Мат 100 статград егэ математика профильный

Skip to content

Результат поиска:

Диагностические и тренировочные варианты СтатГрад ЕГЭ Профиль по математике с ответами

Диагностические и тренировочные варианты СтатГрад ЕГЭ Профиль по математике с ответамиadmin2023-02-28T09:25:35+03:00

Расписание СтатГрад 11 класс ЕГЭ 2022

Варианты 2016-2017 учебного года

22.09.2016

10109-22.09.2016

10110-22.09.2016

10111-22.09.2016

10112-22.09.2016

20.12.2016

10209-20.12.2016

10210-20.12.2016

10211-20.12.2016

10212-20.12.2016

26.01.2017

10309-26.01.2017

10310-26.01.2017

10311-26.01.2017

10312-26.01.2017

06.03.2017

10609-06.03.2017

10610-06.03.2017

10611-06.03.2017

10612-06.03.2017

21.04.2017

10709-21.04.2017

10710-21.04.2017

10711-21.04.2017

10712-21.04.2017

Варианты 2017-2018 учебного года

21.09.2017

10109-21.09.2017

10110-21.09.2017

10111-21.09.2017

10112-21.09.2017

21.12.2017

10209-21.12.2017

10210-21.12.2017

10211-21.12.2017

10212-21.12.2017

25.01.2018

10309-25.01.2018

10310-25.01.2018

10311-25.01.2018

10312-25.01.2018

06.03.2018

10409-06.03.2018

10410-06.03.2018

10411-06.03.2018

10412-06.03.2018

18.04.2018

10509-18.04.2018

10510-18.04.2018

10511-18.04.2018

10512-18.04.2018

Варианты 2018-2019 учебного года

20.09.2018

10109-20.09.2018

10110-20.09.2018

10111-20.09.2018

10112-20.09.2018

20.12.2018

10209-20.12.2018

10210-20.12.2018

10211-20.12.2018

10212-20.12.2018

24.01.2019

10309-24.01.2019

10310-24.01.2019

10311-24.01.2019

10312-24.01.2019

06.02.2019 (10 класс)

00309-06.02.2019

00310-06.02.2019

13.03.2019

10409-13.03.2019

10410-13.03.2019

10411-13.03.2019

10412-13.03.2019

19.04.2019

10509-19.04.2019

10510-19.04.2019

10511-19.04.2019

10512-19.04.2019

24.04.2019 (Итоговая контрольная работа Профильный уровень 10 класс)

00403-24.04.2019

00404-24.04.2019

17.05.2019 (10-11 класс)

00509-17.05.2019

00510-17.05.2019

00511-17.05.2019

00512-17.05.2019

Варианты 2019-2020 учебного года

25.09.2019

1910109-25.09.2019

1910110-25.09.2019

1910111-25.09.2019

1910112-25.09.2019

18.12.2019

1910209-18.12.2019

1910210-18.12.2019

1910211-18.12.2019

1910212-18.12.2019

29.01.2020

1910309-29.01.2020

1910310-29.01.2020

1910311-29.01.2020

1910312-29.01.2020

06.02.2020 (10 класс)

1900209-06.02.2020

1900210-06.02.2020

12.02.2020 (10 класс Тригонометрия)

1900403-12.02.2020

1900404-12.02.2020

11.03.2020

1910409-11.03.2020

1910410-11.03.2020

1910411-11.03.2020

1910412-11.03.2020

02.04.2020 (10 класс Теория вероятностей и статистика)

1900503-02.04.2020

1900504-02.04.2020

15.04.2020 (10 класс Итоговая уровневая работа)

1900603-15.04.2020

1900604-15.04.2020

22.04.2020

1910509-22.04.2020

1910510-22.04.2020

1910511-22.04.2020

1910512-22.04.2020

15.05.2020

1900709-15.05.2020

1900710-15.05.2020

Варианты 2020-2021 учебного года

30.09.2020

2010109-30.09.2020

2010110-30.09.2020

2010111-30.09.2020

2010112-30.09.2020

16.12.2020

2010209-16.12.2020

2010210-16.12.2020

2010211-16.12.2020

2010212-16.12.2020

28.01.2021 (10 класс)

2000309-28.01.2021

2000310-28.01.2021

10.02.2021

2010309-10.02.2021 [с видео-разбором]

2010310-10.02.2021

2010311-10.02.2021

2010312-10.02.2021

16.03.2021

2010409-16.03.2021

2010410-16.03.2021

2010411-16.03.2021

2010412-16.03.2021

29.04.2021

2010509-29.04.2021 [с видео-разбором]

2010510-29.04.2021

2010511-29.04.2021

2010512-29.04.2021

13.05.2021

2000709-13.05.2021

2000710-13.05.2021

Варианты 2021-2022 учебного года

28.09.2021

2110109-28.09.2021

2110110-28.09.2021

2110111-28.09.2021

2110112-28.09.2021

15.12.2021

2110209-15.12.2021

2110210-15.12.2021

2110211-15.12.2021

2110212-15.12.2021

27.01.2022 (10-11 класс)

2100109-27.01.2022

2100110-27.01.2022

16.02.2022

2110309-16.02.2022

2110310-16.02.2022

2110311-16.02.2022

2110312-16.02.2022

15.03.2022

2110409-15.03.2022

2110410-15.03.2022

2110411-15.03.2022

2110412-15.03.2022

28.04.2022

2110509-28.04.2022

2110510-28.04.2022

2110511-28.04.2022

2110512-28.04.2022

18.05.2022

2100309-18.05.2022

2100310-18.05.2022

Варианты 2022-2023 учебного года

28.09.2022

2210109-28.09.2022

2210110-28.09.2022

2210111-28.09.2022

2210112-28.09.2022

13.12.2022

2210209-13.12.2022

2210210-13.12.2022

2210211-13.12.2022

2210212-13.12.2022

08.02.2023 (10 класс)

2200109-08.02.2023

2200110-08.02.2023

28.02.2023

2210309-28.02.2023

2210310-28.02.2023

2210311-28.02.2023

2210312-28.02.2023

Вставить формулу как
Блок
Строка

Дополнительные настройки
Цвет формулы
Цвет текста
#333333

ID формулы

Классы формулы

Используйте LaTeX для набора формулы
Предпросмотр
({})
Формула не набрана

Вставить
Skip to content

Диагностический вариант СтатГрад ЕГЭ Профиль по математике 2210210-13.12.2022 с ответами и критериями

Диагностический вариант СтатГрад ЕГЭ Профиль по математике 2210210-13.12.2022 с ответами и критериямиadmin2022-12-14T13:19:54+03:00

Тренировочная работа №4 статград по математике 11 класс ЕГЭ 2022, 12 тренировочных вариантов базового и профильного уровня МА2110401-МА2110412 с ответами и решением на все задания, официальная дата проведения работы статград 15 марта 2022 года.

Скачать варианты базового уровня

Скачать варианты профильного уровня

Скачать ответы и решения для вариантов

Решать варианты статград ЕГЭ 2022 по математике 11 класс база задания и ответы:

Решать варианты статград профильного уровня:

Сложные задания с варианта МА2110401:

2)Для ремонта требуется 63 рулона обоев. Какое наименьшее количество пачек обойного клея нужно для такого ремонта, если 1 пачка клея рассчитана на 6 рулонов?

3)Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. А) диаметр монеты Б) рост жирафа В) высота Эйфелевой башни Г) радиус Земли

  • 1) 6400 км
  • 2) 324 м
  • 3) 20 мм
  • 4) 5 м

4)Результаты соревнований по метанию молота представлены в таблице. Места распределяются по результату лучшей попытки каждого спортсмена: чем дальше он метнул молот, тем лучше. Каков результат лучшей попытки (в метрах) спортсмена, занявшего четвёртое место?

5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1м×1м . Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.

6)Число больных гриппом в школе уменьшилось за месяц в десять раз. На сколько процентов уменьшилось число больных гриппом?

10)Квартира состоит из двух комнат, кухни, коридора и санузла (см. план). Первая комната имеет размеры 4 м×4,5 м, вторая — 4 м×4м , санузел имеет размеры 1,5 м ×1,5 м , длина коридора — 10,5 м. Найдите площадь кухни (в квадратных метрах).

11)У бабушки 10 чашек: 4 с красными цветами, остальные с синими. Бабушка наливает чай в случайно выбранную чашку. Найдите вероятность того, что это будет чашка с синими цветами.

12)Дмитрий Валентинович собирается в туристическую поездку на трое суток в некоторый город. В таблице дана информация о гостиницах в этом городе со свободными номерами на время его поездки. Дмитрий Валентинович хочет остановиться в гостинице, которая находится не далее чем в 2,5 км от центральной площади и рейтинг которой не ниже 8,5. Среди гостиниц, удовлетворяющих этим условиям, выберите гостиницу с наименьшей ценой номера за сутки. Сколько рублей стоит проживание в этой гостинице в течение трёх суток?

13)Ящик, имеющий форму куба с ребром 40 см без одной грани, нужно покрасить снаружи со всех сторон . Найдите площадь поверхности, которую необходимо покрасить. Ответ дайте в квадратных сантиметрах.

15)В треугольнике ABC стороны AC и BC равны. Внешний угол при вершине B равен 115° . Найдите угол C. Ответ дайте в градусах.

16)Основанием четырёхугольной пирамиды является прямоугольник со сторонами 6 и 8. Найдите высоту этой пирамиды, если её объём равен 80.

18)Диагностика 30 машин в автосервисе показала, что у 5 машин нужно заменить тормозные колодки, а у 10 машин — заменить воздушный фильтр (колодки и фильтр требуют замены независимо друг от друга). Выберите утверждения, которые верны при указанных условиях вне зависимости от того, какие машины нуждаются в замене фильтра, а какие — в замене колодок.

  • 1) Найдётся 6 машин, в которых нужно поменять и колодки, и фильтр.
  • 2) Найдётся 9 машин, в которых не нужно менять ни колодки, ни фильтр.
  • 3) Не найдётся 7 машин, в которых нужно менять и колодки, и фильтр.
  • 4) Если в машине нужно менять колодки, то фильтр тоже нужно менять.

19)Найдите четырёхзначное натуральное число, кратное 36, произведение цифр которого больше 12, но меньше 18. В ответе укажите какое-нибудь одно такое число.

20)Расстояние между городами A и B равно 790 км. Из города A в город B выехал первый автомобиль, а через два часа после этого навстречу ему из города B выехал со скоростью 85 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 450 км от города A. Ответ дайте в км/ч.

21)Десять столбов соединены между собой проводами так, что от каждого столба отходит ровно 9 проводов. Сколько всего проводов протянуто между этими десятью столбами?

Сложные задания с варианта МА2110402:

2)Для ремонта требуется 66 рулонов обоев. Какое наименьшее количество пачек обойного клея нужно для такого ремонта, если 1 пачка клея рассчитана на 7 рулонов?

3)Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. А) высота вагона Б) рост восьмилетнего ребёнка В) высота Троицкой башни Кремля Г) длина реки Москвы

  • 1) 134 см
  • 2) 79,3 м
  • 3) 370 см
  • 4) 502 км

4)Результаты соревнований по метанию молота представлены в таблице. Места распределяются по результату лучшей попытки каждого спортсмена: чем дальше он метнул молот, тем лучше. Каков результат лучшей попытки (в метрах) спортсмена, занявшего третье место?

5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1м×1м . Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.

6)Число больных гриппом в школе уменьшилось за месяц в двадцать раз. На сколько процентов уменьшилось число больных гриппом?

11)У бабушки 25 чашек: 5 с красными цветами, остальные с синими. Бабушка наливает чай в случайно выбранную чашку. Найдите вероятность того, что это будет чашка с синими цветами.

12)Дмитрий Валентинович собирается в туристическую поездку на трое суток в некоторый город. В таблице дана информация о гостиницах в этом городе со свободными номерами на время его поездки. Дмитрий Валентинович хочет остановиться в гостинице, которая находится не далее чем в 2,5 км от центральной площади и рейтинг которой не ниже 8,5. Среди гостиниц, удовлетворяющих этим условиям, выберите гостиницу с наименьшей ценой номера за сутки. Сколько рублей стоит проживание в этой гостинице в течение трёх суток?

13)Ящик, имеющий форму куба с ребром 30 см без одной грани, нужно покрасить снаружи со всех сторон . Найдите площадь поверхности, которую необходимо покрасить. Ответ дайте в квадратных сантиметрах.

15)В треугольнике ABC стороны AC и BC равны. Внешний угол при вершине B равен 142° . Найдите угол C. Ответ дайте в градусах.

16)Основанием четырёхугольной пирамиды является прямоугольник со сторонами 12 и 5. Найдите высоту этой пирамиды, если её объём равен 60.

18)Марусе на день рождения подарили 20 шариков, из которых 13 красных, а остальные синие. Маруся хочет на четырёх случайных шариках нарисовать рисунки маркером, чтобы подарить маме, папе, брату и сестре. Выберите утверждения, которые будут верны при указанных условиях независимо от того, на каких шариках Маруся нарисует рисунки. 1) Найдётся 4 красных шарика с рисунками. 2) Найдётся 2 синих шарика без рисунков. 3) Если шарик красный, то на нём есть рисунок. 4) Не найдётся 5 синих шариков с рисунками.

19)Найдите четырёхзначное натуральное число, кратное 12, произведение цифр которого больше 40, но меньше 45. В ответе укажите какое-нибудь одно такое число.

20)Расстояние между городами A и B равно 390 км. Из города A в город B выехал первый автомобиль, а через два часа после этого навстречу ему из города B выехал со скоростью 85 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 220 км от города A. Ответ дайте в км/ч.

21)Семь столбов соединены между собой проводами так, что от каждого столба отходит ровно 4 провода. Сколько всего проводов протянуто между этими восемью столбами?

Сложные задания с варианта МА2110409:

1)В сборнике билетов по физике всего 40 билетов, в 14 из них встречается вопрос по теме «Скорость». Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по теме «Скорость».

4)Найдите − α 20cos2 , если sin α=−0,8 .

5)Объём куба равен 375√3 . Найдите его диагональ.

8)Товарный поезд каждую минуту проезжает на 450 метров меньше, чем скорый, и на путь в 630 км тратит времени на 3 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.

10)Первый игральный кубик обычный, а на гранях второго кубика числа 5 и 6 встречаются по три раза. В остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 5 и 6 очков. Какова вероятность того, что бросали второй кубик?

13)В правильной четырёхугольной пирамиде SABCD с основанием ABCD из точки B опущен перпендикуляр BH на плоскость SAD . а) Докажите, что ∠AHC = 90° . б) Найдите объём пирамиды, если HA = 2 и HC = 4.

15)В июле планируется взять в банке некоторую сумму в кредит на три года. Условия его возврата таковы: — каждый январь долг возрастает на 10 % по сравнению с концом предыдущего года; — с февраля по июнь каждого года нужно внести платёж, равный 2,662 млн рублей. Сколько рублей было взято в банке, если известно, что долг был полностью погашен тремя равными платежами (то есть за три года)?

16)Из вершины тупого угла C треугольника ABC проведена высота CH . Окружность с центром H и радиусом HC второй раз пересекает стороны AC и BC в точках M и N соответственно, а прямая CH — эту окружность в точке D . а) Докажите, что угол MDN равен сумме углов A и B треугольника ABC . б) Найдите отношение MN к AB, если известно, что CM MA : 2 : 25 = и CN NB : 2:1 = .

18)У Вани есть несколько пакетов с вещами, каждый из которых весит целое число килограммов. Он хочет разложить все эти пакеты, не перекладывая их содержимое, по n имеющимся у него одинаковым рюкзакам. В каждый рюкзак можно положить любое число пакетов, суммарная масса которых не превосходит m килограммов. а) Сможет ли Ваня разложить таким образом семь пакетов, которые весят 3, 6, 9, 12, 15, 18 и 21 кг, если n = 3 и m = 29 ? б) Сможет ли Ваня разложить таким образом семь пакетов, которые весят 2, 5, 8, 11, 14, 17 и 20 кг, если n = 3 и m = 26 ? в) Какое наименьшее значение может принимать m , чтобы Ваня при n = 4 смог разложить таким образом девять пакетов, которые весят 3, 5, 7, 9, 11, 13, 15, 17 и 19 кг?

Сложные задания с варианта МА2110410:

1)В сборнике билетов по географии всего 25 билетов, в 15 из них встречается вопрос по теме «Реки и озёра». Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по теме «Реки и озёра».

8)Товарный поезд каждую минуту проезжает на 750 метров меньше, чем скорый, и на путь в 560 км тратит времени на 4 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.

10)Первый игральный кубик обычный, а на гранях второго кубика числа 1 и 2 встречаются по три раза. В остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 1 и 2 очка. Какова вероятность того, что бросали первый кубик?

15)В июле планируется взять в банке некоторую сумму в кредит на три года. Условия его возврата таковы: — каждый январь долг возрастает на 20 % по сравнению с концом предыдущего года; — с февраля по июнь каждого года нужно внести платёж, равный 2,592 млн рублей. Сколько рублей было взято в банке, если известно, что долг был полностью погашен тремя равными платежами (то есть за три года)?

18)У Вани есть несколько пакетов с вещами, каждый из которых весит целое число килограммов. Он хочет разложить все эти пакеты, не перекладывая их содержимое, по n имеющимся у него одинаковым рюкзакам. В каждый рюкзак можно положить любое число пакетов, суммарная масса которых не превосходит m килограммов. а) Сможет ли Ваня разложить таким образом семь пакетов, которые весят 3, 9, 12, 15, 18, 21 и 24 кг, если n = 3 и m = 35? б) Сможет ли Ваня разложить таким образом семь пакетов, которые весят 2, 8, 11, 14, 17, 20 и 23 кг, если n = 3 и m = 32 ? в) Какое наименьшее значение может принимать m , чтобы Ваня при n = 4 смог разложить таким образом девять пакетов, которые весят 3, 7, 9, 11, 13, 15, 17, 19 и 21 кг?

Сложные задания с варианта МА2110411:

1)В сборнике билетов по философии всего 50 билетов, в 6 из них встречается вопрос по теме «Пифагор». Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопрос по теме «Пифагор».

3)Диагонали четырёхугольника равны 34 и 38. Найдите периметр четырёхугольника, вершинами которого являются середины сторон данного четырёхугольника.

5)Основанием прямой призмы является ромб с диагоналями, равными 10 и 24. Найдите боковое ребро призмы, если площадь её поверхности равна 422.

8)Курага получается в процессе сушки абрикосов. Сколько килограммов абрикосов потребуется для получения 21 килограмма кураги, если абрикосы содержат 86 % воды, а курага содержит 18 % воды?

10)Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 5 очков в двух играх. Если команда выигрывает, она получает 4 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,2.

15)В июле планируется взять в банке некоторую сумму в кредит на три года. Условия его возврата таковы: — каждый январь долг возрастает на 25 % по сравнению с концом предыдущего года; — с февраля по июнь каждого года нужно внести платёж, равный 2,5 млн рублей. Сколько рублей было взято в банке, если известно, что долг был полностью погашен тремя равными платежами (то есть за три года)?

Другие работы статград по математике для 11 класса ЕГЭ 2022:

  • Тренировочная работа статград №3 ЕГЭ по математике 11 класс
  • Тренировочная работа статград №2 ЕГЭ 2022 по математике 11 класс

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ


Критерии

Оценивание

№ задания 1-11 12, 14, 15 13, 16 17, 18 Всего
Баллы 1 2 3 4 31

Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1–11 записываются в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите в бланк ответов № 1, выданный на экзамене!

При выполнении работы Вы можете воспользоваться справочными материалами, выдаваемыми вместе с работой.
Разрешается использовать только линейку, но можно сделать циркуль своими руками. Запрещается использовать инструменты с нанесёнными на них справочными материалами. Калькуляторы на экзамене не используются.

На экзамене при себе надо иметь документ удостоверяющий личность (паспорт), пропуск и капиллярную или гелевую ручку с черными чернилами! Разрешают брать с собой воду (в прозрачной бутылке) и еду (фрукты, шоколадку, булочки, бутерброды), но могут попросить оставить в коридоре.

№ задания 1-11 12, 14, 15 13, 16 17, 18 Всего
Баллы 1 2 3 4 31

Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1–11 записываются в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите в бланк ответов № 1, выданный на экзамене!

При выполнении работы Вы можете воспользоваться справочными материалами, выдаваемыми вместе с работой.
Разрешается использовать только линейку, но можно сделать циркуль своими руками. Запрещается использовать инструменты с нанесёнными на них справочными материалами. Калькуляторы на экзамене не используются.

На экзамене при себе надо иметь документ удостоверяющий личность (паспорт), пропуск и капиллярную или гелевую ручку с черными чернилами! Разрешают брать с собой воду (в прозрачной бутылке) и еду (фрукты, шоколадку, булочки, бутерброды), но могут попросить оставить в коридоре.

Шкалирование

Первичный Тестовый Оценка
5-6 27-34 3
7-8 40-46 4
9-10 52-58
11-12-13 64-66-68 5
14-15-16 70-72-74
17-18-19 76-78-80
20-21-22 82-84-86
23-24-25 88-90-92
26-27-28 94-96-98
29-30-31 100
Первичный балл
/
Тестовый балл
5/27 6/34 7/40 8/46 9/52 10/58 11/64 12/66 13/68 14/70
15/72 16/74 17/76 18/78 19/80 20/82 X / 2X+42 29+ / 100

Тренировочная работа №5 статград ЕГЭ 2022 по математике 11 класс задания и ответы для тренировочных вариантов МА2110501-МА2110512 базового и профильного уровня. Официальная дата проведения работы: 28 апреля 2022 год.

Скачать варианты базового уровня

Скачать варианты профильного уровня

Все ответы (решения) и задания (без водяного знака)

Тренировочные варианты статград математика 11 класс ЕГЭ 2022 профильный уровень МА2110509-МА2110512

Тренировочные варианты статград математика 11 класс ЕГЭ 2022 базовый уровень МА2110501-МА2110508

Задания и ответы варианта МА2110501 статграда:

2)Мотоциклист проехал 14 километров за 21 минуту. Сколько километров он проедет за 30 минут, если будет ехать с той же скоростью?

4)На рисунке показано изменение атмосферного давления в течение трёх суток. По горизонтали указаны дни недели и время, по вертикали — значения атмосферного давления в миллиметрах ртутного столба. Определите по рисунку значение атмосферного давления в среду в 6:00. Ответ дайте в миллиметрах ртутного столба.

5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, изображённого на плане. Ответ дайте в квадратных метрах.

6)В период распродажи магазин снижал цены дважды: в первый раз на 10 %, во второй — на 25 %. Сколько рублей стал стоить чайник после второго снижения цен, если до начала распродажи он стоил 1600 рублей?

10)Перила лестницы дачного дома для надёжности укреплены посередине вертикальным столбом. Найдите высоту l этого столба, если наименьшая высота перил h1 равна 1 м, а наибольшая высота h2 равна 2 м. Ответ дайте в метрах.

11)В фирме такси в наличии 20 легковых автомобилей: 7 из них чёрного цвета с жёлтыми надписями на боках, остальные — жёлтого цвета с чёрными надписями. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета с чёрными надписями.

13)Однородный шар диаметром 3 см весит 162 грамма. Сколько граммов весит шар диаметром 2 см, изготовленный из того же материала?

15)В треугольнике ABC проведена биссектриса AL, угол ALC равен 160° , угол ABC равен 148° . Найдите угол ACB . Ответ дайте в градусах.

18)Во дворе школы растут всего три дерева: берёза, клён и дуб. Берёза выше клёна на 1 метр, но ниже дуба на 3 метра. Выберите утверждения, которые верны при указанных условиях. 1) Среди указанных деревьев не найдётся двух одной высоты. 2) Берёза, растущая во дворе школы, выше дуба, растущего там же. 3) Любое дерево, помимо указанных, которое ниже берёзы, растущей во дворе школы, также ниже клёна, растущего там же. 4) Любое дерево, помимо указанных, которое ниже клёна, растущего во дворе школы, также ниже берёзы, растущей там же.

19)Найдите четырёхзначное число, большее 1000, но меньшее 1700, которое делится на 45 и сумма цифр которого равна 18. В ответе укажите какое-нибудь одно такое число.

20)Теплоход, скорость которого в неподвижной воде равна 24 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 4 км/ч, стоянка длится 3 часа, а в исходный пункт теплоход возвращается через 36 часов после отправления из него. Сколько километров проходит теплоход за весь рейс?

21)Из книги выпало несколько идущих подряд листов. Номер последней страницы перед выпавшими листами — 254, номер первой страницы после выпавших листов записывается теми же цифрами, но в другом порядке. Сколько листов выпало?

Задания и ответы варианта МА2110502 статграда:

2)За 20 минут автобус проехал 23 километра. Сколько километров он проедет за 35 минут, если будет ехать с той же скоростью?

4)На рисунке показано изменение атмосферного давления в течение трёх суток. По горизонтали указаны дни недели и время, по вертикали — значения атмосферного давления в миллиметрах ртутного столба. Определите по рисунку значение атмосферного давления в четверг в 12:00. Ответ дайте в миллиметрах ртутного столба.

5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, изображённого на плане. Ответ дайте в квадратных метрах.

6)В период распродажи магазин снижал цены дважды: в первый раз на 15 %, во второй — на 25 %. Сколько рублей стал стоить чайник после второго снижения цен, если до начала распродажи он стоил 2000 рублей?

10)Перила лестницы дачного дома для надёжности укреплены посередине вертикальным столбом. Найдите высоту l этого столба, если наименьшая высота перил h1 равна 0,7 м, а наибольшая высота h2 равна 1,5 м. Ответ дайте в метрах.

11)В фирме такси в наличии 15 легковых автомобилей: 3 из них чёрного цвета с жёлтыми надписями на боках, остальные — жёлтого цвета с чёрными надписями. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета с чёрными надписями.

13)Однородный шар диаметром 3 см весит 189 грамм. Сколько граммов весит шар диаметром 4 см, изготовленный из того же материала?

15)В треугольнике ABC проведена биссектриса AL, угол ALC равен 41° , угол ABC равен 26° . Найдите угол ACB . Ответ дайте в градусах.

18)Кошка Китти весит на 3 килограмма больше кошки Машки, а кошка Лада на полтора килограмма легче кошки Машки. Выберите утверждения, которые верны при указанных условиях. 1) Любая кошка, помимо указанных, которая весит меньше Лады, весит также меньше Китти. 2) Любая кошка, помимо указанных, которая весит меньше Китти, весит также меньше Лады. 3) Среди указанных кошек нет кошек тяжелее Китти. 4) Машка весит меньше Лады.

19)Найдите четырёхзначное число, большее 1500, но меньшее 2000, которое делится на 24 и сумма цифр которого равна 21. В ответе укажите какоенибудь одно такое число.

20)Теплоход, скорость которого в неподвижной воде равна 15 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 3 км/ч, стоянка длится 7 часов, а в исходный пункт теплоход возвращается через 37 часов после отправления из него. Сколько километров проходит теплоход за весь рейс?

21)Из книги выпало несколько идущих подряд листов. Номер последней страницы перед выпавшими листами — 496, номер первой страницы после выпавших листов записывается теми же цифрами, но в другом порядке. Сколько листов выпало?

Задания и ответы варианта МА2110505 статграда:

2)Принтер печатает одну страницу за 8 секунд. Какое наибольшее количество страниц можно напечатать на этом принтере за 14 минут?

4)На рисунке показано изменение атмосферного давления в течение трёх суток. По горизонтали указаны дни недели, по вертикали — значения атмосферного давления в миллиметрах ртутного столба. Определите по рисунку наименьшее значение атмосферного давления (в миллиметрах ртутного столба) в четверг.

6)Банк начисляет на срочный вклад 8 % годовых. Вкладчик положил на счёт 7000 рублей. Сколько рублей будет на этом счёте через год, если никаких операций, кроме начисления процентов, со счётом проводиться не будет?

10)Столб подпирает детскую горку посередине. Найдите высоту l этого столба, если высота горки h равна 3,9 м. Ответ дайте в метрах.

11)На экзамене будет 50 билетов, Серёжа не выучил 11 из них. Найдите вероятность того, что ему попадётся выученный билет.

13)Две кружки имеют форму цилиндра. Первая кружка в полтора раза ниже второй, а вторая вдвое шире первой. Во сколько раз объём первой кружки меньше объёма второй?

14)На рисунке точками показан годовой объём добычи угля в России открытым способом в период с 2001 по 2010 год. По горизонтали указывается год, по вертикали — объём добычи угля в миллионах тонн. Для наглядности точки соединены ломаной линией.

16)В основании прямой призмы лежит прямоугольный треугольник, катеты которого равны 3 и 16. Найдите объём призмы, если её высота равна 3.

18)Двадцать выпускников одного из одиннадцатых классов сдавали ЕГЭ по русскому языку. Самый низкий балл, полученный в этом классе, был равен 28, а самый высокий — 83. Выберите утверждения, которые верны при указанных условиях. 1) Среди этих выпускников есть человек, который получил 83 балла за ЕГЭ по русскому языку. 2) Среди этих выпускников есть двадцать человек с равными баллами за ЕГЭ по русскому языку. 3) Среди этих выпускников есть человек, получивший 100 баллов за ЕГЭ по русскому языку. 4) Баллы за ЕГЭ по русскому языку любого из этих двадцати человек не ниже 27.

19)Найдите четырёхзначное число, большее 2000, но меньшее 4000, которое делится на 18 и каждая следующая цифра которого больше предыдущей. В ответе укажите какое-нибудь одно такое число.

20)Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 19 км. Путь из А в В занял у туриста 5 часов, из которых 4 часа ушло на спуск. Найдите скорость туриста на спуске, если она больше скорости на подъёме на 1 км/ч. Ответ дайте в км/ч.

21)Список заданий викторины состоял из 50 вопросов. За каждый правильный ответ ученик получал 9 очков, за неправильный ответ с него списывали 16 очков, а при отсутствии ответа давали 0 очков. Сколько верных ответов дал ученик, набравший 171 очко, если известно, что по крайней мере один раз он ошибся?

Задания и ответы варианта МА2110506 статграда:

2)Принтер печатает одну страницу за 9 секунд. Какое наибольшее количество страниц можно напечатать на этом принтере за 12 минут?

4)На рисунке показано изменение атмосферного давления в течение трёх суток. По горизонтали указаны дни недели, по вертикали — значения атмосферного давления в миллиметрах ртутного столба. Определите по рисунку наименьшее значение атмосферного давления (в миллиметрах ртутного столба) во вторник.

5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, изображённого на плане. Ответ дайте в квадратных метрах.

6)Банк начисляет на срочный вклад 12 % годовых. Вкладчик положил на счёт 3000 рублей. Сколько рублей будет на этом счёте через год, если никаких операций, кроме начисления процентов, со счётом проводиться не будет?

10)Столб подпирает детскую горку посередине. Найдите высоту l этого столба, если высота горки h равна 3,2 м. Ответ дайте в метрах.

11)На экзамене будет 40 билетов, Яша не выучил 4 из них. Найдите вероятность того, что ему попадётся выученный билет.

13)Даны две кружки цилиндрической формы. Первая кружка в четыре с половиной раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой кружки меньше объёма второй?

14)На рисунке точками показан прирост населения Китая в период с 2004 по 2013 год. По горизонтали указывается год, по вертикали — прирост населения в процентах (увеличение численности населения относительно прошлого года). Для наглядности точки соединены ломаной линией.

16)В основании прямой призмы лежит прямоугольный треугольник, катеты которого равны 13 и 4. Найдите объём призмы, если её высота равна 5.

18)В посёлке городского типа всего 17 жилых домов. Высота каждого дома меньше 25 метров, но не меньше 5 метров. Выберите утверждения, которые верны при указанных условиях. 1) В посёлке есть жилой дом высотой 25 метров. 2) Разница в высоте любых двух жилых домов посёлка больше 6 метров. 3) В посёлке нет жилого дома высотой 4 метра. 4) Высота любого жилого дома в посёлке не меньше 3 метров.

19)Найдите четырёхзначное число, большее 6000, но меньшее 7000, которое делится на 12 и каждая следующая цифра которого меньше предыдущей. В ответе укажите какое-нибудь одно такое число.2

20)Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 14 км. Путь из А в В занял у туриста 3 часа, из которых 1 час ушёл на спуск. Найдите скорость туриста на спуске, если она больше скорости на подъёме на 2 км/ч. Ответ дайте в км/ч.

21)Список заданий викторины состоял из 25 вопросов. За каждый правильный ответ ученик получал 5 очков, за неправильный ответ с него списывали 7 очков, а при отсутствии ответа давали 0 очков. Сколько верных ответов дал ученик, набравший 60 очков, если известно, что по крайней мере один раз он ошибся?

Задания и ответы варианта МА2110509 статграда:

2)В среднем из 75 морозильников, поступивших в продажу, 6 имеют скрытый дефект. Найдите вероятность того, что один случайно выбранный для контроля морозильник не имеет дефекта.

3)В четырёхугольник ABCD , периметр которого равен 56, вписана окружность, AB =12. Найдите длину стороны CD .

5)Шар, объём которого равен 29π , вписан в куб. Найдите объём куба.

8)Из городов A и B одновременно навстречу друг другу выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 4 часа раньше, чем велосипедист приехал в A, а встретились они через 1 час 30 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?

10)По отзывам покупателей Пётр Петрович оценил надёжность двух интернетмагазинов. Вероятность того, что нужный товар доставят из магазина А вовремя, равна 0,84. Вероятность того, что товар доставят вовремя из магазина Б, равна 0,9. Пётр Петрович заказал товары одновременно в двух магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар вовремя.

13)Радиус основания конуса равен 8, высота равна 4. Сечение конуса плоскостью α , проходящей через его вершину, отсекает от окружности основания дугу в 60° . а) Докажите, что величина угла между плоскостью α и плоскостью основания конуса равна 30° . б) Найдите расстояние от центра основания конуса до плоскости сечения.

15)15 августа планируется взять кредит в банке на 16 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца (r — целое число); — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма денег, которую нужно выплатить банку за весь срок кредитования, на 51 % больше, чем сумма, взятая в кредит. Найдите r.

16)Дана равнобедренная трапеция ABCD с основаниями AD и BC , причём AD BC = 2 . а) Докажите, что высота CH трапеции разбивает основание AD на отрезки, один из которых втрое больше другого. б) Пусть O — точка пересечения диагоналей трапеции. Найдите расстояние от вершины C до середины отрезка OD , если AB =13 и BC =10 .

Задания и ответы варианта МА2110510 статграда:

2)В среднем из 80 морозильников, поступивших в продажу, 4 имеют скрытый дефект. Найдите вероятность того, что один случайно выбранный для контроля морозильник не имеет дефекта.

3)В четырёхугольник ABCD , периметр которого равен 48, вписана окружность, AB =14. Найдите длину стороны CD .

5)Шар, объём которого равен 23π, вписан в куб. Найдите объём куба.

8)Из городов A и B одновременно навстречу друг другу выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 2 часа раньше, чем велосипедист приехал в A, а встретились они через 1 час 20 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?

10)По отзывам покупателей Пётр Петрович оценил надёжность двух интернетмагазинов. Вероятность того, что нужный товар доставят из магазина А вовремя, равна 0,85. Вероятность того, что товар доставят вовремя из магазина Б, равна 0,86. Пётр Петрович заказал товары одновременно в двух магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар вовремя.

13)Радиус основания конуса равен 4, высота равна 6. Сечение конуса плоскостью α , проходящей через его вершину, отсекает от окружности основания дугу в 60° . а) Докажите, что величина угла между плоскостью α и плоскостью основания конуса равна 60° . б) Найдите расстояние от центра основания конуса до плоскости сечения.

15)15 августа планируется взять кредит в банке на 18 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца (r — целое число); — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма денег, которую нужно выплатить банку за весь срок кредитования, на 38 % больше, чем сумма, взятая в кредит. Найдите r.

16)Дана равнобедренная трапеция ABCD с основаниями AD и BC , причём AD BC = 2 . а) Докажите, что высота CH трапеции разбивает основание AD на отрезки, один из которых втрое больше другого. б) Пусть O — точка пересечения диагоналей трапеции. Найдите расстояние от вершины C до середины отрезка OD , если AB =17 и BC =16 .

Задания и ответы варианта МА2110511 статграда:

2)Вероятность того, что новому ноутбуку в течение года потребуется ремонт, равна 0,051. Из 1000 проданных ноутбуков в течение года ремонт потребовался 45 ноутбукам. На сколько отличается частота события «в течение года потребуется ремонт» от вероятности этого события?

3)Два угла вписанного в окружность четырёхугольника равны 101° и 99° . Найдите величину большего из оставшихся углов. Ответ дайте в градусах.

5)Один цилиндрический сосуд вчетверо выше второго, зато второй втрое шире первого. Во сколько раз объём второго сосуда больше объёма первого?

8)Имеется два сплава. Первый содержит 10 % никеля, второй — 35 % никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 25 % никеля. На сколько килограммов масса первого сплава была меньше массы второго?

10)Биатлонист 5 раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последние три промахнулся. Результат округлите до сотых.

15)15 августа планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца (r — целое число); — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма денег, которую нужно выплатить банку за весь срок кредитования, на 56 % больше, чем сумма, взятая в кредит. Найдите r.

16)Дана равнобедренная трапеция ABCD с основаниями AD и BC , причём AD BC = 2 . а) Докажите, что высота CH трапеции разбивает основание AD на отрезки, один из которых втрое больше другого. б) Пусть O — точка пересечения диагоналей трапеции. Найдите расстояние от вершины C до середины отрезка OD , если AB =15 и BC =18 .

Другие тренировочные варианты статград ЕГЭ по математике 11 класс:

Работы СТАТГРАД по математике задания и ответы

Варианты МА2110401-МА2110412 ЕГЭ 2022 работа статград математика 11 класс с ответами

Share the post «Варианты база и профиль ЕГЭ 2022 работа статград математика 11 класс с ответами»

  • Twitter
  • VKontakte
  • WhatsApp

Метки: ЕГЭ 2022заданияматематика 11 классответыстатградтренировочная работа

Сборники тренировочных тестов по математике профильного уровня для ЕГЭ в 2023 году и для ЕГЭ прошлых лет. Все тренировочные варианты/пробники содержат ответы и решения ко 2-й части кима. Обсудить решение и задания каждого варианта вы можете в комментариях под ними. РЕШАТЬ ТЕСТЫ

Обращайте внимание на уровень пробника — здесь только профильный! Базовый уровень смотрите здесь.

  • Всё про ЕГЭ 2023
  • Демоверсия 2023 + изменения 2023

Что почитать?

  • Из актуального: рекомендации от ФИПИ по профильной математике

Что изменилось в ЕГЭ 2023 по математике

Представляете — ничего :) Изменения в 2023 году отсутствуют — официальные данные от ФИПИ. А значит вы можете смело использовать материалы и тесты прошлых лет. Особенно это актуально для тренировочных работ Статграда: за 2022 год работы здесь, за 2023 год работы здесь.

Теория для подготовки к ЕГЭ 2023 по математике

Для теории у нас создан особый раздел «Теория для ЕГЭ по математике». Отдельно может порекомендовать посмотреть сборник шпаргалок для ЕГЭ по математике и на проекте ЕГЭ100Баллов целая ветка, посвященная шпаргалкам.

Что можно брать с собой на ЕГЭ по профильной математике?

На ЕГЭ по математике как всегда с собой можно взять только линейку. Никаких калькуляторов и мобильных телефонов, конечно же. Вода и шоколадка разрешаются :)

Выбирайте вариант, сверяйте с ответами, оставляйте комментарии НИЖЕ

Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2022 из различных источников.

 Тренировочные варианты ЕГЭ 2022 по математике (профиль)

egemath.ru
Вариант 1 скачать
Вариант 2 скачать
Вариант 3 скачать
Вариант 4 скачать
Вариант 5 скачать
Вариант 6 скачать
Вариант 7 скачать
variant 8 скачать
variant 9 скачать
variant 10 скачать
variant 11 скачать
variant 12 скачать
variant 13 скачать
variant 14 скачать
variant 15 скачать
variant 16 скачать
variant 17 скачать
variant 18 скачать
variant 19 скачать
variant 20 скачать
yagubov.ru
вариант 21 ege2022-yagubov-prof-var21
вариант 22 ege2022-yagubov-prof-var22
вариант 23 ege2022-yagubov-prof-var23
вариант 24 ege2022-yagubov-prof-var24
вариант 25 ege2022-yagubov-prof-var25
вариант 26 ege2022-yagubov-prof-var26
вариант 27 ege2022-yagubov-prof-var27
вариант 28 ege2022-yagubov-prof-var28
Досрочный Москва 28.03.2022 скачать
egemathschool.ru
вариант 1 ответ
вариант 2 ответ
вариант 3 ответ
вариант 4 ответ
ЕГЭ 100 баллов (с решениями) 
Вариант 1 скачать
Вариант 2 скачать
Вариант 3 скачать
Вариант 4 скачать
Вариант 5 скачать
Вариант 6 скачать
Вариант 7 скачать
Вариант 8 скачать
Вариант 9 скачать
Вариант 10 скачать
variant 11 скачать
variant 12 скачать
variant 13 скачать
variant 14 скачать
variant 15 скачать
variant 16 скачать
variant 17 скачать
variant 18 скачать
variant 20 скачать
variant 21 скачать
variant 23 скачать
variant 24 скачать
variant 25 скачать
variant 26 скачать
variant 29 скачать
variant 30 скачать
math100.ru (с ответами) 
Вариант 140 скачать
Вариант 141 скачать
Вариант 142 скачать
Вариант 143 math100-ege22-v143
Вариант 144 math100-ege22-v144
Вариант 145 math100-ege22-v145
Вариант 146 math100-ege22-v146
variant 147 math100-ege22-v147
variant 148 math100-ege22-v148
variant 149 math100-ege22-v149
variant 150 math100-ege22-v150
variant 151 math100-ege22-v151
variant 152 math100-ege22-v152
variant 153 math100-ege22-v153
variant 154 math100-ege22-v154
variant 155 math100-ege22-v155
variant 156 math100-ege22-v156
variant 157 math100-ege22-v157
variant 158 math100-ege22-v158
variant 159 math100-ege22-v159
variant 160 math100-ege22-v160
variant 161 math100-ege22-v161
variant 162 math100-ege22-v162
variant 163 math100-ege22-v163
variant 164 math100-ege22-v164
variant 165 math100-ege22-v165
variant 166 math100-ege22-v166
variant 167 math100-ege22-v167
variant 168 math100-ege22-v168
variant 169 math100-ege22-v169
variant 170 math100-ege22-v170
variant 171 math100-ege22-v171
variant 172 math100-ege22-v172
variant 173 math100-ege22-v173
variant 174 math100-ege22-v174
alexlarin.net 
Вариант 358
скачать
Вариант 359 скачать
Вариант 360 скачать
Вариант 361 скачать
Вариант 362 проверить ответы
Вариант 363 проверить ответы
Вариант 364 проверить ответы
Вариант 365 проверить ответы
Вариант 366 проверить ответы
Вариант 367 проверить ответы
Вариант 368 проверить ответы
Вариант 369 проверить ответы
Вариант 370 проверить ответы
Вариант 371 проверить ответы
Вариант 372 проверить ответы
Вариант 373 проверить ответы
Вариант 374 проверить ответы
Вариант 375 проверить ответы
Вариант 376 проверить ответы
Вариант 377 проверить ответы
Вариант 378 проверить ответы
Вариант 379 проверить ответы
Вариант 380 проверить ответы
Вариант 381 проверить ответы
Вариант 382 проверить ответы
Вариант 383 проверить ответы
Вариант 384 проверить ответы
Вариант 385 проверить ответы
Вариант 386 проверить ответы
Вариант 387 проверить ответы
Вариант 388 проверить ответы
vk.com/ekaterina_chekmareva (задания 1-12)
Вариант 1 ответы
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Вариант 6
Вариант 7 ответы
Вариант 8
Вариант 9
Вариант 10
vk.com/matematicalate
Вариант 1 matematikaLite-prof-ege22-var1
Вариант 2 matematikaLite-prof-ege22-var2
Вариант 3 matematikaLite-prof-ege22-var3
Вариант 4 matematikaLite-prof-ege22-var4
Вариант 5 matematikaLite-prof-ege22-var5
Вариант 6 matematikaLite-prof-ege22-var6
Вариант 7 matematikaLite-prof-ege22-var7
Вариант 8 matematikaLite-prof-ege22-var8
vk.com/pro_matem
variant 1 pro_matem-prof-ege22-var1
variant 2 pro_matem-prof-ege22-var2
variant 3 pro_matem-prof-ege22-var3
variant 4 разбор
variant 5 разбор
vk.com/murmurmash
variant 1 otvet
variant 2 otvet
→  Купить сборники тренировочных вариантов ЕГЭ 2022 по математике

Структура варианта КИМ ЕГЭ

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и количеству заданий:

– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;

– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).

Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.

Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.

Связанные страницы:

Средний балл ЕГЭ 2021 по математике

Решение задач с параметром при подготовке к ЕГЭ

Изменения в КИМ ЕГЭ 2022 года по математике

Купить сборники типовых вариантов ЕГЭ по математике

Как решать экономические задачи ЕГЭ по математике профильного уровня?

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Математика 9 класс формулы для экзаменов
  • Мат 100 егэ математика 2023 задание профиль задание
  • Мат 100 ру вар егэ математика профильный
  • Математика 9 класс репетиционный экзамен
  • Мат 100 егэ профиль тренировочные варианты

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии