Тренировочные варианты профильного ЕГЭ 2023 по математике с ответами.
ЕГЭ математика — Профиль 2016-2021. Открытый банк заданий с ответами.
Реальные варианты задания с ответами и решением, которые были на ЕГЭ 2020 по математике 11 класс профильный уровень, официальная дата проведения: 10.07.2020 (10 июля 2020 год).
Ссылка для скачивания варианта ЕГЭ 2020 из Москвы: скачать задания, скачать ответы
Ссылка для скачивания варианта ЕГЭ 2020 из Санкт-Петербурга: скачать задания, скачать ответы
Ссылка для скачивания варианта ЕГЭ 2020 из Краснодара: скачать задания, скачать ответы
Ссылка для скачивания варианта с основной волны ЕГЭ 2020: скачать задания и ответы
Реальные варианты ЕГЭ 2020 по математике 11 класс профильный уровень:
Задание №13 с реального ЕГЭ 2020 по профильной математике 11 класс:
Задание №14 с реального ЕГЭ 2020 по профильной математике 11 класс:
Задание №15 с реального ЕГЭ 2020 по профильной математике 11 класс:
Задание №16 с реального ЕГЭ 2020 по профильной математике 11 класс:
Задание №17 с реального ЕГЭ 2020 по профильной математике 11 класс:
Задание №18 с реального ЕГЭ 2020 по профильной математике 11 класс:
Задание №19 с реального ЕГЭ 2020 по профильной математике 11 класс:
Сложные задания с вариантов ЕГЭ 2020:
548371)В пачке 250 листов бумаги формата А4. За неделю в офисе расходуется 700 листов. Какого наименьшего количества пачек бумаги хватит на 8 недель?
548372)На графике показан процесс разогрева двигателя легкового автомобиля. На оси абсцисс откладывается время в минутах, прошедшее с момента запуска двигателя, на оси ординат — температура двигателя в градусах Цельсия. Определите по графику, сколько минут двигатель нагревался от температуры 40°C до температуры 60°C.
548374)В группе туристов 8 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Какова вероятность того, что турист Б., входящий в состав группы, пойдёт в магазин?
548376)Два угла вписанного в окружность четырехугольника равны 82° и 58°. Найдите больший из оставшихся углов. Ответ дайте в градусах.
548377)На рисунке изображен график функции y=f(x) и отмечены точки −2, −1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.
548378)Найдите объем многогранника, вершинами которого являются точки A,B,С,В1, прямоугольного параллелепипеда ABCDA1B1C1D1 , у которого AB=3 , AD=3 , AA1=4.
548381)Теплоход проходит по течению реки до пункта назначения 200 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 15 км/ч, стоянка длится 10 часов, а в пункт отправления теплоход возвращается через 40 часов после отплытия из него. Ответ дайте в км/ч.
548384)В правильной шестиугольной пирамиде SABCDEF боковое ребро SA = 14, а сторона AB = 8. Точка М середина стороны AB Плоскость α проходит через точки M и D и перпендикулярна плоскости ABC. Прямая SC пересекает плоскость α в точке K. a) Докажите, что MK = KD. б) Найдите обьем пирамиды MCDK
548386)Две окружности касаются внутренним образом в точке С. Вершины A и B равнобедренного прямоугольного треугольника ABC c прямым углом C лежат на большей и меньшей окружностях соответственно. Прямая AC вторично пересекает меньшую окружность в точке D. Прямая BC вторично пересекает большую окружность в точке E. а) Докажите, что AE параллельно BD. б) Найдите AC, если радиусы окружностей равны 8 и 15.
548387)В июле 2020 года планируется взять кредит на некоторую сумму. Условия возврата таковы: — в январе каждого года долг увеличивается на 30% по сравнению с предыдущим годом; — с февраля по июнь нужно выплатить часть долга одним платежом. Определите, на какую сумму будет взят кредит банке, если известно, что кредит будет выплачен тремя равными платежами (за 3 года) и общая сумма выплат будет на 78 030 рублей больше суммы взятого кредита.
548389)На доске написано n единиц, между некоторыми из которых поставили знаки + и посчитали сумму. Например, если изначально было написано n = 12 единиц, то могла получиться, например, такая сумма: 1 + 11 + 11 + 111 + 11 + 1 + 1 = 147. а) Могла ли сумма равняться 150, если n = 60? б) Могла ли сумма равняться 150, если n = 80? в) Чему могло равняться n, если полученная сумма чисел равна 150?
548425)В правильной четырёхугольной пирамиде SABCD сторона основания AB = 4, а боковое ребро SA = 7. На рёбрах AB и SB отмечены точки M и K соответственно, причём AM = SK = 1. а) Докажите, что плоскость CKM перпендикулярна плоскости ABC. б) Найдите объём пирамиды BCKM.
548427)На сторонах AB, BC и A C треугольника ABC отмечены точки C1 , A1 и B1 соответственно, причём AC1 : C1B = 8 : 3, BA1 : A1C = 1 : 2, CB1 : B1A = 3 : 1. Отрезки BB1 и CC1 пересекаются в точке D. а) Докажите, что ADA1B1 — параллелограмм. б) Найдите CD, если отрезки AD и BC перпендикулярны, AC = 28, BC = 18.
548428)В июле 2026 года планируется взять кредит в банке на пять лет в размере S тыс рублей. Условия его возврата таковы: — каждый январь долг возрастает на 20% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить часть долга; — в июле 2027, 2028 и 2029 долг остаётся равным S тысяч рублей; — выплаты в 2030 и 2031 годах равны по 360 тысяч рублей; — к июлю 2031 долг будет выплачен полностью. Найдите общую сумму выплат за пять лет.
548430)На доске было написано несколько различных натуральных чисел. Эти числа разбили на три группы, в каждой из которых оказалось хотя бы одно число. К каждому числу из первой группы приписали справа цифру 6, к каждому числу из второй группы приписали справа цифру 9, а числа третьей группы оставили без изменений. а) Могла ли сумма всех этих чисел увеличиться в 9 раз? б) Могла ли сумма всех этих чисел увеличиться в 19 раз? в) В какое наибольшее число раз могла увеличиться сумма всех этих чисел?
548403)Дана правильная треугольная пирамида SABC в которой AB = 9, точка M лежит на ребре AB так, что AM = 8. Точка K делит сторону SB так, что SK : KB = 7 : 3. Ребро Точки M и K принадлежат плоскости α, которая перпендикулярна плоскости ABC. а) Докажите, что точка С принадлежит плоскости α. б) Найдите площадь сечения α.
548405)Дан прямоугольный треугольник ABC. На катете AC отмечена точка M, а на продолжении катета BC за точку C — точка N так, что CM = CB и CA = CN. а) Пусть CH и CF — высоты треугольников ABC и NMC соответственно. Докажите, что CF и CH перпендикулярны. б) Пусть L — это точка пересечения BM и AN, BC = 2, AC = 5. Найдите ML.
548406)В кредит взяли 220 тыс. рублей на 5 лет под r% годовых. По условиям кредита, на конец первых трех лет задолженность остается неизменной и равной 220 тысячам рублей, а выплаты последних двух лет равны. На конец пятого года кредит должен быть погашен. Найдите r если известно, что сумма всех выплат составит 420 тысяч рублей.
548408)На доске написано несколько различных натуральных чисел, которые делятся на 3 и оканчиваются на 4. а) Может ли сумма составлять 282? б) Может ли их сумма составлять 390? в) Какое наибольшее количество чисел могло быть на доске, если их сумма равна 2226?
26642)Для приготовления вишневого варенья на 1 кг вишни нужно 1,5 кг сахара. Сколько килограммовых упаковок сахара нужно купить, чтобы сварить варенье из 27 кг вишни?
На графике показан процесс разогрева двигателя легкового автомобиля. На оси абсцисс откладывается время в минутах, прошедшее от запуска двигателя, на оси ординат — температура двигателя в градусах Цельсия. Определите по графику, сколько минут двигатель нагревался от температуры 60 градусов C до температуры 90 градусов C.
283727)В соревнованиях по толканию ядра участвуют 3 спортсмена из Македонии, 8 спортсменов из Сербии, 3 спортсмена из Хорватии и 6 — из Словении. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Сербии
26215)Отрезки AC и BD — диаметры окружности с центром O. Угол ACB равен 38 . Найдите угол AOD. Ответ дайте в градусах.
266515)Найдите объем многогранника, вершинами которого являются точки A, B, C, A1 правильной треугольной призмы ABCA1B1C1, площадь основания которой равна 2, а боковое ребро равно 3.
Моторная лодка прошла против течения реки 140 км и вернулась в пункт отправления, затратив на обратный путь на 4 часов меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 12 км/ч. Ответ дайте в км/ч.
В правильной четырехугольной пирамиде SABCD сторона основания равна 6, а боковое ребро SA равно 5. На ребрах AB и SB отмечены точки M и K соответственно, причем АM = 2, SK = 1. а) Докажите, что плоскость CKM перпендикулярна плоскости ABC. б) Найдите объѐм пирамиды BCKM.
На сторонах AB, BC и AC треугольника ABC отмечены точки C1, A1 и B1 соответственно, причем AC1 : C1B = 7 : 12, BA1 : A1C = 3 : 1, AB1 : B1C = 3 : 4. Отрезки BB1 и CC1 пересекаются в точке D. а) Докажите, что четырехугольник ADA1B1 – параллелограмм. б) Найдите CD, если отрезки AD и BC перпендикулярны, AC = 21, BC = 16.
В июле 2017 года планируется взять кредит в банке на пять лет в размере S тыс. рублей. Условия его возврата таковы: каждый январь долг возрастает на 25% по сравнению с концом предыдущего года; с февраля по июнь каждого года необходимо выплатить часть долга; в июле 2018, 2019 и 2020 гг. долг остаётся равным S тыс. рублей; выплаты в 2021 и 2022 годах равны по 625 тыс. рублей;
На доске было написано несколько различных натуральных чисел. Эти числа разбили на три группы, в каждой из которых оказалось хотя бы одно число. К каждому числу из первой группы приписали справу цифру 2, к каждому числу из второй группы – цифру 4, а числа из третьей группы остались без изменений. а) Могла ли сумма всех этих чисел увеличиться в 7 раз? б) Могла ли сумма всех этих чисел увеличиться в 14 раз? в) В какое наибольшее число раз могла увеличиться сумма всех этих чисел?
Как правильно подать апелляцию ЕГЭ 2020:
Как правильно подать апелляцию ЕГЭ 2020
100 бальники ЕГЭ 2020 год официальный список от Рособрнадзора:
100 бальники ЕГЭ 2020 год официальный список от Рособрнадзора
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2022 из различных источников.
Тренировочные варианты ЕГЭ 2022 по математике (профиль)
egemath.ru | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
variant 8 | скачать |
variant 9 | скачать |
variant 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 19 | скачать |
variant 20 | скачать |
yagubov.ru | |
вариант 21 | ege2022-yagubov-prof-var21 |
вариант 22 | ege2022-yagubov-prof-var22 |
вариант 23 | ege2022-yagubov-prof-var23 |
вариант 24 | ege2022-yagubov-prof-var24 |
вариант 25 | ege2022-yagubov-prof-var25 |
вариант 26 | ege2022-yagubov-prof-var26 |
вариант 27 | ege2022-yagubov-prof-var27 |
вариант 28 | ege2022-yagubov-prof-var28 |
Досрочный Москва 28.03.2022 | скачать |
egemathschool.ru | |
вариант 1 | ответ |
вариант 2 | ответ |
вариант 3 | ответ |
вариант 4 | ответ |
ЕГЭ 100 баллов (с решениями) | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
Вариант 8 | скачать |
Вариант 9 | скачать |
Вариант 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 20 | скачать |
variant 21 | скачать |
variant 23 | скачать |
variant 24 | скачать |
variant 25 | скачать |
variant 26 | скачать |
variant 29 | скачать |
variant 30 | скачать |
math100.ru (с ответами) | |
Вариант 140 | скачать |
Вариант 141 | скачать |
Вариант 142 | скачать |
Вариант 143 | math100-ege22-v143 |
Вариант 144 | math100-ege22-v144 |
Вариант 145 | math100-ege22-v145 |
Вариант 146 | math100-ege22-v146 |
variant 147 | math100-ege22-v147 |
variant 148 | math100-ege22-v148 |
variant 149 | math100-ege22-v149 |
variant 150 | math100-ege22-v150 |
variant 151 | math100-ege22-v151 |
variant 152 | math100-ege22-v152 |
variant 153 | math100-ege22-v153 |
variant 154 | math100-ege22-v154 |
variant 155 | math100-ege22-v155 |
variant 156 | math100-ege22-v156 |
variant 157 | math100-ege22-v157 |
variant 158 | math100-ege22-v158 |
variant 159 | math100-ege22-v159 |
variant 160 | math100-ege22-v160 |
variant 161 | math100-ege22-v161 |
variant 162 | math100-ege22-v162 |
variant 163 | math100-ege22-v163 |
variant 164 | math100-ege22-v164 |
variant 165 | math100-ege22-v165 |
variant 166 | math100-ege22-v166 |
variant 167 | math100-ege22-v167 |
variant 168 | math100-ege22-v168 |
variant 169 | math100-ege22-v169 |
variant 170 | math100-ege22-v170 |
variant 171 | math100-ege22-v171 |
variant 172 | math100-ege22-v172 |
variant 173 | math100-ege22-v173 |
variant 174 | math100-ege22-v174 |
alexlarin.net | |
Вариант 358 |
скачать |
Вариант 359 | скачать |
Вариант 360 | скачать |
Вариант 361 | скачать |
Вариант 362 | проверить ответы |
Вариант 363 | проверить ответы |
Вариант 364 | проверить ответы |
Вариант 365 | проверить ответы |
Вариант 366 | проверить ответы |
Вариант 367 | проверить ответы |
Вариант 368 | проверить ответы |
Вариант 369 | проверить ответы |
Вариант 370 | проверить ответы |
Вариант 371 | проверить ответы |
Вариант 372 | проверить ответы |
Вариант 373 | проверить ответы |
Вариант 374 | проверить ответы |
Вариант 375 | проверить ответы |
Вариант 376 | проверить ответы |
Вариант 377 | проверить ответы |
Вариант 378 | проверить ответы |
Вариант 379 | проверить ответы |
Вариант 380 | проверить ответы |
Вариант 381 | проверить ответы |
Вариант 382 | проверить ответы |
Вариант 383 | проверить ответы |
Вариант 384 | проверить ответы |
Вариант 385 | проверить ответы |
Вариант 386 | проверить ответы |
Вариант 387 | проверить ответы |
Вариант 388 | проверить ответы |
vk.com/ekaterina_chekmareva (задания 1-12) | |
Вариант 1 | ответы |
Вариант 2 | |
Вариант 3 | |
Вариант 4 | |
Вариант 5 | |
Вариант 6 | |
Вариант 7 | ответы |
Вариант 8 | |
Вариант 9 | |
Вариант 10 | |
vk.com/matematicalate | |
Вариант 1 | matematikaLite-prof-ege22-var1 |
Вариант 2 | matematikaLite-prof-ege22-var2 |
Вариант 3 | matematikaLite-prof-ege22-var3 |
Вариант 4 | matematikaLite-prof-ege22-var4 |
Вариант 5 | matematikaLite-prof-ege22-var5 |
Вариант 6 | matematikaLite-prof-ege22-var6 |
Вариант 7 | matematikaLite-prof-ege22-var7 |
Вариант 8 | matematikaLite-prof-ege22-var8 |
vk.com/pro_matem | |
variant 1 | pro_matem-prof-ege22-var1 |
variant 2 | pro_matem-prof-ege22-var2 |
variant 3 | pro_matem-prof-ege22-var3 |
variant 4 | разбор |
variant 5 | разбор |
vk.com/murmurmash | |
variant 1 | otvet |
variant 2 | otvet |
→ Купить сборники тренировочных вариантов ЕГЭ 2022 по математике |
Структура варианта КИМ ЕГЭ
Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и количеству заданий:
– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;
– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).
Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.
Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.
Связанные страницы:
Средний балл ЕГЭ 2021 по математике
Решение задач с параметром при подготовке к ЕГЭ
Изменения в КИМ ЕГЭ 2022 года по математике
Купить сборники типовых вариантов ЕГЭ по математике
Как решать экономические задачи ЕГЭ по математике профильного уровня?
Ниже Вы можете бесплатно скачать электронные книги и учебники и читать статьи и уроки к разделу ЕГЭ по математике 2023, 2022, 2021, 2020:
У нас Вы можете скачать реальные задания ЕГЭ по математике 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, демоверсию ЕГЭ, реальные и демонстрационные варианты, официальные варианты.
Специально для всех абитуриентов в данной категории собраны все необходимые материалы для подготовки к Единому Государственному Экзамену по математике следующих авторов: Колесникова С.И., Семёнов А.Л., Ященко И.В., Кочагин В.В., Кочагина М.Н., Лысенко Ф.Ф., Кулабухова С.Ю., И.В, Шестаков С.А, Захаров П.И., Сергеев И.Н., Дорофеев Г.В., Титаренко А.М., Третьяк Т.М, Виноградова Т.М., Рязановский А.Р., Попов М.А., Клово А.Г., Мальцев Д.А., Абзелилова Л.И., Глазков Ю.А., Корешкова Т.А., Мирошин В.В., Шевелева Н.В., Гордин Р.К., Смирнов В.А., Гущин Д.Д., Высоцкий И.Р. и др.
По опросу всех учащихся математика — один из самых сложных предметов, изучаемых в школе. Тем более, что он подразделяется на алгебру и геометрию. Следовательно, сдать ЕГЭ по математике на отлично невероятно трудно. Нужно готовиться, решать экзаменационные варианты, проходить интенсивный курс подготовки, решать сборник тренировочных работ и заданий, тематические тесты, искать репетиторов.
Не забудьте просмотреть задания открытого бланка, почитать методические указания, практикум по выполнению типовых тестовых заданий ЕГЭ, ознакомиться с решением сложных задач, скачать справочник, учебно-методическое пособие для подготовки к экзамену, рабочую тетрадь, диагностические работы по математике в формате ЕГЭ 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009.
Готовьтесь по книгам, вариантам и сборникам тестов, решайте реальные задания, используйте КИМ — контрольно измерительные материалы, смотрите демонстрационные варианты ниже к подготовке к сдаче экзамена Единый государственный экзамен по математике, и у Вас получится успешно сдать его, ответить на все вопросы и тесты к экзамену по математике.
В 2011 и 2010 тест ЕГЭ по математике состоял из 18 заданий.
С 2010 года группа заданий А отсутствует в ЕГЭ по математике.
В 2012 и 2013 году тест ЕГЭ по математике состоял из 20 заданий.
В 2014 году тест ЕГЭ по математике состоит из 20 заданий, которые по уровню сложности и типу ответов на задачи можно разделить следующим образом:
Структура профильного уровня ЕГЭ по математике
Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий:
- 8 заданий первой части (задания 1–8) с кратким ответом в виде целого числа или конечной десятичной дроби
- 4 задания второй части (задания 9–12) с кратким ответом в виде целого числа или конечной десятичной дроби
- 7 заданий второй части (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий)
Задания первой части направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.
Посредством заданий второй части осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.
По уровню сложности задания распределяются следующим образом:
- задания 1–8 имеют базовый уровень
- задания 9–17 – повышенный уровень
- задания 18 и 19 относятся к высокому уровню сложности
При выполнении заданий с развернутым ответом части 2 экзаменационной работы в бланке ответов № 2 должны быть записаны полное обоснованное решение и ответ для каждой задачи.
Распределение заданий по частям экзаменационной работы
Части работы | Количество заданий | Максимальный первичный бал | Тип заданий |
1 часть | 8 | 8 | Краткий ответ |
2 часть | 11 | 24 | Развернутый ответ |
Итого | 19 | 32 |