24 апреля 2022
В закладки
Обсудить
Жалоба
Московский пробник ЕГЭ по математике
Профильный уровень. Работа прошла 23 апреля.
probnik-mos.pdf
Источник: vk.com/profimatika
Варианты и ответы с пробного (апробация) ЕГЭ 2022 по математике профильный уровень, который прошёл в школах Москвы у 11 класса в субботу 23 апреля 2022 года.
Скачать варианты пробного ЕГЭ 2022
Скачать ответы для вариантов
Варианты пробного ЕГЭ 2022 профиль математика в Москве:
Видео разбор вариантов пробника
1)Найдите корень уравнения log3 (𝑥 + 6) = log3 (2𝑥 − 9).
2)В некотором городе из 5000 появившихся на свет младенцев 2512 мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных.
3)На борту самолёта 12 кресел расположены рядом с запасными выходами и 18 -— за перегородками, разделяющими салоны. Все эти места удобны для пассажира высокого роста. Остальные места неудобны. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.
4)К окружности, вписанной в треугольник 𝐴𝐵𝐶, проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника.
5)Около окружности, радиус которой равен 2, описан многоугольник, периметр которого равен 58. Найдите его площадь.
6)В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 80 см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в 4 раза больше, чем у первого? Ответ выразите в см.
7)В правильной четырёхугольной пирамиде высота равна 3, боковое ребро равно 5. Найдите её объём.
8)На рисунке изображен график функции 𝑦 = 𝑓(𝑥), определенной на интервале (−2; 12). Найдите количество точек, в которых производная функции 𝑓(𝑥) обращается в ноль.
9)Мяч бросили под углом альфа к плоской горизонтальной поверхности земли. Время полета мяча (в секундах) определяется по формуле 𝑡 = 2𝑣0 sin 𝛼 𝑔 . При каком значении угла 𝛼 (в градусах) время полета составит 3 секунды, если мяч бросают с начальной скоростью 𝑣0 = 30 м/с? Считайте, что ускорение свободного падения 𝑔 = 10 м/с2 .
10)Для обогрева помещения, температура в котором поддерживается на уровне 𝑇п = 20∘C, через радиатор отопления пропускают горячую воду. Расход проходящей через трубу радиатора воды 𝑚 = 0,3 кг/с. Проходя по трубе расстояние 𝑥, вода охлаждается от начальной температуры 𝑇в = 60∘C до температуры 𝑇, причём 𝑥 = 𝛼 𝑐𝑚 𝛾 log2 𝑇в−𝑇п 𝑇−𝑇п , где 𝑐 = 4200 Вт·с кг· ∘C — теплоёмкость воды, 𝛾 = 21 Вт м· ∘C — коэффициент теплообмена, а 𝛼 = 0,7 — постоянная. Найдите, до какой температуры (в градусах Цельсия) охладится вода, если длина трубы радиатора равна 84 м.
11)Теплоход проходит по течению реки до пункта назначения 200 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 15 км/ч, стоянка длится 10 часов, а в пункт отправления теплоход возвращается через 40 часов после отплытия из него. Ответ дайте в км/ч.
12)На рисунке изображён график функции 𝑓(𝑥) = 2𝑥 2 + 𝑏𝑥 + 𝑐 . Найдите значение 𝑓(−6).
13)Первый игральный кубик обычный, а на гранях второго кубика нет чётных чисел, а нечётные числа 1, 3 и 5 встречаются по два раза. В остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно, что в каком то порядке выпали 3 и 5 очков. Какова вероятность того, что бросали первый кубик?
14)Турнир по настольному теннису проводится по олимпийской системе в несколько туров: если в туре участвует чётное число игроков, то они разбиваются на случайные игровые пары. Если число игроков нечётно, то с помощью жребия выбираются случайные игровые пары, а один игрок остаётся без пары и не участвует в туре. Проигравший в каждой паре (ничья невозможна) выбывает из турнира, а победители и игрок без пары, если он есть, выходят в следующий тур, который проводится по таким же правилам. Так продолжается до тех пор, пока не останутся двое, которые играют между собой финальный тур, то есть последнюю партию, которая выявляет победителя турнира. Всего в турнире участвует 20 игроков, все они играют одинаково хорошо, поэтому в каждой встрече вероятность выигрыша и поражения у каждого игрока равна 0,5. Среди игроков два друга – Иван и Алексей. Какова вероятность того, что этим двоим в каком-то туре придётся сыграть друг с другом?
15)𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 — прямоугольный параллелепипед, все грани которого не квадраты; 𝑀 – середина 𝐶𝐷; 𝐾 – середина грани 𝐵𝐵1𝐶𝐶1; 𝐿 – середина грани 𝐴1𝐵1𝐶1𝐷1. Косинус угла между прямыми 𝑀𝐷1 и 𝐾𝐿 равен √ 3 10 a) Докажите, что 𝐷𝐶 = 2𝐷𝐷1. б) Найдите расстояние между прямыми 𝐿𝐾 и 𝐷1𝑀, если объем параллелепипеда 54√ 3 и угол между прямой 𝐵1𝐶 и гранью 𝐷𝐶𝐶1𝐷1 равен 60∘ .
16)16-ого декабря планируется взять кредит в банке на сумму 1200 тысяч рублей на 𝑛. месяца. Условия его возврата таковы: — 1-ого числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-ого числа каждого месяца с 1-го по 𝑛-й долг должен на одну и ту же сумму меньше долга на 15-е число предыдущего месяца; — к 15-му числу 𝑛-го месяца кредит должен быть полностью погашен. Найти 𝑛, если известно, что общая сумма выплат после полного погашения кредита составит 1326 тысячи рублей?
17)Дан прямоугольный треугольник 𝑅𝑆𝑇 с прямым углом 𝑇. На катете 𝑅𝑇 взята точка 𝑀. Окружность с центром 𝑂 и диаметром 𝑇𝑀 касается гипотенузы в точке 𝑁. a) Докажите, что прямые 𝑀𝑁 и 𝑆𝑂 параллельны. б) Найдите площадь четырехугольника 𝑆𝑂𝑀𝑁, если 𝑇 𝑁 = 8 и 𝑅𝑀 : 𝑀𝑇 = 1 : 3.
18)Пусть 𝑎𝑏 обозначает двузначное число, равное 10𝑎+𝑏, где 𝑎 и 𝑏− десятичные цифры, 𝑎 ̸= 0. a) Существуют ли такие попарно различные ненулевые цифры 𝑎, 𝑏, 𝑐 и 𝑑, что 𝑎𝑏 · 𝑐𝑑 − 𝑏𝑎 · 𝑑𝑐 = 297 ? б) Существуют ли такие попарно различные ненулевые цифры 𝑎, 𝑏, 𝑐 и 𝑑, что 𝑎𝑏 · 𝑐𝑑 − 𝑏𝑎 · 𝑑𝑐 = 1386, если среди цифр 𝑎, 𝑏, 𝑐 и 𝑑 есть цифра 7 ? в) Какое наибольшее значение может принимать выражение 𝑎𝑏 · 𝑐𝑑 − 𝑏𝑎 · 𝑑𝑐, если среди цифр 𝑎, 𝑏, 𝑐 и 𝑑 есть цифры 4 и 7 ?
-
Вариант с досрочного ЕГЭ 2022 по математике профильный уровень
-
Тренировочная работа №4 статград по математике 11 класс ЕГЭ 2022
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
Московский пробник ЕГЭ по математике 23.04.2022 полный разбор.
Ссылка на вариант
Друзья, я допустил ошибку во втором решение задачи 10.2 Ошибка в 3 и 4 кругах.
Нам нужно, чтобы первый попал в первые 16 человек из 20 в каждом из двух кругов.
Вероятность такого события 16/20=4/5.
Вероятность встречи Ивана и Алексея в 3 круге — 4/5*4/19*1/16
Вероятность встречи Ивана и Алексея в 4 круге — 4/5*8/19*1/64
Поэтому верная сумма такая — 1/19 + 2/19*1/4 + 4/5*4/19*1/16 + 4/5*8/19*1/64 + 64/190*1/64 = 1/10
Материалы и статьи
Пробник по профильной математике ЕГЭ 2023. Вариант и ответы с пробника ЕГЭ 2023 по математике профиль, который прошёл 3 декабря 2022 года у 11 класса школьников Москвы. Единая городская контрольная работа в формате ЕГЭ по математике профильный уровень.
скачать вариант №1
скачать вариант №2
Единая городская контрольная работа в формате ЕГЭ 2023 по математике профильный №1
Единая городская контрольная работа в формате ЕГЭ 2023 по математике профильный №2
1. Дан равнобедренный треугольник 𝐴𝐵𝐶 с основанием 𝐴𝐶 и боковой стороной длины 7. Точка 𝐾 на стороне 𝐵𝐶 такая, что 𝐾𝐶 = 3, 𝑆𝐴𝐵𝐶 = 14. Найдите площадь треугольника 𝐴𝐵𝐾.
2. Имеется банка в форме цилиндра. Из неё перелили сок в 40 цилиндрических стаканов. Диаметр одного стакана в 4 раза меньше диаметра банки. При этом уровень сока в каждом стакане оказался 8 см. Какой была высота уровня сока в банке? Ответ дайте в сантиметрах.
3. В сборнике 4 билета по теме «Механические колебания». Вероятность того, что ученику попадётся билет не по данной теме равна 0,9. Сколько всего билетов в сборнике?
4. Стрелок стреляет по мишеням 5 раз. Вероятность попадания каждым отдельным выстрелом равна 0,8. Во сколько раз вероятность события, что стрелок попадёт в цель 4 раза больше вероятности события, что он попадёт в цель 3 раза?
5. Найдите корень уравнения √3 34 − 3𝑥 = 4.
8. Полная энергия падающего тела вычисляется по формуле 𝐸пол = 𝑚𝑣2 2 +𝑚𝑔ℎ. С какой скоростью двигалось тело массой 3 кг в момент, когда оно находилось на высоте 1,5 м, если его полная энергия в этот момент составляла 68,1 Дж? Ускорение свободного падения 𝑔 = 9,8 м/c2 .
9. Из двух городов, расстояние между которыми 720 км, выехали навстречу друг другу два поезда. Второй поезд выехал на час позже первого и едет со скоростью на 4 км/ч больше скорости первого. Поезда встретились ровно в середине пути. Найдите скорость первого поезда.
10. Дан график 𝑓(𝑥) = ⃒ ⃒𝑎𝑥2 + 𝑏𝑥 + 𝑐 ⃒ ⃒ , где 𝑎, 𝑏, 𝑐 – целые числа. Найдите 𝑓(4).
13. В прямоугольном параллелепипеде 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 на ребре 𝐴𝐴1 отмечена точка 𝐸 так, что 𝐴1𝐸 : 𝐸𝐴 = 3 : 2. Точка 𝑇 — середина ребра 𝐵1𝐶1, 𝐴𝐴1 = 10 и 𝐴𝐷 = 6. а) Докажите, что сечение параллелепипеда плоскостью 𝐸𝑇 𝐷1 – равнобедренная трапеция. б) Найдите площадь сечения параллелепипеда плоскостью 𝐸𝑇 𝐷1, если 𝐴𝐵 = 2√ 10.
15. В банке можно открыть один из двух вкладов. По вкладу А в конце каждого из трёх лет начисляется по 20% от суммы вклада в начале года. По вкладу Б в конце каждого из первых двух лет начисляется по 22% от суммы вклада в начале года. При каком наименьшем целом количестве начисляемых за третий год процентов по вкладу Б, вклад Б будет выгоднее вклада А?
16. Дан прямоугольный треугольник 𝐴𝐵𝐶. Квадрат 𝐶𝐾𝑁𝑀, такой, что точки 𝐾 и 𝑀 лежат на катетах 𝐴𝐶 и 𝐵𝐶 соответственно, а 𝑁 лежит на гипотенузе 𝐴𝐵. Квадрат 𝑃 𝑄𝑅𝑇 такой, что вершины 𝑃 и 𝑄 лежат на 𝐴𝐶 и 𝐵𝐶, а вершины 𝑇 и 𝑅 лежат на гипотенузе. а) Докажите, что точки 𝐶, 𝑁 и центры квадратов лежат на одной прямой. б) Найти сторону квадрата 𝑃 𝑄𝑅𝑇, если 𝐴𝐶 = 12 и 𝐵𝐶 = 5.
17. Найдите все значения а, при каждом из которых неравенство 𝑎(𝑎 − 7,5) − 2(𝑎 − 7,5) (2𝑥 + 2) 6 (︀ 2𝑥 2 − 3𝑥 )︀ (2𝑥 + 2) − 𝑎𝑥2 + 1,5𝑎𝑥 имеет хотя бы 1 решение на промежутке [−1; 0).
18. Пусть {𝑎𝑛} – последовательность натуральных чисел. Обозначим 𝑀<𝐶(𝑎𝑛) – среднее арифметическое всех членов последовательности {𝑎𝑛}, которые меньше некоторого числа 𝐶. Число 𝐶 лежит между наибольшим и наименьшим членами последовательности. Обозначим 𝑀>𝐶(𝑎𝑛) – среднее арифметическое всех членов последовательности {𝑎𝑛}, которые больше или равны 𝐶. Среднее арифметическое одного числа равно самому числу. Затем к каждому члену последовательности {𝑎𝑛} прибавили 4 и получили новую последовательность, которую обозначили {𝑎𝑛 + 4}.
- a) Существует ли последовательность {𝑎𝑛}, состоящая из трех членов, для которой 𝑀<79 (𝑎𝑛 + 4) < 𝑀<79 (𝑎𝑛)?
- б) Существует ли последовательность {𝑎𝑛}, состоящая из трех членов, для которой 𝑀<79 (𝑎𝑛 + 4) < 𝑀<79 (𝑎𝑛) и 𝑀>79 (𝑎𝑛 + 4) < 𝑀>79 (𝑎𝑛)?
- в) Известно, что среднее арифметическое всех членов последовательности {𝑎𝑛} равняется 84, 𝑀>79 (𝑎𝑎) = 94, 𝑀<79 (𝑎𝑛) = 70, 𝑀>79 (𝑎𝑛 + 4) = 96 и 𝑀<79 (𝑎𝑛 + 4) = 72. Какое наименьшее число членов может быть в последовательности {𝑎𝑛} ?
Вам будет интересно:
Тренировочный вариант №12 по профильной математике, решу ЕГЭ 2023 с ответами.
Метки: варианты и ответы ЕГЭ математика
Контрольная станет вторым для столичных 11-классников «тренировочным экзаменом» в этом учебном году: ранее более 66 тысяч будущих выпускников написали контрольную по русскому языку. Математическая контрольная пройдет в более чем 340 пунктах проведения экзамена.
Экзамен по математике профильного уровня сдают 11-классники, которые планируют в вузах получать профессии, требующие хорошего знания этого предмета: например, связанные с инженерными, экономическими и компьютерными науками. В нем больше задач, чем в ЕГЭ по базовой математике, и некоторые из них — повышенного уровня сложности.
«Процедура проведения городских контрольных работах в формате ЕГЭ соответствует процедуре проведения реальных экзаменов, — рассказал первый заместитель директора Московского центра качества образования Андрей Постульгин. — Участие в таких тренировочных мероприятиях позволит обучающимся оценить свою готовность к экзаменам, выявить сложные для них темы, а также познакомиться с особенностями проведения ЕГЭ. Свои результаты участники смогут узнать не позднее 16 декабря в своем личном кабинете на mos.ru».
Принять участие в контрольных работах могут 11-классники, которые зарегистрировались на ЕГЭ по выбранному предмету через портал mos.ru.
Напомним, что в первом полугодии они пройдут всю программу по основным предметам и напишут общегородские контрольные работы в формате ЕГЭ. В этом учебном году они пройдут по всем предметам в пунктах проведения экзаменов и на базе образовательных организаций. Они помогут школьникам почувствовать атмосферу и узнать тонкости экзаменационной процедуры, чтобы увереннее чувствовать себя во время реального ЕГЭ.
Тренировочные варианты профильного ЕГЭ 2023 по математике с ответами.