Геометрия с нуля для егэ

Геометрия на ЕГЭ по математике

Геометрия на профильном ЕГЭ по математике — одна из сложных тем для абитуриентов. Дело в том, что когда-то экзамен по геометрии в школе был обязательным, а сейчас — нет. В результате у большинства абитуриентов знания по геометрии близки к нулю.

Геометрия на профильном ЕГЭ — это три задачи в части 1 (сюда входит и планиметрия, и стереометрия), а также задача 14 (стереометрия) и для многих недосягаемая задача 16 (геометрия) из второй части. Как же научиться их решать?

Начнем с планиметрии. Прежде всего, выучите основные формулы геометрии.

На нашем сайте вы найдете курс геометрии с нуля — основные определения, формулы и теоремы, а также разбор множества экзаменационных задач по геометрии из части 1.

Для решения задач по геометрии из части 2 нужна более серьезная подготовка.

Первый этап — теория. Необходимый материал есть в учебнике по геометрии за 7-9 класс (автор — А. В. Погорелов или Л. С. Атанасян). Выпишите в тетрадь определения и формулировки теорем. Сделайте чертежи. Доказывать теоремы старайтесь самостоятельно.

Программа по геометрии.

1. Треугольники. Элементы треугольника. Вершины и стороны. Высоты, медианы, биссектрисы (определения).

2. Построение треугольника: практические задания.
а) Три стороны треугольника ABC равны 4,6 и 8 сантиметров соответственно. Постройте треугольник ABC с помощью циркуля и линейки.
б) В треугольнике ABC угол B равен 48 градусов, сторона AB равна 2, BC равна 9. Постройте треугольник ABC.
в) В треугольнике ABC сторона BC равна 5, угол B равен 26^{circ}, угол C равен 58^{circ}. Постройте треугольник ABC.

3. Три признака равенства треугольников. Неравенство треугольника.

4. Постройте с помощью циркуля и линейки:
а) серединный перпендикуляр к отрезку;
б) биссектрису угла.

5. Углы при параллельных прямых и секущей. Вертикальные, смежные, соответственные, односторонние и накрест лежащие углы. Их определение и свойства.

6. Теорема о сумме углов треугольника.

7. Внешний угол треугольника.

8. Постройте в одном и том же треугольнике
а) Три высоты. Рассмотрите также случаи тупоугольного и прямоугольного треугольника.
б) Три биссектрисы.
в) Три медианы.

9. Равнобедренный треугольник. Определение и свойства. Высота в равнобедренном треугольнике.

10. Средняя линия треугольника и ее свойства.

11. Прямоугольный треугольник. Теорема Пифагора.

12. Определения синуса, косинуса и тангенса:
— для острого угла прямоугольного треугольника;
— для произвольного угла.

13. Четырехугольники. Сумма углов четырехугольника.

14. Параллелограмм. Определение и свойства. Площадь параллелограмма.

15. Виды параллелограммов и их свойства (ромб, прямоугольник, квадрат).

16. Трапеция. Средняя линия трапеции. Площадь трапеции.

17. Подобные треугольники. Три признака подобия треугольников.

18. Площадь треугольника. Формулы  S=frac{1}{2}ah  и  S=frac{1}{2}absin C.

19. Теоремы синусов и косинусов.

20. Чему равно отношение площадей подобных фигур.

21. Свойство медианы (в каком отношении делятся медианы в точке пересечения?)

22. Свойство биссектрисы (в каком отношении биссектриса делит противоположную сторону?)

23. Окружность и круг. Длина окружности. Площадь круга. Длина дуги и площадь сектора.

24. Теорема о радиусе, проведенном в точку касания.

25. Центральный и вписанный углы. Связь между ними.

26. Теоремы о вписанных углах.

27. Теорема о пересекающихся хордах.

28. Теорема об отрезках длин касательных, проведенных из одной точки.

29. Теорема о секущей и касательной.

30. Дан треугольник ABC. Постройте:
а) окружность, вписанную в данный треугольник;
б) окружность, описанную вокруг данного треугольника.
Где находятся центры этих окружностей?

31. Еще три формулы площади треугольника (через радиус вписанной окружности, через радиус описанной окружности и формула Герона).

32. Когда можно вписать окружность в четырехугольник? Когда — описать вокруг четырехугольника?

Программа по стереометрии

Разбирая и решая задания ЕГЭ по геометрии, вы заметите очень интересную вещь. Простые задачи из части 1, разобранные на нашем сайте, часто оказываются базовыми схемами, на которых строятся сложные задачи из части 2 профильного ЕГЭ.

Решая на ЕГЭ задачи по геометрии, обращайте особое внимание на оформление. Помните совет, который дал абитуриентам автор бестселлера «Математика — абитуриенту» В. В. Ткачук. Вот он, этот ценнейший совет:

«Подробность решения должна быть такова, чтобы его мог понять человек в 10 (десять) раз глупее вас».

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Геометрия на ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Мотивация

Если вы откроете список всех задач по Планиметрии №16, которые встречались на ЕГЭ по Профилю за всё время его существования, вы удивитесь тому, как сильно она усложнилась, и на сегодняшний день на этой позиции стоит достаточно содержательная геометрическая задача с действительно порой навороченными конструкциями, которые вводят в ступор, начинающих её решать школьников. Всё это еще приправлено тем, что из года в год, на фоне эволюции этой задачи, или из-за этого, процент учеников школ решающих геометрию в ЕГЭ весьма низкий:

Хуже решается только задача по Стереометрии №13. Отсюда комом накатывается мнение, что «№16 решать дано не всем», «лучше меньше баллов, зато точно решу №12», «я нарисовал треугольник, а что делать не вижу дальше» и куча других деструктивных мыслей, которые точно не помогают вам в подготовке к ЕГЭ. По факту, из моего личного опыта, задачи по Геометрии что в ЕГЭ, что в ОГЭ, очень плохо решаются в силу отсутствия какого-то четкого алгоритма действий(как  это есть в параметрах, уравнениях и неравенствах, финансовой математике), которые бы точно приводили к конкретным результатам — делай раз, делай два…

Всё правда, нам нужен не просто набор теории и формул с фактами, этого недостаточно. Нам нужна практика, опыт решения задач и стараться чувствовать эту логику при решении задач. И тут я не открою странных лайфхаков, секретных методик, будистких тайн и введьминых приколов. Будем честны, нужно время, конкретная структура и понятный набор ресурсов.

В рамках этой статьи я вложу весь свой преподавательский опыт и свои знания, как человека, который не перестаёт учиться и осваивать новые знания, чтобы помочь вам забрать на экзамене баллы за одну из самых сложных задач.

Начинаем с азов

Давайте представим, что ваша задача поднять с нуля ваши знания по геометрии на приемлемый для ЕГЭ и выше уровень. Нам не обойтись без основ и фундамента, с которым вы встречались со времен 7 класса. Что делаем? Берем учебник Атанасяна, и тут у многих расширятся зрачки и волна ужаса пройдет ледяной лавиной от бровей до мизинцев. На самом деле прошу не пугаться, нам нужен какой-то подробный школьный учебник, в котором будет изложена вся структурированная теория, необходимая и та, что мы можем применять для решения задач. Если у вас есть альтернативный — без проблем, используйте его.

Схема работы следующая: открываем со второй главы и для каждого параграфа нас будут интересовать все доказанные теоремы, а вернее не просто сухой факт, а то откуда он берется и как его доказать. Сначала пробуем сами как-то к этому придти, если не получается, то смотрим на то, какое доказательство приводит автор.

Важно! Мы не сидим тупо перед книжкой, развивая геморрой, мы берем ручку и листочек, и сидим выписываем, конспектируем и пробуем доказывать все указанные теоремы. А после просматриваем задачи в конце, решать все не нужно, только те, которые вам покажутся реально сложными и с наскока не понятными как решать.

Что нам это даст? Мы учимся воспринимать конструкции, понимать логику построения доказательства в геометрии того или иного утверждения, а также мы сами того не подозревая запоминаем всю нужную информацию, которую мы будем применять позже для решения задач №16 на ЕГЭ!

Подумайте сами, математика — это про структуру, логику, и сколько вам нужно времени чтобы зазубрить строчку предложения? 5 ? 10 минут? А на сколько вас хватит держать это всё в голове? Вы забудете при первой же возможности. Нам нужна логика доказательства этого факта, благодаря которой наш мозг будет обучаться новому подходу в мышлении и все что связанно с геометрическими фактами вы запомните намного лучше, если будете реально пытаться доказать простейшие факты из учебника. А также на самом экзамене, уровень стресса которого пробивает все возможные значения, вы будете 100% уверены, что используемый вами факт при решении задачи не вымысел возбужденного воображения.

Сколько нужно на это времени? Если идти со скоростью две главы в день, то около недели.

Как закрепить полученный результат на практике?

Теперь, друг, ты — мощь и сила! Но без практики нам не обойтись поэтому все полученные навыки начинаем применять для решения конкретных задач. Тут нам поможет книга Гордина «Планиметрия».

Схема работы с ней следующая: можете кратко просмотреть задачи данные в качестве разобранных в начале каждой главы, попробовать решить самостоятельно и потом сравнить с данным решением. Далее, переходим на отработку задач первого уровня, тут прям всё решать нет большого смысла, хоть и страшно полезно, но в режиме ограниченного времени сразу смотрим на задачи второго уровня и пытаемся прорешать максимальное количество в каждом разделе. После того как разобрались со вторым уровнем стараемся решить задачи из третьего, но тут уже можно прыгать с задачи на задачу, так как местами именно в третий уровень уже включены задачи чуть сложнее ЕГЭ. И ещё: главы про симметрии, вектора, координаты и повороты можете пропускать, если чувствуете нехватку сил, времени и вдохновения.

Кабанеем

Если со всем предыдущими пунктами справились — Glückwünsch! Поздравляю! У нас как раз есть время чтобы порешать сложные задачи и разобрать другие методы для планиметрии Прасолова. Это поможет вам разобраться с самыми разнообразными методами, которые могут повстречаться вам при решении геометрических задач. Плюс, будет реально посмотреть эту книгу и книгу Ткачука при подготовке уже к ДВИ МГУ, но это совсем другая история))

Уровень: Убийца планиметрии

На этом мы выходим на финальный этап и раз наша цель именно ЕГЭ, то дальше делаем следующее:

Открываем все задачи ЕГЭ с 2014 года и планомерно их прорешиваем. Такая процедура даст нам понимание того, что такое реальные ЕГЭшные задачи, а не Статград, от которого порой хочется сбежать. Плюс нарабатывается навык решения задачи за ограниченное время и правильное оформление всего что вы нарешали.

На этом всё?

На этом этапе я всегда даю себе время на подумать, потому что хочется что-то ещё добавить и впихнуть максимальное количество пользы. Но в данном случае, я в одной статье уместил годы опыта и сотни учеников. Схема рабочая, пользуйтесь.

Всегда рад отзывам и комментариям!

С Пламенной любовью,
Никита Салливан из Умскул.

15 января 2013

В закладки

Обсудить

Жалоба

Теория по геометрии для сдачи ЕГЭ по математике

Немного теории, которая непременно пригодится на ЕГЭ.

Теория по геометрии для сдачи ЕГЭ по математике

Теория по геометрии для сдачи ЕГЭ по математике

Теория по геометрии для сдачи ЕГЭ по математике

Теория по геометрии для сдачи ЕГЭ по математике

Теория по геометрии для сдачи ЕГЭ по математике

Теория по геометрии для сдачи ЕГЭ по математике

Теория по геометрии для сдачи ЕГЭ по математике

Другие материалы смотрите в разделе ЕГЭ по математике.

Справочник

«ОСНОВНЫЕ ТЕОРЕМЫ
ГЕОМЕТРИИ»

Содержание:

1.    
Теоремы базового уровня……………………………………….3 – 11 стр.

1.1.                
Теорема Фалеса Милетского……………………………..……3 стр. 1.2. Теорема
Пифагора………………………………………………3 стр. 1.3.
Теорема синусов………………………………………………..4 стр. 1.4. Теорема косинусов……………………………………………..4 стр.

1.5.         
Теорема биссектрис…………………………………………….5 стр.

1.6.         
Теорема о пересечении медиан треугольника……………..…5 стр. 1.7. Теорема о высотах
треугольника………………………………5 стр. 1.8.
Площади треугольников……………………………….………6 стр.

1.9.            
Вписанный и центральный углы……………………………….7 стр.

1.10.       
Вписанная окружность треугольника………………………..8 стр.

1.11.       
Описанная окружность треугольника……………………..…8 стр.

1.12.       
Вневписанная окружность треугольника……………………..8 стр. 1.13.  Площади
четырехугольников……….……………………..….9 стр.

1.14.       
Вписанный четырехугольник………………..………………10 стр.

1.15.       
Описанный четырехугольник…………..……………………10 стр.

1.16.       
Теорема о двух секущих……..………………………………11 стр. 1.17. Теорема о касательной и
секущей……………………………11 стр.

1.18. Теорема
о двух хордах………………………………………..11 стр.

2.    
Теоремы профильного уровня…………………………………12 – 13  стр.

2.1.                
Теорема Менелая………………………………………………12 стр. 2.2. Теорема
Чевы…………………………………………………..12 стр.

2.3.         
Теорема Ван – Обеля………………………………………….12 стр.

2.4.         
Теорема Стюарта………………………………………………13 стр.

2.5.         
Теорема Птолемея…………………………………………….13 стр.

2.6.         
Теорема Аполлония……………………………………………13 стр.

Теорема Фалеса
Милетского
«Несколько параллельных прямых a║b║c║d и т.д., отсекающие на
одной из сторон угла равные отрезки, и на другой стороне угла также отсекающие
на одной из сторон угла равные отрезки, и на другой стороне угла также отсекают
равные отрезки»

 

Теорема Пифагора

1.     Квадрат
гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

2.     Если
квадрат стороны треугольника равен сумме квадратов двух других его сторон, то
треугольник – прямоугольный.

 

 

Теорема синусов

Пусть a, b, c – стороны треугольника; α, β, γ –
противолежащие им углы; R – радиус описанной окружности. Тогда: 

 

Теорема косинусов

Пусть a, b, c – стороны треугольника; α –  угол,
противолежащий стороне a. Тогда: 

α

Теорема биссектрис

Биссектриса треугольника делит противоположную сторону на два
отрезка, длины которых относятся так же, как длины соответствующих сторон.

Теорема о пересечении медиан треугольника

В треугольнике три медианы пересекаются в одной точке. Точка
пересечения делит каждую медиану в отношении 2:1, если считать от вершины, из
которой проведена медиана. 

 

Теорема о высотах треугольника

В треугольнике высоты пересекаются в одной точке.

Площади треугольников

 

 ;

;

;

 

(формула
Герона)

 где:

            
a,b,c – стороны треугольника

            
ha – высота треугольника

            
p – полупериметр треугольника

            
r – радиус вписанной окружности

            
R – радиус описанной окружности

            
β – угол между сторонами 

Вписанный и центральный углы

Угол называется вписанным в окружность, если его вершина
лежит на окружности, а стороны пересекают эту окружность.

На рисунке вписанным углом является ABC.  

Центральным называется угол вершиной в центре окружности. На
рисунке центральным углом является угол AOC.

 

Вписанная окружность треугольника

В любой треугольник можно
вписать единственную окружность. Центр окружности, вписанной в треугольник, совпадает
с точной пересечения его биссектрис. 

Описанная окружность треугольника

Около любого треугольника можно описать
единственную окружность. Центр окружности, описанной около треугольника,
совпадает с точкой пресечения серединных перпендикуляров к его сторонам

  

Вневписанная окружность треугольника

В любом треугольнике биссектрисы двух
внешних углов и биссектриса внутреннего угла, не смежного с ними, пересекаются
в одной точке.

Площади четырехуголников

— площадь любого четырехугольника, где

     
d1 – первая диагональ

     
d2 – вторая диагональ

     
α – угол между диагоналями

    —     площадь     четырехугольника,

вписанного в окружность (формула Герона), где

     
p – полупериметр четырехугольника

     
a, b, c и d – стороны четырехугольника

S = aha – площадь паралелограмма, где

     
a – основание паралелограмма

     
ha – высота, проведенная к основанию

S = ab sinβ – площадь параллелограмма, где

     
a и b – стороны паралелограмма

     
β – угол между смежными сторонами

S = ab – площадь прямоугольника, где

a и b – стороны квадрата

S =  – площадь квадрата, где

a – сторона квадрата

S = ahaплощадь ромба, где

     
a – сторона ромба

     
ha – высота, проведенная к стороне

S =   – площадь ромба, где

     
a – сторона ромба

     
β – угол между сторонами ромба

Вписанный четырехугольник

Четырехугольник можно вписать в окружность тогда и только
тогда, когда суммы его противоположных углов равны 180.

 

                                                                     

Описанный четырехугольник

Четырехугольник можно описать вокруг окружности тогда и
только тогда, когда суммы длин его противоположных сторон равны.

 

DC   
+ AB = DA + BC

Теорема о двух секущих

Если из точки, лежащей вне окружности, проведены две секущие,
то произведение одной секущей на ее внешнюю часть равно произведению другой
секущей на ее внешнюю часть: 

 

MAMB = MC  MD 

Теорема о касательной и секущей

Если из точки, лежащей вне окружности
проведены касательная и секущая, то квадрат длины касательной равен
произведению секущей на ее внешнюю часть

                                                                     MC2
= MA
 MB

M

                                                 B
                             
 

Теорема о двух
хордах
Если две хорды окружности AB и CD пересекаются в точке S, то
произведение отрезков одной хорды равно произведению отрезков другой хорды. AS  SD = CS  SB                 

                                                           D
                              
 

AS  SD = CS  SB

A

Теорема Менелая

 

Теорема Чевы

Отрезок, соединяющий вершину треугольника с точкой на
противоположной стороне или ее продолжении, называется  чевианой.

 

Теорема Ван-Обеля

 

Теорема Стюарта

 

py

                                               a
                                                                                             
 

Теорема
Птолемея

Если
четырехугольник вписан в окружность, то

                                    AB+ AD = AC  

Теорема Аполлония

                                                             A
             Если AD – медиана треугольника ABC, то

Желаем вам успехов!

Планиметрия

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ — коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Признаки подобия треугольников:

  1. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
  2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
  3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Площади фигур

Площадь треугольника

  1. $S={a·h_a}/{2}$, где $h_a$ — высота, проведенная к стороне $а$
  2. $S={a·b·sin⁡α}/{2}$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
  3. Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ — это полупериметр $p={a+b+c}/{2}$
  4. $S=p·r$, где $r$ — радиус вписанной окружности
  5. $S={a·b·c}/{4R}$, где $R$ — радиус описанной окружности
  6. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ — катеты прямоугольного треугольника.
  7. Для равностороннего треугольника $S={a^2 √3}/{4}$, где $а$ — длина стороны.

Площади четырехугольников

Прямоугольник

$S=a·b$, где $а$ и $b$ — смежные стороны.

Ромб

$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ — диагонали ромба

$S=a^2·sin⁡α$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.

Трапеция

$S={(a+b)·h}/{2}$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.

Квадрат

$S=a^2$, где $а$ — сторона квадрата.

Параллелограмм

$S=a·b·sinα$, где $а$ и $b$ — длины сторон параллелограмма, а $α$ — угол между этими сторонами.

Пропорциональные отрезки в прямоугольном треугольнике

В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:

Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.

$CD^2=DB·AD$

В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.

$CB^2=AB·DB$

$AC^2=AB·AD$

Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.

$AC·CB=AB·CD$

Метрические соотношения в окружности

1. Две касательные, проведенные к окружности из одной точки, равны, и центр окружности лежит на биссектрисе угла между ними.

2. Если хорды $АС$ и $BD$ пересекаются в некоторой точке $N$, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

$AN·NC=BN·ND$

Пример:

Хорды $АВ$ и $CD$ пересекаются в точке $Е$. Найдите $ЕD$, если $АЕ=16, ВЕ=9, СЕ=ED$.

Решение:

Если хорды $АВ$ и $СD$ пересекаются в некоторой точке $Е$, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

$AЕ·ЕВ=СЕ·ЕD$

Так как $СЕ=ED$, данное выражение можно записать в виде:

$ЕD^2=AЕ·ЕВ$

Подставим числовые значения

$ЕD^2=16·9$

$ЕD=√{16·9}=4·3=12$

Ответ: $12$

3. Если из одной точки к одной окружности проведены две секущие, то произведение первой секущей на ее внешнюю часть равно произведению второй секущей на свою внешнюю часть.

$АС·ВС=EC·DC$

4. Если из одной точки к окружности проведены секущая и касательная, то произведение секущей на ее внешнюю часть равно квадрату длины касательной.

$BD·СB=AB^2$

Вписанные и описанные окружности для четырехугольников.

1. Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

$АВ+CD=BC+AD$

2. Если сумма противоположных углов четырехугольника равна $180°$, то только тогда около него можно описать окружность.

$∠В+∠D=180°$

$∠A+∠C=180°$

Вневписанные окружности

Вневписанной окружностью треугольника называется окружность, касающаяся одной из его сторон и продолжений двух других.

Для каждого треугольника существует три вневписанных окружности, которые расположены вне треугольника, центрами вневписанных окружностей являются точки пересечения биссектрис внешних углов треугольника.

Точки $О_1, О_2$ и $О_3$ – центры вневписанных окружностей.

Связь площади треугольника с радиусами вневписанных окружностей.

Введем обозначения:

$S$ — площадь треугольника;

$p$ — полупериметр треугольника;

$a, b, c$ — стороны треугольника;

$r_a, r_b, r_c$ — радиусы вневписанных окружностей касающиеся соответственно сторон $a, b$ и $c$;

Для данных обозначений справедливы равенства:

$r_a={S}/{p-a};$

$r_b={S}/{p-b};$

$r_c={S}/{p-c}.$

Пример:

В прямоугольном треугольнике $АВС$ угол $С=90°, АС=6, ВС=8$. Найдите радиус вневписанной окружности, касающейся гипотенузы.

Решение:

Радиус вневписанной окружности, касающейся стороны $АВ$ равен:

$r_{АВ}={S}/{p-АВ}$, где $S$ — площадь треугольника, $р$ — полупериметр треугольника.

Чтобы подставить в формулу данные, найдем сначала площадь треугольника и его полупериметр.

Площадь прямоугольного треугольника равна половине произведения катетов:

$S={АС·АВ}/{2}={6·8}/{2}=24$

Нам неизвестна гипотенуза, найдем ее по теореме Пифагора:

$АВ=√{АС^2+СВ^2}=√{6^2+8^2}=√{100}=10$

Зная все стороны, вычислим полупериметр:

$р={6+8+10}/{2}=12$

Теперь можем все данные подставить в формулу нахождения радиуса вневписанной окружности:

$r_{АВ}={S}/{p-АВ}={24}/{12-10}={24}/{2}=12$

Ответ: $12$

Биссектриса

Биссектриса – это линия, которая делит угол пополам.

Свойства биссектрисы:

1. В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.

2. Если точка лежит на биссектрисе, то расстояния от неё до сторон угла равны.

$AD=DC$

3. Три биссектрисы в треугольнике пересекаются в одной точке, эта точка является центром вписанной в треугольник окружности.

4. Биссектриса угла в параллелограмме отсекает равнобедренный треугольник.

5. Биссектрисы смежных углов перпендикулярны.

6. В треугольнике биссектриса угла делит противоположную сторону на отрезки, отношение которых такое же, как отношение сторон треугольника, между которыми эта биссектриса прошла.

${AB}/{AC}={BA_1}/{A_1C}$

7. Для нахождения длины биссектрисы справедлива формула:

$АА_1=√{АВ·АС-ВА_1·А_1 С}$

Медиана

Медиана — это линия, проведенная из вершины треугольника к середине противоположной стороны.

Свойства медиан:

1. Медиана делит треугольник на два равновеликих треугольника, т.е. на два треугольника, у которых площади равны.

$S_1=S_2$

2. Медианы пересекаются в одной точке и этой точкой делятся в отношении два к одному, считая от вершины.

3. В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы и радиусу описанной около этого треугольника окружности.

4. Для нахождения длины медианы, проведенной к стороне «с», справедлива формула:

$М_с={√{2(а^2+b^2)-c^2}}/{2}$

Высота

Высота в треугольнике — это линия, проведенная из вершины треугольника к противоположной стороне под углом в 90 градусов.

$BB_1$ — высота

Свойства высот:

1. Три высоты (или их продолжения) пересекаются в одной точке.

2. При пересечении двух высот получаются подобные треугольники:

$∆АА_1 В~∆СС_1В;$

$∆АС_1 М~∆СМА1$

3. Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.

4. Высоты треугольника обратно пропорциональны его сторонам:

$h_a:h_b:h_c={1}/{a}:{1}/{b}:{1}/{c}$

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

${a}/{sin⁡α}={b}/{sinβ} ={c}/{sinγ} =2R$, где $R$ — радиус описанной около треугольника окружности.

Пример:

В треугольнике $АВС ВС=16, sin∠A={4}/{5}$. Найдите радиус окружности, описанной вокруг треугольника $АВС$.

Решение:

Воспользуемся теоремой синусов:

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной окружности

${ВС}/{sin⁡A} =2R$

Далее подставим числовые данные и найдем $R$

${16·5}/{4}=2R$

$R={16·5}/{4·2}=10$

Ответ: $10$

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$a^2=b^2+c^2-2·b·c·cosα.$

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Геометрия задачи на готовых чертежах для подготовки к егэ 10 11 классы гдз ответы
  • Геометрия задачи на готовых чертежах для подготовки к егэ 10 11 классы базовый уровень ответы
  • Геометрия егэ тест
  • Геометрия егэ профильный уровень 2023
  • Геометрия егэ профиль ютуб

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии