqslant frac{pi }3+2pi m leqslant -frac pi 2 ,

2) -frac{3pi }2 leqslant -frac pi 3+2pi n leqslant -frac pi {2,}

3) -frac{3pi }2 leqslant pi+2pi k leqslant -frac pi 2 , m, n, k in mathbb Z. 

Решение:

1) -frac{3pi }2 leqslant frac{pi }3+2pi m leqslant -frac pi 2 , -frac32 leqslant  frac13+2m leqslant  -frac12 -frac{11}6 leqslant  2m leqslant  -frac56 , -frac{11}{12} leqslant m leqslant -frac5{12}.

Нет целых чисел, принадлежащих промежутку left [-frac{11}{12};-frac5{12}right].

2) -frac {3pi} 2 leqslant -frac{pi }3+2pi n leqslant -frac{pi }{2}, -frac32 leqslant -frac13 +2n leqslant -frac12 , -frac76 leqslant 2n leqslant -frac1{6}, -frac7{12} leqslant n leqslant -frac1{12}.

Нет целых чисел, принадлежащих промежутку left[ -frac7{12} ; -frac1{12} right].

3) -frac{3pi }2 leqslant pi +2pi kleqslant -frac{pi }2, -frac32 leqslant 1+2kleqslant -frac12, -frac52 leqslant 2k leqslant -frac32, -frac54 leqslant k leqslant -frac34.

Этому неравенству удовлетворяет k=-1, тогда x=-pi.

Ответ

а) frac pi 3+2pi m; -frac pi 3+2pi n; pi +2pi k, m, n, k in mathbb Z;

б) -pi .

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1173

Условие

а) Решите уравнение: sin ^2x+sin ^2fracpi 6=cos ^22x+cos ^2fracpi 3.

б) Укажите все корни, принадлежащие промежутку left[ frac{7pi }2;,frac{9pi }2right).

Показать решение

Решение

а) Так как sin fracpi 6=cos fracpi 3, то sin ^2fracpi 6=cos ^2fracpi 3, значит, заданное уравнение равносильно уравнению sin ^2 x=cos ^2 2x, которое, в свою очередь, равносильно уравнению sin ^2- cos ^2 2x=0.

Но sin ^ 2x-cos ^2 2x= (sin x-cos 2x)cdot (sin x+cos 2x) и

cos 2x=1-2 sin ^2 x, поэтому уравнение примет вид

(sin x-(1-2 sin ^2 x)),cdot (sin x+(1-2 sin ^2 x))=0,

(2 sin ^2 x+sin x-1),cdot (2 sin ^2 x-sin x-1)=0.

Тогда либо 2 sin ^2 x+sin x-1=0, либо 2 sin ^2 x-sin x-1=0.

Решим первое уравнение как квадратное относительно sin x,

(sin x)_{1,2}=frac{-1 pm sqrt 9}4=frac{-1 pm 3}4. Поэтому либо sin x=-1, либо sin x=frac12. Если sin x=-1, то x=frac{3pi }2+ 2kpi , k in mathbb Z. Если sin x=frac12, то либо x=fracpi 6 +2spi , s in mathbb Z, либо x=frac{5pi }6+2tpi , t in mathbb Z.

Аналогично, решая второе уравнение, получаем либо sin x=1, либо sin x=-frac12. Тогда x =fracpi 2+2mpi , m in mathbb Z, либо x=frac{-pi }6 +2npi , n in mathbb Z, либо x=frac{-5pi }6+2ppi , p in mathbb Z.

Объединим полученные решения:

x=fracpi 2+mpi,minmathbb Z; x=pmfracpi 6+spi,s in mathbb Z.

б) Выберем корни, которые попали в заданный промежуток с помощью числовой окружности.

Корни, которые попали в заданный промежуток на числовой окружности

Получим: x_1 =frac{7pi }2, x_2 =frac{23pi }6, x_3 =frac{25pi }6.

Ответ

а) fracpi 2+ mpi , m in mathbb Z; pm fracpi 6 +spi , s in mathbb Z;

б) frac{7pi }2;,,frac{23pi }6;,,frac{25pi }6.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1172

Условие

а) Решите уравнение log_2^2(2sin x+1)-17log_2(2sin x+1) +16=0.

б) Укажите корни этого уравнения, принадлежащие отрезку left[ fracpi 4;,2pi right].

Показать решение

Решение

а) После замены t=log_2(2 sin x+1) исходное уравнение примет вид t^2 -17t+16=0. Корни этого уравнения t=1, t=16. Возвращаясь к переменной x, получим:

left[!!begin{array}{l} log_2(2 sin x+1)=1,\ log_2(2 sin x+1)=16; end{array}right. left[!!begin{array}{l} 2sin x+1=2,\ 2sin x+1=2^{16}. end{array}right.

Второе уравнение совокупности не имеет корней. Решая первое уравнение, получим:

sin x =frac12, x=(-1)^nfracpi 6+pi n,n in mathbb Z.

б) Запишем решение уравнения в виде x=fracpi 6 +2pi n,n in mathbb Z или x=frac{5pi }6+2pi k,kin mathbb Z и выясним, для каких целых значений n и k справедливы неравенства fracpi 4leqslant fracpi 6+2pi nleqslant 2pi и fracpi 4leqslant frac{5pi }6+2pi kleqslant 2pi.

Получим: frac1{24}leqslant nleqslant frac{11}{12} и -frac7{24}leqslant kleqslant frac7{12}, откуда следует, что нет целых значений n, удовлетворяющих неравенству frac1{24}leqslant nleqslant frac{11}{12};,,, k=0 — единственное целое k, удовлетворяющее неравенству -frac7{24}leqslant kleqslant frac7{12}.

При k=0, x=frac{5pi }6+2picdot 0=frac{5pi }6. Итак, frac{5pi }6 — корень уравнения, принадлежащий отрезку left[ fracpi 4;,2pi right].

Ответ

а) (-1)^nfracpi 6+pi n,n in mathbb Z.

б) frac{5pi }6.

Задание №1171

Условие

а) Решите уравнение 125^x-3cdot 25^x-5^{x+2}+75=0.

б) Укажите все корни этого уравнения, принадлежащие отрезку [log_54; log_511).

Показать решение

Решение

а) Преобразуем исходное уравнение и разложим на множители его левую часть.

5^{3x}-3cdot 5^{2x}-25cdot 5^x+25cdot 3=0,

5^{2x}(5^x-3)-25(5^x-3)=0,

(5^x-3)(5^{2x}-25)=0.

Получаем: 5^x-3=0 или 5^{2x}-25=0.

5^x-3=0, x=log_53 или 5^{2x}=25, x=1.

б) Нам нужно выбрать те корни уравнения, которые принадлежат отрезку [log_5 4; log_5 11]. Заметим, что log_5 3<log_5 4<1<log_5 11, значит, указанному отрезку принадлежит корень x=1.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1170

Условие

а) Решите уравнение 2cos xleft( cos x+cos frac{5pi }4right) + cos x+cos frac{3pi }4=0.

б) Найдите все корни этого уравнения, принадлежащие промежутку left[ pi ;,frac{5pi }2right).

Показать решение

Решение

а) Так как cos frac{5pi }4= cos left( pi +fracpi 4right) = -cos fracpi 4= -frac{sqrt 2}2 и cos frac{3pi }4= cos left( pi -fracpi 4right) = -cos fracpi 4= -frac{sqrt 2}2, то уравнение примет вид: 2cos xleft( cos x-frac{sqrt 2}2right) +cos x-frac{sqrt 2}2=0.Отсюда (2cos x+1)left( cos x-frac{sqrt 2}2right) =0.

Тогда cos x=-frac12; x=pmfrac{2pi }3+2pi n или cos x=frac{sqrt 2}2;, x=pmfracpi 4+2pi n, где n in mathbb Z.

б) Корни, принадлежащие промежутку left[ pi ;,frac{5pi }2right), найдём с помощью числовой окружности: frac{4pi }3;,, frac{7pi }4;,, frac{9pi }4.

Корни, принадлежащие промежутку на числовой окружности

Ответ

а) pmfrac{2pi }3+2pi n;,, pmfracpi 4=2pi n, n in mathbb Z.

б) frac{4pi }3;, frac{7pi }4;, frac{9pi }4.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

ВАРИАНТ 1

1.Найдите tg alpha , если cos alpha =frac{sqrt{10}}{10} и alpha in left(frac{3pi }{2};,2pi right).

2.Найдите tg alpha , если sin alpha =frac{1}{sqrt{26}} и alpha in (0,5pi; pi ).

3.Найдите cos alpha , если sin alpha =-frac{3sqrt{11}}{10} и alpha in left(frac{3pi}{2}; 2pi right).

4.Найдите 7cos 2alpha , если sin alpha =-0,2.

5.Найдите frac{3sin 6alpha }{5cos 3alpha }, если sin 3alpha =-0,5.

6.Найдите значение выражения frac{3cos (pi -beta )+sin (frac{pi }{2}+beta )}{cos (beta +3pi )}.

7.Найдите 8sin (frac{pi }{2} -alpha ), если sin alpha =-0,6и alpha in (1,5pi; 2pi ).

8.Найдите -15cos (frac{3pi }{2} +alpha ), если cos alpha =frac{7}{25} и alpha in (0; 0,5pi ).

9.Найдите значение выражения 3cos (pi +beta )+2sin (frac{3pi }{2}+beta ), если cos beta =-frac{3}{5}.

10.Найдите 25cos 2alpha , если cos alpha =frac{1}{5}.

ВАРИАНТ 2

1.Найдите tg alpha , если cos alpha =frac{2sqrt{5}}{5} и alpha in left(frac{3pi}{2}; 2piright).

2.Найдите tg alpha , если sin alpha =frac{1}{sqrt{17}} и alpha in (0,5pi; pi ).

3.Найдите cos alpha , если sin alpha =frac{sqrt{91}}{10} и alpha in left(0; frac{pi}{2} right).

4.Найдите -2cos 2alpha , если sin alpha =1.

5.Найдите frac{3sin 6alpha }{5cos 3alpha }, если sin 3alpha =0,8.

6.Найдите значение выражения frac{2cos (-3pi -beta ) +sin (-frac{pi }{2}+beta )}{3cos (beta +pi )}.

7.Найдите 8sin (frac{5pi }{2} +alpha ), если sin alpha =-0,6и alpha in (1,5pi; 2pi ).

8.Найдите -26cos (frac{3pi }{2} -alpha ), если cos alpha =-frac{5}{13} и alpha in (0,5pi; pi ).

9.Найдите значение выражения 3cos (-pi +beta )+5sin (frac{pi }{2}+beta ), если cos beta =-frac{1}{2}.

10. Найдите 3cos 2alpha , если cos alpha =frac{1}{2}.

ВАРИАНТ 3

1.Найдите tg alpha , если cos alpha =frac{2sqrt{13}}{13} и alpha in left(frac{3pi}{2}; 2piright).

2.Найдите tg alpha , если sin alpha =frac{6}{sqrt{61}} и alpha in (0; 0,5pi ).

3.Найдите cos alpha , если sin alpha =-frac{sqrt{51}}{10} и alpha in left(frac{3pi}{2}; 2pi right).        

4.Найдите -16cos 2alpha , если sin alpha =-0,4.

5.Найдите frac{2sin 4alpha }{5cos 2alpha }, если sin 2alpha =0,2.

6.Найдите значение выражения frac{2cos (2pi -beta ) -3sin (-frac{pi }{2}+beta )}{2cos (beta -3pi )}.

7.Найдите 3sin (frac{5pi }{2} -alpha ), если sin alpha =-0,8и alpha in (pi; 1,5pi ).

8.Найдите -20cos (frac{3pi }{2} +alpha ), если cos alpha =frac{7}{25} и alpha in (1,5pi; 2pi ).

9.Найдите значение выражения 5cos (2pi +beta )+2sin (frac{3pi }{2}+beta ), если cos beta =-frac{2}{3}.

10.Найдите 55cos 2alpha , если cos alpha =frac{3}{5}.

ВАРИАНТ 4

1. Найдите tg alpha , если cos alpha =-frac{5sqrt{34}}{34} и alpha in left(frac{pi}{2}; piright).        

2. Найдите tg alpha , если sin alpha =-frac{1}{sqrt{5}} и alpha in (pi; 1,5pi ).

3. Найдите cos alpha , если sin alpha =-frac{2sqrt{6}}{5} и alpha in left(pi; frac{3pi}{2} right).

4.Найдите 14cos 2alpha , если sin alpha =0,5.

5. Найдите frac{3sin 4alpha }{5cos 2alpha }, если sin 2alpha =0,2.

6. Найдите значение выражения frac{2cos (pi -beta ) +2sin (-frac{pi }{2}+beta )}{cos (beta +2pi )}.

7. Найдите -11sin (frac{3pi }{2} -alpha ), если sin alpha =0,6и alpha in (0,5pi; pi ).

8.Найдите 20cos (frac{7pi }{2} -alpha ), если cos alpha =frac{3}{5} и alpha in (1,5pi; 2pi ).

9.Найдите значение выражения 5cos (2pi +beta )+4sin (frac{-3pi }{2}+beta ), если cos beta =-frac{1}{3}.

10.Найдите 49cos 2alpha , если cos alpha =frac{1}{7}.

Ответы.

Вариант 1  

1.-3

2.-0,2

3.0,1

4.6,44

5.-0,6

6.2

7.6,4

8.-14,4

9.3

10.-23

Вариант 2

1.-0,5

2.-0,25

3.0,3

4.2

5.0,96

6.1

7.6,4

8.24

9.-1

10.-1,5

Вариант 3

1.-1,5

2.1,2

3.0,7

4.-10,88

5.0,16

6.-2,5

7.-1,8

8.19,2

9.-2

10.-15,4

Вариант 4

1.-0,6

2.0,5

3.-0,2

4.7

5.0,24

6.-4

7.8,8

8.16

9.-3

10.-47

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Открытый банк заданий егэ по математике профильный уровень 2023 фипи с ответами
  • Открытый банк заданий егэ по математике профильный уровень 2022 фипи с ответами
  • Открытый банк заданий егэ математика профиль 2023 год
  • Открытый банк заданий егэ по математике 2023 базовый уровень фипи с ответами
  • Открытый банк заданий егэ информатика 2023

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии