Генетика с нуля для егэ

Предмет генетики

Генетика (греч. γενητως — порождающий, происходящий от кого-то) — наука о наследственности и изменчивости. Это определение
отлично соответствует афоризму А.П. Чехова «Краткость — сестра таланта». В словах наследственность и изменчивость скрыта
вся сущность генетики, к изучению которой мы приступаем.

Грегор Мендель

Наследственность подразумевает возможность передачи из поколения в поколение различных признаков и свойств, общих
особенностей развития. Это происходит благодаря способности ДНК к самоудвоению (репликации) и дальнейшему равномерному
распределению генетического материала.

Изменчивость подразумевает способность организмов приобретать новые признаки, которые отличают их от родительских особей.
Вследствие этого формируется материал для главного направленного фактора эволюции — естественного отбора, который
отбирает наиболее приспособленных особей.

Мы с вами — истинное чудо генетики :) Очевидно, что в чем-то мы схожи с собственными родителями, в чем-то отличаемся от них.
Гены, которые собраны в нас, уже миллионы лет передаются из поколения в поколение, в каждом поколении совершая
чудо вновь и вновь.

Отец и сын в одинаковом возрасте

Ген и генетический код

Ген — участок молекулы ДНК, кодирующий последовательность аминокислот для синтеза одного белка. Генетическая информация
в ДНК реализуется с помощью процессов транскрипции и трансляции, изученных нами ранее.

Ген

В одной молекуле ДНК зашифрованы сотни тысяч различных белков. Все наши соматические клетки имеют одну и ту же молекулу ДНК.
Задумайтесь: почему же в таком случае клетки кожи отличаются от клеток печени, миоцитов, клеток эпителия рта — ведь ДНК везде
одинакова!

Это происходит потому, что в разных клетках одни гены «выключены», а другие «активны»: транскрипция идет только
с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.

Разнообразие клеток в организме

Способ кодирования последовательности аминокислот в белке с помощью генов — универсальный способ для всех живых организмов,
доказывающий единство их происхождения. Выделяют следующие свойства генетического кода:

  • Триплетность
  • Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются
    нонсенс кодонами (стоп-кодонами)

  • Непрерывность (компактность)
  • Информация считывается непрерывно — внутри гена нет знаков препинания: так как ген кодирует один белок, то было бы
    нецелесообразно разделять его на части. Стоп-кодоны — «знаки препинания» — есть между генами, которые кодируют разные белки.

  • Неперекрываемость
  • Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного
    триплета.

  • Специфичность (однозначность)
  • Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.

  • Избыточность (вырожденность)
  • Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)

    Таблица генетического кода

  • Коллинеарность (лат. con — вместе и linea — линия)
  • Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.

  • Однонаправленность
  • Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе
    трансляции.

    Генетический код

  • Универсальность
  • Генетический код един для всех живых организмов, что свидетельствует о единстве происхождения всего живого.

Аллельные гены

Аллельные гены (греч. allélon — взаимно) — гены, занимающие одинаковое положение в локусах гомологичных хромосом и
отвечающие за развитие одного и того же признака. Такими признаками могут являться: цвет глаз (карий и голубой), владение рукой (праворукость и леворукость), тип волос (вьющиеся и прямые волосы).

Локусом (лат. locus — место) — в генетике обозначают положение определенного гена в хромосоме.

Аллельные гены

Обратите внимание, что гены всегда парные, по этой причине генотип должен быть записан двумя генами — AA, Aa, aa. Писать
только один ген было бы ошибкой.

Признаки бывают доминантными (от лат. dominus — господствующий), которые проявляются у гибридов первого поколения, и рецессивными (лат. recessus — отступающий) — не проявляющимися. У человека доминантный признак — карий цвет глаз (ген — А),
рецессивный признак — голубой цвет глаз (ген — а). Именно поэтому у человека с генотипом Aa будет карий цвет глаз: А — доминантный аллель подавляет a — рецессивный аллель.

Доминантные и рецессивные признаки

Генотип организма (совокупность генов — AA, Aa, aa) может быть описан терминами:

  • Гомозиготный (в случае, когда оба гена либо доминантны, либо рецессивны) — AA, aa
  • Гетерозиготный (в случае, когда один ген доминантный, а другой — рецессивный) — Аа

Понять, какой признак является подавляемым — рецессивным, а какой подавляющим — доминантным, можно в результате основного метода
генетики — гибридологического, то есть путем скрещивания особей и изучения их потомства.

Гаметы

Гамета (греч. gamos — женщина в браке) — половая клетка, образующаяся в результате гаметогенеза (путем мейоза) и обеспечивающая
половое размножение организмов. Гамета (сперматозоид/яйцеклетка) имеет гаплоидный набор хромосом — n, при слиянии двух гамет набор восстанавливается до диплоидного — 2n.

Часто в генетических задачах требуется написать гаметы для особей с различным генотипом. Для правильного решения задачи
необходимо знать и понимать следующие правила:

  • В гаметах представлены все гены, составляющие гаплоидный набор хромосом — n
  • В каждую гамету попадает только одна хромосома из гомологичной пары
  • Число возможных вариантов гамет можно рассчитать по формуле 2i = n, где i — число генов в
    гетерозиготном состоянии в генотипе
  • К примеру для особи AABbCCDDEeFfGg количество гамет будет рассчитываться исходя из количества генов в гетерозиготном состоянии, которых в генотипе 4: Bb, Ee, Ff, Gg. Формула будет записана 24 = 16 гамет.

  • Одну гомологичную хромосому ребенок всегда получает от отца, другую — от матери
  • Организмы, у которых проявляется рецессивный признак — гомозиготны (аа). У гетерозигот (при полном доминировании) всегда проявляется доминантный
    ген (гетерозигота — Aa).

Осознайте изученные правила и посмотрите на картинку ниже. Здесь мы образуем гаметы для различных особей: AA, Aa, aa.
При решении генетических задач гаметы принято обводить в кружок, не следует повторяться при написании гамет — это ошибка.

К примеру, у особи «AA» мы напишем только одну гамету «А» и не будем повторяться, а у особи «Aa» напишем два типа гамет
«A» и «a», так как они различаются между собой.

Образование гамет

Гибридологический метод

Мы приступаем к изучению методологии генетики, то есть тех методов, которые использует генетика. Один из первых методов
генетики, предложенный самим Грегором Менделем — гибридологический.

Этот метод основан на скрещивании организмов между собой и дальнейшем анализе полученного потомства от данного скрещивания.
С помощью гибридологического метода возможно изучение наследственных свойств организмов, определение рецессивных и доминантных
генов.

Гибридологический метод

Цитогенетический метод

С помощью данного метода становится возможным изучение наследственного материала клетки. Врач-генетик может построить
карту хромосом пациента (кариотип) и на основании этого сделать вывод о наличии или отсутствии
наследственных заболеваний.

Если быть более точным, кариотипом называют совокупность признаков хромосом: строения, формы, размера и числа. При наследственных заболеваниях может быть нарушена структура хромосом (часто летальный исход), иногда нарушено их количество (синдром Дауна, Шерешевского-Тернера,
Клайнфельтера).

Цитогенетический метод исследования

Генеалогический метод (греч. γενεαλογία — родословная)

Генеалогический метод является универсальным методом медицинской генетики и основан на составлении родословных.
Человек, с которого начинают составление родословной — пробанд. В результате изучения родословной врач-генетик
может предположить вероятность возникновения тех или иных заболеваний.

Правила написания родословной

По мере изучения законов Менделя, хромосомной теории, я непременно буду обращать ваше внимание на родословные. Вы
научитесь видеть детали, по которым можно будет сказать об изучаемом признаке: «рецессивный он или доминантный?»,
«сцеплен с полом или не сцеплен?»

Генеалогический метод

На предложенной родословной в поколениях семьи хорошо прослеживается наследование не сцепленного с полом (аутосомного)
рецессивного признака (например, альбинизма). Это можно определить по ряду признаков, которые я в
следующих статьях научу вас видеть. Аутосомно-рецессивный тип наследования можно заподозрить, если:

  • Заболевание проявляется только у гомозигот
  • Родители клинически здоровы
  • Если больны оба родителя, то все их дети будут больны
  • В браке больного со здоровым рождаются здоровые дети (если здоровый не гетерозиготен)
  • Оба пола поражаются одинаково

Сейчас это может показаться сложным, но не волнуйтесь — решая генетические задачи вы сами «дойдете» до этих правил,
и через некоторое время они будут казаться вам очевидными.

Близнецовый метод

Применение близнецового метода в генетике — вопрос удачи. Ведь для этого нужны организмы, чьи генотипы похожи «один в один»:
такими являются однояйцевые близнецы, их появление подчинено случайности.

Близнецовый метод

Близнецовый метод изучает влияние наследственных факторов и внешней среды на формирование фенотипа — совокупности внешних и
внутренних признаков организма. К фенотипу относят физические черты: размеры частей тела, цвет кожи, форму и особенности
строения внутренних органов и т.д.

Часто изучению подвергают склонность к различным заболеваниям. Интересный факт: если психическое расстройство — шизофрения
— развивается у первого из однояйцевых близнецов, то у второго она возникает с вероятностью 90%. Таким образом, удается
сделать вывод о значительной доле наследственного фактора в развитии данного заболевания.

Гебефреническая шизофрения

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Вся генетика для ЕГЭ с нуля

Изучи всю генетику за 7 занятий 🔥

Научимся решать генетические задачи с нуля и получим 3 из 3 баллов за 29 задачу второй части на ЕГЭ

Регистрируйся на курс👇

Длительность курса
7 уроков


Марк Ламарк
Учитель

999 ₽

что входит в курс?

✅ за 7 занятий с нуля разберём весь необходимый для ЕГЭ материал по генетике
✅ закрепим изученный материал на практике и разберём проблемные задачи
🎁 научимся решать 29 задачу, за которую можно получить 3 первичных балла

Твой преподаватель

Марк Ламарк

Биология

Борюсь со скукой в образовании и объясняю сложные вещи простым языком!

подробнее о преподе

58 учеников сдали ЕГЭ на 100 баллов

каждый 5-ый на 80+ баллов

все стобальники вебиума

Подготовка к ЕГЭ по методологии

Даниила Дарвина

Марк готовит к ЕГЭ по проверенной системе Даниила Дарвина, которая помогла 9000 выпускников сдать ЕГЭ на 80+ баллов

Как устроен процесс обучения

Удобная платформа

На нашей образовательной платформе у каждого есть личный кабинет — тут смотрят вебинары, проходят тесты, сдают домашку и получают обратную связь

Видеоуроки

После старта курса ты сразу получишь 7 видеоуроков, каждый из которых посвящён теме курса

Домашние задания

Ко многим занятиям есть тестовые практические задания, которые проверяются на платформе сразу после выполнения, и задания с открытым ответом, которые ты сможешь проверить самостоятельно по ключам

Скрипты и полезные материалы

Для каждого занятия у тебя будет оформленная рабочая тетрадь. Заполняя её во время просмотра уроков, ты лучше запомнишь материал, сэкономишь себе кучу времени и составишь красивый структурированный конспект по пройденной теме.

Расписание курса

Основы решения задач. Законы Менделя

Анализирующее скрещивание и сцепленное наследование генов

Неполное доминирование и летальный ген

Сцепленное с полом наследование и группы крови

Морганиды и родословные | ВИДЕО

Задачи на неаллельное взаимодействие генов

Все типы задач по генетике ЕГЭ

Вот что говорят наши выпускники

Карина Старкова

86 баллов

У меня 86, Вебиум очень сильно облегчил подготовку и сделал её ооочень приятной, Дарвин и Марк — супер классные преподы, которые действительно заинтересованы в том, чтобы всё выдать нам на блюдечке. Всё, что вам обещают в описании курса — действительно так, мы получали с избытком. Моя наставница Диана — солнышко, благодаря ей я поняла темы, которые не вывозила сама,она всегда была на связи и устраивала кучу «»интерактива»», спасибо тебе!!❤❤❤Вебиум вам обеспечит условия для уютной,теплой, веселой и качественной подготовки.
Ребята, спасибо вам большое, я счастлива, что была с вами весь год!!❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

Злата Пахомова

91 балл

Хочу сказать большое спасибо Даниилу Дарвину и Марку за свои высокие баллы (91) 😍 Вы самые лучшие преподаватели на свете, именно благодаря вам я полюбила биологию всей душой! ❤ Спасибо прекрасным наставникам Вебиума, которые всегда находили слова поддержки. Вебиум действительно можно назвать одной большой любящей семьёй

Gloriya Unbroken

86 баллов

Спасибо огромнейшее за вашу работу, креативность и доступную подачу материала! Готовилась сама, смотрела ваши вебинары и набрала 86 баллов с нуля. Даже подумать не могла о таком результате, когда начинала готовиться! Спасибо Даниилу и Марку за такой нестандартный, интересный и чуткий подход к обучению, а также за неумолимую веру в своих учеников!Ребята, вы лучшие! Благодарю за занимательную и местами очень весёлую подготовку!❤❤❤

больше отзывов в

Отвечаем на вопросы

Генетика и селекция

Генетика — наука, изучающая наследственность и изменчивость организмов.
Наследственность — способность организмов передавать из поколения в поколение свои признаки (особенности строения, функций, развития).
Изменчивость — способность организмов приобретать новые признаки. Наследственность и изменчивость — два противоположных, но взаимосвязанных свойства организма.

Наследственность

Основные понятия
Ген и аллели. Единицей наследственной информации является ген.
Ген (с точки зрения генетики) — участок хромосомы, определяющий развитие у организма одного или нескольких признаков.
Аллели — различные состояния одного и того же гена, располагающиеся в определённом локусе (участке) гомологичных хромосом и определяющие развитие одного какого-то признака. Гомологичные хромосомы имеются только в клетках, содержащих диплоидный набор хромосом. Их нет в половых клетках (гаметах) эукариот и у прокариот.

Признак (фен) — некоторое качество или свойство, по которому можно отличить один организм от другого.
Доминирование — явление преобладания у гибрида признака одного из родителей.
Доминантный признак — признак, проявляющийся в первом поколении гибридов.
Рецессивный признак — признак, внешне исчезающий в первом поколении гибридов.

Доминантные и рецессивные признаки у человека

Признаки
доминантные рецессивные
Карликовость Нормальный рост
Полидактилия (многопалость) Норма
Курчавые волосы Прямые волосы
Не рыжие волосы Рыжие волосы
Раннее облысение Норма
Длинные ресницы Короткие ресницы
Крупные глаза Маленькие глаза
Карие глаза Голубые или серые глаза
Близорукость Норма
Сумеречное зрение (куриная слепота) Норма
Веснушки на лице Отсутствие веснушек
Нормальная свёртываемость крови Слабая свёртываемость крови (гемофилия)
Цветовое зрение Отсутствие цветового зрения (дальтонизм)

Доминантный аллель — аллель, определяющий доминантный признак. Обозначается латинской прописной буквой: А, B, С, … .
Рецессивный аллель — аллель, определяющий рецессивный признак. Обозначается латинской строчной буквой: а, b, с, … .
Доминантный аллель обеспечивает развитие признака как в гомо-, так и в гетерозиготном состоянии, рецессивный аллель проявляется только в гомозиготном состоянии.
Гомозигота и гетерозигота. Организмы (зиготы) могут быть гомозиготными и гетерозиготными.
Гомозиготные организмы имеют в своем генотипе два одинаковых аллеля — оба доминантные или оба рецессивные (АА или аа).
Гетерозиготные организмы имеют один из аллелей в доминантной форме, а другой — в рецессивной (Аа).
Гомозиготные особи не дают расщепления в следующем поколении, а гетерозиготные дают расщепление.
Разные аллельные формы генов возникают в результате мутаций. Ген может мутировать неоднократно, образуя много аллелей.
Множественный аллелизм — явление существования более двух альтернативных аллельных форм гена, имеющих различные проявления в фенотипе. Два и более состояний гена возникают в результате мутаций. Ряд мутаций вызывает появление серии аллелей (А, а1, а2, …, аn и т. д.), которые находятся в разных доминантно-рецессивных отношениях друг к другу.
Генотип — совокупность всех генов организма.
Фенотип — совокупность всех признаков организма. К ним относятся морфологические (внешние) признаки (цвет глаз, окраска цветков), биохимические (форма молекулы структурного белка или фермента), гистологические (форма и размер клеток), анатомические и т. д. С другой стороны, признаки можно разделить на качественные (цвет глаз) и количественные (масса тела). Фенотип зависит от генотипа и условий внешней среды. Он развивается в результате взаимодействия генотипа и условий внешней среды. Последние в меньшей степени влияют на качественные признаки и в большей степени — на количественные.
Скрещивание (гибридизация). Одним из основных методов генетики является скрещивание, или гибридизация.
Гибридологический метод — скрещивание (гибридизация) организмов, отличающихся друг от друга по одному или нескольким признакам.
Гибриды — потомки от скрещиваний организмов, отличающихся друг от друга по одному или нескольким признакам.
В зависимости от числа признаков, по которым различаются между собой родители, выделяют разные виды скрещивания.
Моногибридное скрещивание — скрещивание, при котором родители различаются только по одному признаку.
Дигибридное скрещивание — скрещивание, при котором родители различаются по двум признакам.
Полигибридное скрещивание — скрещивание, при котором родители различаются по нескольким признакам.
Для записи результатов скрещиваний используются следующие общепринятые обозначения:
Р — родители (от лат. parental — родитель);
F — потомство (от лат. filial — потомство): F1 — гибриды первого поколения — прямые потомки родителей Р; F2 — гибриды второго поколения — потомки от скрещивания между собой гибридов F1 и т. д.
♂ — мужская особь (щит и копьё — знак Марса);
♀ — женская особь (зеркало с ручкой — знак Венеры);
X — значок скрещивания;
: — расщепление гибридов, разделяет цифровые соотношения отличающихся (по фенотипу или генотипу) классов потомков.
Гибридологический метод был разработан австрийским естествоиспытателем Г. Менделем (1865). Он использовал самоопыляющиеся растения гороха садового. Мендель провёл скрещивание чистых линий (гомозиготных особей), отличающихся друг от друга по одному, двум и более признакам. Им были получены гибриды первого, второго и т. д. поколений. Полученные данные Мендель обработал математически. Полученные результаты были сформулированы в виде законов наследственности.

Законы Г. Менделя

Первый закон Менделя. Г. Мендель скрестил растения гороха с жёлтыми семенами и растения гороха с зелёными семенами. И те и другие были чистыми линиями, то есть гомозиготами.

Первый закон Менделя — закон единообразия гибридов первого поколения (закон доминирования): при скрещивании чистых линий у всех гибридов первого поколения проявляется один признак (доминантный).
Второй закон Менделя. После этого Г. Мендель скрестил между собой гибридов первого поколения.

Второй закон Менделя — закон расщепления признаков: гибриды первого поколения при их скрещивании расщепляются в определённом числовом соотношении: особи с рецессивным проявлением признака составляют 1/4 часть от общего числа потомков.

Расщепление — явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный. В случае моногибридного скрещивания это соотношение выглядит следующим образом: 1АА:2Аа:1аа, то есть 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании). В случае дигибридного скрещивания — 9:3:3:1 или (3:1)2. При полигибридном — (3:1)n.
Неполное доминирование. Доминантный ген не всегда полностью подавляет рецессивный ген. Такое явление называется неполным доминированием. Примером неполного доминирования является наследование окраски цветков ночной красавицы.

Цитологические основы единообразия первого поколения и расщепления признаков во втором поколении состоят в расхождении гомологичных хромосом и образовании гаплоидных половых клеток в мейозе.
Гипотеза (закон) чистоты гамет гласит: 1) при образовании половых клеток в каждую гамету попадает только один аллель из аллельной пары, то есть гаметы генетически чисты; 2) у гибридного организма гены не гибридизуются (не смешиваются) и находятся в чистом аллельном состоянии.
Статистический характер явлений расщепления. Из гипотезы чистоты гамет следует, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены. При случайном характере соединения гамет общий результат оказывается закономерным. Отсюда следует, что при моногибридном скрещивании отношение 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании) следует рассматривать как закономерность, основанную на статистических явлениях. Это касается и случая полигибридного скрещивания. Точное выполнение числовых соотношений при расщеплении возможно лишь при большом количестве изучаемых гибридных особей. Таким образом, законы генетики носят статистический характер.
Анализ потомства. Анализирующее скрещивание позволяет установить, гомозиготен или гетерозиготен организм по доминантному гену. Для этого скрещивают особь, генотип которой следует определить, с особью, гомозиготной по рецессивному гену. Часто скрещивают одного из родителей с одним из потомков. Такое скрещивание называется возвратным.
В случае гомозиготности доминантной особи расщепления не произойдёт:

В случае гетерозиготности доминантной особи произойдёт расщепление:

Третий закон Менделя. Г. Мендель провёл дигибридное скрещивание растений гороха с жёлтыми и гладкими семенами и растений гороха с зелёными и морщинистыми семенами (и те и другие – чистые линии), а затем скрестил их потомков. В результате им было установлено, что каждая пара признаков при расщеплении в потомстве ведёт себя так же, как при моногибридном скрещивании (расщепляется 3:1), то есть независимо от другой пары признаков.

Третий закон Менделя — закон независимого комбинирования (наследования) признаков: расщепление по каждому признаку идёт независимо от других признаков.

Цитологической основой независимого комбинирования является случайный характер расхождения гомологичных хромосом каждой пары к разным полюсам клетки в процессе мейоза независимо от других пар гомологичных хромосом. Этот закон справедлив только в том случае, когда гены, отвечающие за развитие разных признаков, находятся в разных хромосомах. Исключения составляют случаи сцепленного наследования.

Сцепленное наследование. Нарушение сцепления

Развитие генетики показало, что не все признаки наследуются в соответствии с законами Менделя. Так, закон независимого наследования генов справедлив только для генов, расположенных в разных хромосомах.
Закономерности сцепленного наследования генов были изучены Т. Морганом и его учениками в начале 20-х гг. XX в. Объектом их исследований являлась плодовая мушка дрозофила (срок её жизни невелик, и за год можно получить несколько десятков поколений, её кариотип составляют всего четыре пары хромосом).
Закон Моргана: гены, локализованные в одной хромосоме, наследуются преимущественно вместе.
Сцепленные гены — гены, лежащие в одной хромосоме.
Группа сцепления — все гены одной хромосомы.
В некотором проценте случаев сцепление может нарушаться. Причина нарушения сцепления — кроссинговер (перекрёст хромосом) — обмен участками хромосом в профазе I мейотического деления. Кроссинговер приводит к генетической рекомбинации. Чем дальше друг от друга расположены гены, тем чаще между ними происходит кроссинговер. На этом явлении основано построение генетических карт — определение последовательности расположения генов в хромосоме и примерного расстояния между ними.

Генетика пола

Аутосомы — хромосомы, одинаковые у обоих полов.
Половые хромосомы (гетерохромосомы) — хромосомы, по которым мужской и женский пол отличаются друг от друга.
В клетке человека содержится 46 хромосом, или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как X- и Y-хромосомы. Женщины имеют две X-хромосомы, а мужчины одну Х- и одну Y-хромосому.
Существует 5 типов хромосомного определения пола.

Типы хромосомного определения пола

Тип Примеры
♀ XX, ♂ ХY Характерен для млекопитающих (в том числе и для человека), червей, ракообразных, большинства насекомых (в том числе для дрозофил), большинства земноводных, некоторых рыб
♀ ХY, ♂ XX Характерен для птиц, пресмыкающихся, некоторых земноводных и рыб, некоторых насекомых (чешуекрылые)
♀ XX, ♂ Х0 Встречается у некоторых насекомых (прямокрылые); 0 обозначает отсутствие хромосом
♀ Х0, ♂ XX Встречается у некоторых насекомых (равнокрылые)
гапло-диплоидный тип (♀ 2n, ♂ n) Встречается, например, у пчёл и муравьёв: самцы развиваются из неоплодотворённых гаплоидных яйцеклеток (партеногенез), самки — из оплодотворённых диплоидных.

Наследование, сцепленное с полом — наследование признаков, гены которых находятся в Х- и Y-хромосомах. В половых хромосомах могут находиться гены, не имеющие отношения к развитию половых признаков.
При сочетании XY большинство генов, находящихся в X-хромосоме, не имеют аллельной пары в Y-хромосоме. Также гены, расположенные в Y-хромосоме, не имеют аллелей в X-хромосоме. Такие организмы называются гемизиготными. В этом случае проявляется рецессивный ген, имеющийся в генотипе в единственном числе. Так X-хромосома может содержать ген, вызывающий гемофилию (пониженную свёртываемость крови). Тогда все мужские особи, получившие эту хромосому, будут страдать этим заболеванием, так как Y-хромосома не содержит доминантного аллеля.

Генетика крови

По системе АВ0 у людей 4 группы крови. Группа крови определяется геном I. У человека группу крови обеспечивают три гена IА, IВ, I0. Два первых кодоминантны по отношению друг к другу, и оба доминантны по отношению к третьему. В результате у человека по генетике 6 групп крови, а по физиологии — 4.

I группа 0 I0I0 гомозигота
II группа А IАIА гомозигота
IАI0 гетерозигота
III группа В IВIВ гомозигота
IВI0 гетерозигота
IV группа АВ IАIВ гетерозигота

У разных народов соотношение групп крови в популяции различно.

Распределение групп крови по системе АВ0 у разных народов,%

Народность 0 (I) A (II) B (III) AB (IV)
Австралийцы 54,3 40,3 3,8 1,6
Англичане 43,5 44,7 8,6 3,2
Арабы 44 33 17,7 5,3
Венгры 29,9 45,2 17 7,9
Голландцы 46,3 42,1 8,5 3,1
Индийцы 30,2 24,5 37,2 8,1
Китайцы 45,5 22,6 25 6,9
Русские 32,9 35,8 23,2 8,1
Японцы 31,1 36,7 22,7 9,5

Кроме того, кровь разных людей может отличаться резус-фактором. Кровь может иметь положительный резус-фактор (Rh+) или отрицательный резус-фактор (Rh). У разных народов это соотношение различается.

Распределение резус-фактора у разных народов,%

Народность Резус-положительные Резус-отрицательные
Австралийские аборигены 100 0
Американские индейцы 90–98 2–10
Арабы 72 28
Баски 64 36
Китайцы 98–100 0–2
Мексиканцы 100 0
Норвежцы 85 15
Русские 86 14
Эскимосы 99–100 0–1
Японцы 99–100 0–1

Резус-фактор крови определяет ген R. R+ дает информацию о выработке белка (резус-положительный белок), а ген R не даёт. Первый ген доминирует над вторым. Если Rh+ кровь перелить человеку с Rh кровью, то у него образуются специфические агглютинины, и повторное введение такой крови вызовет агглютинацию. Когда у Rh женщины развивается плод, унаследовавший у отца положительный резус, может возникнуть резус-конфликт. Первая беременность, как правило, заканчивается благополучно, а повторная — заболеванием ребёнка или мертворождением.

Взаимодействие генов

Генотип — это не просто механический набор генов. Это исторически сложившаяся система из взаимодействующих между собой генов. Точнее, взаимодействуют не сами гены (участки молекул ДНК), а образуемые на их основе продукты (РНК и белки).
Взаимодействовать могут как аллельные гены, так и неаллельные.
Взаимодействие аллельных генов: полное доминирование, неполное доминирование, кодоминирование.
Полное доминирование — явление, когда доминантный ген полностью подавляет работу рецессивного гена, в результате чего развивается доминантный признак.
Неполное доминирование — явление, когда доминантный ген не полностью подавляет работу рецессивного гена, в результате чего развивается промежуточный признак.
Кодоминирование (независимое проявление) — явление, когда в формировании признака у гетерозиготного организма участвуют обе аллели. У человека серией множественных аллелей представлен ген, определяющий группу крови. При этом гены, обусловливающие группы крови А и B, являются кодоминантными по отношению друг к другу, и оба доминантны по отношению к гену, определяющему группу крови 0.
Взаимодействие неаллельных генов: кооперация, комплементарность, эпистаз и полимерия.
Кооперация — явление, когда при взаимном действии двух доминантных неаллельных генов, каждый из которых имеет своё собственное фенотипическое проявление, происходит формирование нового признака.
Комплементарность — явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака.
Эпистаз — явление, когда один ген (как доминантный, так и рецессивный) подавляет действие другого (неаллельного) гена (как доминантного, так и рецессивного). Ген-подавитель (супрессор) может быть доминантным (доминантный эпистаз) или рецессивным (рецессивный эпистаз).
Полимерия — явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствует в генотипе, тем ярче проявляется признак. Явление полимерии наблюдается при наследовании количественных признаков (цвет кожи, вес тела, удойность коров).
В противоположность полимерии наблюдается такое явление, как плейотропия — множественное действие гена, когда один ген отвечает за развитие нескольких признаков.

Хромосомная теория наследственности

Основные положения хромосомной теории наследственности:

  • ведущую роль в наследственности играют хромосомы;
  • гены расположены в хромосоме в определённой линейной последовательности;
  • каждый ген расположен в определённом месте (локусе) хромосомы; аллельные гены занимают одинаковые локусы в гомологичных хромосомах;
  • гены гомологичных хромосом образуют группу сцепления; число их равно гаплоидному набору хромосом;
  • между гомологичными хромосомами возможен обмен аллельными генами (кроссинговер);
  • частота кроссинговера между генами пропорциональна расстоянию между ними.

Нехромосомное наследование

Согласно хромосомной теории наследственности ведущую роль в наследственности играют ДНК хромосом. Однако ДНК содержатся также в митохондриях, хлоропластах и в цитоплазме. Нехромосомные ДНК называются плазмидами. Клетки не имеют специальных механизмов равномерного распределения плазмид в процессе деления, поэтому одна дочерняя клетка может получить одну генетическую информацию, а вторая — совершенно другую. Наследование генов, содержащихся в плазмидах, не подчиняется менделевским закономерностям наследования, а их роль в формировании генотипа ещё мало изучена.

Генетика — наука о закономерностях наследственности и изменчивости организмов. Наследственность и изменчивость – два противоположных свойства живых организмов, неразрывно связанные между собой. Благодаря наследственности сохраняется однородность, единство вида, а изменчивость делает вид неоднородным, создаёт предпосылки для дальнейшего видообразования. Основоположник генетики – чешский учёный Грегор Мендель, опубликовавший в 1865 г. труд «Опыты над растительными гибридами». Однако датой рождения генетики как науки является 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году. Генетика – фундаментальная наука, изучающая процесс преемственности жизни на молекулярном, клеточном, организменном и популяционном уровнях. Современная генетика является научной основой для селекции, медицины, генной инженерии, основой для понимания теории эволюции.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Хромосомы

Хромосомы – нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосома эукариот образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит линейную группу множества генов. Хромосомы прокариот — это ДНК-содержащие структуры в клетке без ядра.

Хромосома – это наиболее компактная форма наследственного материала клетки (по сравнению с нитью ДНК укорочение составляет примерно 1600 раз). У большинства эукариот ДНК скручивается до такой степени только на время деления. Хромосома может быть одинарной (из одной хроматиды) и двойной (из двух хроматид). Хроматида – это нуклеопротеидная нить, половинка двойной хромосомы.

У каждой хромосомы есть центромера (первичная перетяжка). Центромера – это место соединения двух хроматид, к центромере присоединяются нити веретена деления. По сторонам от центромеры лежат плечи хромосомы. В зависимости от места расположения центромеры хромосомы делят на:

  • равноплечие (метацентрические),

  • неравноплечие (субметацентрические),

  • палочковидные (акроцентрические) – имеется только одно плечо.

Рисунок 1. Схема строения хромосомы в поздней профазе — метафазе митоза. 1 — хроматида; 2 —центромера; 3 — короткое плечо; 4 — длинное плечо.

Гомологичные хромосомы – пара хромосом приблизительно равной длины, с одинаковым положением центромеры и дающие одинаковую картину при окрашивании. Их гены в соответствующих (идентичных) локусах представляют собой аллельные гены — аллели, то есть кодируют одни и те же белки или РНК. При двуполом размножении одна гомологичная хромосома наследуется организмом от матери, а другая — от отца. Гомологичные хромосомы не идентичны друг другу. Они имеют один и тот же набор генов, однако они могут быть представлены как различными (у гетерозигот), так и одинаковыми (у гомозигот) аллелями, то есть формами одного и того же гена, ответственными за проявление различных вариантов одного и того же признака. Кроме того, в результате некоторых мутаций могут возникать гомологичные хромосомы, различающиеся наборами или расположением генов.

Хромосомы делятся на две группы: аутосомы и половые хромосомы. Аутосомы – парные хромосомы, одинаковые у мужских и женских организмов. Иными словами, кроме половых хромосом, все остальные хромосомы у раздельнополых организмов будут являться аутосомами. Половые хромосомы хромосомы, набор которых отличает мужские и женские особи. По традиции половые хромосомы в отличие от аутосом, обозначаемых порядковыми номерами, обозначаются буквами X или Y. Отсутствие половой хромосомы обозначается цифрой 0. Пол, имеющий две одинаковые половые хромосомы, продуцирует гаметы, не отличающиеся по половым хромосомам. Этот пол называется гомогаметным. У пола, определяемого набором непарных половых хромосом, половина гамет несёт одну половую хромосому, а половина гамет — другую половую хромосому. Этот пол называется гетерогаметным. У человека, как у всех млекопитающих, гомогаметный пол — женский (XX), гетерогаметный пол — мужской (XY). У птиц, напротив, гетерогаметный пол — женский (ХУ), а гомогаметный — мужской (ХХ).

Кариотип – совокупность хромосом клеток какого-либо вида растений или животных. Он характеризуется постоянным для каждого вида числом хромосом, их размеров, формы, деталей строения. Кариотип любого вида специфичен и может являться его систематическим признаком.

Рисунок 2. Кариотип мужчины.

Гены, генотип и фенотип

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность всех генов организма. Генотип – совокупность наследственных признаков и свойств, полученных особью от родителей, а также новых свойств, появившихся в результате мутаций генов, которых не было у родителей. Генотип складывается при взаимодействии двух геномов (яйцеклетки и сперматозоида) и представляет собой наследственную программу развития, являясь целостной системой, а не простой суммой отдельных генов.

Геном – совокупность генов в гаплоидном наборе хромосом данного организма. В геноме каждый ген представлен лишь одним геном из каждой аллельной пары (только доминантным или только рецессивным).

Аллель – пара генов, определяющая признак. Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом. Локус — местоположение гена в хромосоме.

Гомозигота – организм, имеющий аллельные гены одной молекулярной формы (оба доминантные или оба рецессивные).

Гетерозигота – организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Альтернативные признаки – два взаимоисключающих проявления признака (белая и пурпурная окраска цветов, жёлтая и зелёная окраска семян, гладкая и морщинистая поверхность семян, карие и голубые глаза).

Множественный аллелизм это существование в популяции более двух аллелей данного гена. Например, наследование групп крови у человека определяется тремя аллелями одного гена: I0, IA, IB.

Рисунок 3. Определение групп крови

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Чистая линия — группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В случае гена, имеющего несколько аллелей, все организмы, относящиеся к одной чистой линии, являются гомозиготными по одному и тому же аллелю данного гена. Чистыми линиями часто называют сорта растений, при самоопылении дающих генетически идентичное и морфологически сходное потомство. Аналогом чистой линии у микроорганизмов является штамм. Чистые (инбредные) линии у животных с перекрестным оплодотворением получают путём близкородственных скрещиваний в течение нескольких поколений. В результате животные, составляющие чистую линию, получают одинаковые копии хромосом каждой из гомологичных пар.

Фенотип — совокупность всех признаков и свойств организма, сложившихся в процессе индивидуального развития генотипа. Сюда относятся не только внешние признаки, но и внутренние: анатомические, физиологические, биохимические. Каждая особь имеет свои особенности внешнего вида, внутреннего строения, характера обмена веществ, функционирования органов, т. е. свой фенотип, который сформировался в определённых условиях среды.

Виды взаимодействия генов

Доминирование – форма взаимоотношений между аллелями одного гена, при которой один из них (доминантный) подавляет (маскирует) проявление другого (рецессивного) и таким образом определяет проявление признака как у доминантных гомозигот, так и у гетерозигот.

При неполном доминировании гетерозиготы имеют фенотип, промежуточный между фенотипами доминантной и рецессивной гомозиготы. Например, при скрещивании чистых линий львиного зева и многих других видов цветковых растений с пурпурными и белыми цветками особи первого поколения имеют розовые цветки.

При кодоминировании у гетерозигот признаки, за которые отвечает каждый из аллелей, проявляются одновременно и в полной мере. Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека. Всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвертая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В). При кодоминировании назвать один из аллелей доминантным, а другой — рецессивным нельзя, эти понятия теряют смысл: оба аллеля в равной степени влияют на фенотип.

Правило определения количества гамет

Количество разновидностей гамет, которые даст организм, можно посчитать по следующей формуле. Количество гамет равно 2n, где n –количество пар разнородных хромосом, содержащих гетерозиготные гены. Например, тригетерозигота АаВbСс будет давать 8 типов гамет, если гены расположены в разных парах хромосом (n = 3) и только 2 типа, если гены находятся в одной паре (n = 1).

Методы генетики

Гибридологический метод

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар —полигибридным.

Кроме гибридологического метода, в генетике используют и другие методы.

Генеалогический метод

Генеалогическийметод — составление и анализ родословных. Его применяют для определения типа наследования, изучения сцепленного наследования, определения типа взаимодействия генов. Данный метод позволяет сделать прогноз вероятности проявления изучаемого признака в потомстве и используется в медико-генетическом консультировании.

Популяционно-статистический метод

Популяционно-статистическийметод — изучение частот различных генов и генотипов в человеческих популяциях. Метод позволяет вычислить частоту встречаемости наследственных признаков, в т. ч. болезней, в различных местностях, среди разных рас и народностей, степень гетерозиготности и полиморфизма. Кроме того, метод позволяет установить особенности взаимодействия факторов, влияющих на распределение наследственных признаков, что позволяет определить адаптивную ценность конкретных генотипов.

Близнецовый метод

Близнецовый метод — изучение близнецов, сравнение частоты сходства по ряду признаков пар одно- и разнояйцевых близнецов. Близнецовый метод позволяет определить роль наследственности и среды в развитии различных признаков. Метод позволяет оценить роль генетического вклада, влияние воспитания и обучения в развитие сложных признаков.

Цитогенетический метод

Цитогенетический метод  — изучение строения и морфологических особенностей метафазных хромосом. Цитогенетический метод используется в медико-генетическом консультировании: для изучения нормального кариотипа, для точной диагностики наследственных заболеваний, вызываемых хромосомными мутациями, для определения последствий воздействия мутагенов.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний:

Р — родители;

F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1— гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1);

× — значок скрещивания;

G — гаметы;

A — доминантный ген,

а — рецессивный ген;

АА — гомозигота по доминанте,

 аа — гомозигота по рецессиву,

Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха.

Особенности гороха:

1) относительно просто выращивается и имеет короткий период развития;

2) имеет многочисленное потомство;

3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий);

4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

Первый закон Менделя:

При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

Генетическая схема закона единообразия Менделя (первый закон Менделя) (А — желтый цвет горошин, а — зеленый цвет горошин):

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;

  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;

  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением. Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

Второй закон Менделя:

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя (А — желтый цвет горошин, а — зеленый цвет горошин):

Закон чистоты гамет

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;

  2. организмы содержат два фактора, определяющих развитие признака;

  3. при образовании гамет в каждую из них попадает только один из пары факторов;

  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого».

Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А, а зеленую — а. Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А, а другого — с геном а.

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А, другая половина — ген а. Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а), 1/4 — гомозиготы по доминантному признаку (несут два гена А) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А) и гладкая форма (В) семян — доминантные признаки, зеленая окраска (а) и морщинистая форма (b) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что:

1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена);

2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании.

Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

Третий закон Менделя:

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Генетическая схема закона независимого комбинирования признаков (третьего закона Менделя):

Анализ результатов скрещивания по фенотипу:

* желтые, гладкие — 9/16,

* желтые, морщинистые — 3/16,

* зеленые, гладкие — 3/16,

* зеленые, морщинистые — 1/16.

Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу:

* AaBb — 4/16, * AABb — 2/16,

* AaBB — 2/16, * aaBb — 2/16,

* ААBB — 1/16, * Aabb — 2/16,

* ААbb — 1/16,* aaBB — 1/16,

* aabb — 1/16.

Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb. При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b, а ген а — с геном В или с геном b. Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ,Ab, aB, ab. Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

Сцепленное наследование генов

Мендель изучил наследование только семи пар признаков у душистого горошка. Его законы подтвердились на самых разных видах организмов, т. е. было признано, что эти законы носят всеобщий характер. Однако позже было замечено, что у душистого горошка два признака — форма пыльцы и окраска цветков — не дают независимого распределения в потомстве. Потомки оставались похожими на родителей. Постепенно таких исключений из третьего закона Менделя накапливалось все больше. Стало ясно, что принцип независимого распределения в потомстве и свободного комбинирования распространяется не на все гены. Действительно, у любого организма признаков очень много, а число хромосом невелико.

Число генов у каждого организма значительно превышает число хромосом. Следовательно, в каждой хромосоме должно находиться много генов. Каковы же закономерности наследования генов, локализованных в одной хромосоме? Этот вопрос был изучен американским генетиком Т. Морганом и его учениками.

Предположим, что два гена — А и В — находятся в одной хромосоме и организм, взятый для скрещивания, гетерозиготен по этим генам. В анафазе мейоза I гомологичные хромосомы расходятся в разные клетки и образуется два сорта гамет — АВ и ab (вместо четырех, как это должно быть при дигибридном скрещивании), которые повторяют комбинацию генов в хромосоме родителя. Такое отклонение от независимого распределения означает, что гены, локализованные в одной хромосоме, наследуются совместно, или сцепленно (закон Томаса Моргана или закон сцепленного наследования признаков).

Группы генов, расположенных в одной хромосоме, составляют группу сцепления. Сцепленные гены расположены в хромосомах в линейном порядке. Число групп сцепления соответствует числу пар хромосом, т.е. гаплоидному набору. Так, у человека 46 хромосом — 23 группы сцепления, у дрозофилы 8 хромосом — 4 группы сцепления.

Однако при анализе наследования сцепленных генов было установлено, что сцепление не бывает абсолютным, может нарушаться, в результате чего возникают новые гаметы и аВ Аb с новыми комбинациями генов, отличающимися от родительской гаметы. Причина нарушения сцепления и возникновения новых гамет — кроссинговер — перекрест хромосом в профазе мейоза I. Перекрест и обмен участками гомологичных хромосом приводит к возникновению качественно новых хромосом и, следовательно, к постоянной «перетасовке» — рекомбинации генов. Кроссинговер — важный источник комбинативной генетической изменчивости.

Чем дальше друг от друга расположены гены в хромосоме, тем выше вероятность перекреста между ними и тем больший процент гамет с рекомбинированными генами, а следовательно, и больший процент особей, отличных от родителей. Т. Морган и его сотрудники показали, что, изучив явление сцепления и перекреста, можно построить карты хромосом с нанесенным на них порядком расположения генов. Карты, построенные на этом принципе, созданы для многих генетически хорошо изученных организмов: человека, дрозофилы, мыши, кукурузы, гороха, пшеницы, дрожжей и др.

Генетическая карта — схема взаимного расположения структурных генов, регуляторных элементов и генетических маркеров, а также относительных расстояний между ними на хромосоме (группе сцепления).

Рисунок 4. Частичная генетическая карта 18 хромосомы человека

Хромосомная теория наследственности

Исследования Томаса Моргана легли в основу сформулированной в 1911 году хромосомной теории наследственности. Её сущность заключается в следующем:

  • основным материальным носителем наследственности являются хромосомы с локализованными в них генами;

  • гены наследственно дискретны, относительно стабильны, но при этом могут мутировать;

  • гены в хромосомах расположены линейно, каждый ген имеет определённое место (локус) в хромосоме;

  • гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются совместно;

  • число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

  • сцепление генов может нарушаться в результате кроссинговера;

  • частота кроссинговера прямо пропорциональна расстоянию между генами.

Значение этой теории заключается в том, что она дала объяснение законам Менделя, вскрыла цитологические основы наследования признаков и генетические основы теории естественного отбора.

Наследование признаков, сцепленных с полом

Признаки, гены которых находится в половых хромосомах, называется сцепленные с полом. В Y — хромосоме генов почти нет, поэтому если говорят, что признак сцеплен с полом, значит, ген находится в Х – хромосоме. У человека известно около 300 генов, находящихся в Х — хромосоме и вызывающих наследственные болезни. Почти все они рецессивны. Наиболее известны гемофилия, дальтонизм, мускульная дистрофия. Если рецессивный ген болезни сцеплен с Х — хромосомой, то носителем является женщина, а болеют чаще всего мужчины, т.к. у них этот ген находится в одинарной дозе. Доминантных Х — сцепленных заболеваний известно мало, в том числе некоторые формы рахита, нарушение пигментации кожи.

Наследственные заболевания

Определяя формирование фенотипа человека в процессе его развития, наследственность и среда играют определенную роль в развитии порока или заболевания. Вместе с тем, доля участия генетических и средовых факторов варьируется при разных состояниях. Выделяют наследственные и мультифакторные заболевания. В зависимости от степени повреждения генетического материала различают хромосомные и генные заболевания. Развитие этих заболеваний целиком обусловлено дефектностью наследственной программы, а роль среды заключается в модификации фенотипических проявлений болезни. К этой группе относят хромосомные и геномные мутации. Наследственные болезни всегда связаны с мутацией, однако фенотипические проявления последней, степень выраженности у разных особей могут различаться. В одних случаях это обусловлено дозой мутантного аллеля, в других – влиянием окружающей среды.

Мультифакторные заболевания (болезни с наследственной предрасположенностью)

В основном это болезни зрелого и преклонного возраста. Причинами их развития являются факторы окружающей среды, однако степень их реализации зависит от генной конституции организма.

Наиболее частыми наследственными заболеваниями являются следующие.

1. Болезнь Дауна. В основе болезни лежит нерасхождение по 21-й паре хромосом. Кариотип больного содержит 47 хромосом, при этом лишней оказывается хромосома 21.

2. Синдром Патау. В основе синдрома лежит нерасхождение по 13-й паре хромосом. В кариотипе больного наблюдается 47 хромосом с лишней хромосомой 13.

3. Синдром «кошачьего крика». Цитологически у всех больных обнаруживается укорочение приблизительно на треть короткого плеча одного из гомологов хромосомы 5.

4. Синдром Шерешевского – Тернера. В клетках организма больного имеется лишь одна половая хромосома Х.

5. Синдром Клайнфельтера. Больные имеют хромосомную конституцию ХХУ синдрома.

Абитуриенты, поступающие на биологические
факультеты университетов и педагогических
институтов, а также в медицинские и
сельскохозяйственное высшие учебные заведения,
нередко показывают невысокие знания по генетике
— одному из наиболее трудных, но важных разделов
школьной программы по биологии и показывают
слабое развитие компетенций третьего уровня.
Третий уровень (уровень рассуждений) от
обучающихся требует найти закономерности,
провести обобщение и объяснить или обосновать
полученные результаты. Данный вид компетенций,
по моему мнению, развивается при решении
биологических задач. Вторая часть
экзаменационной работы включает задание на
решение генетических задач.

При оформлении таких задач необходимо уметь
пользоваться символами, которые приняты в
традиционной генетике.

Символ Характеристика
женский организм
мужской организм
X знак скрещивания
Р родительские организмы
F1, F2 потомки, гибриды первого и второго
поколений
А, В, С, D… гены, которые кодируют доминантные
признаки
а, в, с, d… гены (парные, аллельные), которые
кодируют рецессивные признаки
АА, ВВ, СС, DD… генотипы моногомозиготных особей по
доминантному признаку
аа, bb, сс, dd… генотипы моногомозиготных особей по
рецессивному признаку
Аа, Bb, Сс, Dd… генотипы моногетерозиготных особей
ААВВ,ААВВСС генотипы ди- и тригомозиготных особей
АаВв, АаВвСс генотипы ди- и тригетерозиготных особей
генотипы дигетерозигот в хромосомном
виде при независимом наследовании признаков
генотипы дигетерозиготвхромосомном
виде при сцепленном наследовании признаков
А; В; С; D… AB; Ab; ABc…

или

гаметы

При решении задач по генетике необходимо
придерживаться алгоритма:

  1. Определить виды скрещивания и взаимодействий
    аллельных и неалельных генов(определить
    характер скрещивания).
  2. Определить доминантный и рецессивный
    признак(-и) по условию задачи, рисунку, схеме или
    по результатам скрещивания F( и F2.
  3. Ввести буквенные обозначения доминантного и
    рецессивного признаков, если они не даны в
    условии задачи.
  4. Записать фенотипы и генотипы родительских форм.
  5. Записать фенотипы и генотипы потомков.
  6. Составить схему скрещивания, обязательно
    указать гаметы, которые образуют родительские
    формы.
  7. Записать ответ.

При решении задач на взаимодействие
неаллельных генов необходимо:

  1. Сделать краткую запись задачи.
  2. Если признак не один, вести анализ каждого
    признака отдельно, сделав по каждому признаку
    соответствующую запись.
  3. Применить формулы моногибридного скрещивания,
    если ни одна из них не подходит, то…
  4. Сложить вес числовые показатели в потомстве,
    разделить сумму на 16, найти одну часть и выразить
    все числовые показатели в частях.
  5. Исходя из того, что расщепление в F2
    дигибридного скрещивания идёт по формуле 9А_В_ :
    3A_bb : 3 ааВ_ : l aabb, найти генотипы Fr
  6. По F2найти генотипы F,.
  7. По F. найти генотипы родителей.

Для определения характера скрещивания удобно
пользоваться общими формулами, где n — число
аллелей, пар признаков

  • Расщепление по генотипу – (3:1)n
  • Расщепление по фенотипу – (1:2:1)n
  • Количество типов гамет – 2n
  • Количество фенотипических классов — 2n
  • Количество генотипических классов — 3n
  • Число возможных комбинаций, сочетаний гамет – 4n

Вторая часть экзаменационной работы включает
задания со свободным развернутым ответом. С их
помощью наряду со знаниями проверяются умения
четко, логично и кратко письменно излагать свои
мысли, аргументировать ответ, обосновывать и
доказывать изложенные в ответе факты, правильно
делать вывод.

Вывод к задачам, в которых действует закон
единообразия гибридов первого поколения:

Единообразие гибридов первого поколения
наблюдается потому, что родители — гомозиготные,
и образуют по одному типу гамет. При слиянии
гамет (во время оплодотворения) формируются
гетерозиготные организмы (Аа). Расщеплений по
фенотипам нет. Расщепление генов во втором
поколении происходит потому, что гетерозиготные
(Аа) потомки первого поколения (F1) образуют по два
типа гамет, которые при оплодотворении
соединяются случайно.

У первого поколение (F1) формируется по одному
типу гамет

  • расщепление по генотипам нет (Аа)
  • расщепление по фенотипам нет (А)

Вывод к задачам, в которых действует закон
расщепления при моногибридном скрещивании:

Расщепление по генотипам определяется
генотипом родителей. Расщепление по фенотипам
определяется генотипами родителей и формами
взаимодействия генов: взаимодействие аллельных
генов и взаимодействие неаллельных генов

Расщепление по генотипам и фенотипам при
разных формах взаимодействия аллельных генов:

Моногибридное скрещивание с полным
доминированием:

У второго поколение (F2) формируется по два типа
гамет

  • расщепление по генотипам 1 АА : 2Аа : 1аа
  • расщепление по фенотипам 3А : 1а
  • образуется два фенотипических класса

Моногибридное скрещивание при неполном
доминировании:

У второго поколения (F2) формируется по два типа
гамет

  • расщепление по генотипам 1 АА : 2Аа : 1аа
  • расщепление по фенотипам 1 АА : 2Аа : 1аа
  • образуется три фенотипических класса,
    наблюдается проявление промежуточного признака

Моногибридное скрещивание при кодоминировании

У второго поколения (F2) формируется по два типа
гамет

  • расщепление по генотипам 1 АВАВ : 2АВАС
    : 1 АСАС
  • расщепление по фенотипам 1 В : 2ВС : 1С
  • образуется три фенотипических класса

Расщепление по генотипам и фенотипам при
разных формах взаимодействия неаллельных генов

Дигибридное скрещивание ,независимое
наследование признаков

У второго поколения (F2) формируется по четыре
типа гамет

  • расщепление по генотипам 1:2:2:1:4:1:2:2:1
  • расщепление по фенотипам 9:3:3:1
  • образуется четыре фенотипических класса,
    полное доминирование по двум парам аллелей.

Дигибридное скрещивание при комплементарном
действии генов

У второго поколения (F2) формируется по четыре
типа гамет

  • расщепление по генотипам 1:2:2:1:4:1:2:2:1
  • расщепление по фенотипам 9:7
  • образуется два фенотипических класс,
    наблюдается проявление нового признака.

Наблюдается расщепление по фенотипу 9:3:4 или 9:6:1

Дигибридное скрещивание при эпистазе (ген А-
супрессор)

У второго поколения (F2) формируется по четыре
типа гамет

  1. расщепление по генотипам 1:2:2:1:4:1:2:2:1
  2. расщепление по фенотипам 12:3:1
  3. образуется три фенотипических класса

Наблюдается расщепление по фенотипу 9:3:4 или 13:3

Дигибридное скрещивание при полимерии

У второго поколения (F2):

  • формируется по четыре типа гамет
  • расщепление по генотипам 1:2:2:1:4:1:2:2:1
  • расщепление по фенотипам 15:1
  • образуется два фенотипических класса

Наблюдается так же расщепление по фенотипу
1:4:6:4:1

Сцепленное наследование неаллельных генов

При неполном сцеплении между генами может
происходить кроссинговер (нарушение сцепления) и
дигетерозиготный организм (АаВb) продуцирует
четыре типа гамет (кросоверные и некросоверные).
Гены могут наследоваться как вместе, так и
порознь. Общее количество кросоверных гамет и
кросоверных организмов в потомстве
пропорционально расстоянию между сцепленными
генами. Некросоверных гамет в сумме больше 50%, а
кросоверных меньше 50%.

При полном сцеплении кроссинговер не
происходит, дигетерозиготный организм (АаВb)
формирует два типа гамет (по 50% некросоверных
гамет каждого типа), гены наследуются только
совместно, как один ген.

Наследование пола

Поскольку гомогаметный организм продуцирует
только один тип гамет по половым хромосомам,
гетерогаметный – два, пол потомков зависит от
того, какую половую хромосому несет гамета
гетерогаметного организма, участвующая в
оплодотворении. Вероятность рождения мальчика
равно 50%, и вероятность рождения девочки равна 50%.

Закономерность наследования генов,
локализованных в половых хромосомах
(наследование, сцепленное с полом)

Наследование генов, локализованных в половых
хромосомах, можно рассмотреть на примере
наследования генов гемофилии у человека, который
расположен в Х хромосоме. Заболевание вызывается
рецессивным аллелем. Женщина может иметь один из
трех вариантов генотипов: ХНХН, ХHXh
или XhXh . У мужчины — один из двух
вариантов генотипов XHY или XhY.

Существует несколько правил, которые помогут
учащимся в решение генетических задач.

Правило первое. Если при скрещивании двух
фенотипически одинаковых особей в их потомстве
наблюдается расщепление признаков, то эти особи
гетерозиготны.

Попробуем решить задачу, используя это правило.

Задача. При скрещивании двух
морских свинок с черной шерстью получено
потомство: 5 черных свинок и 2 белых. Каковы
генотипы родителей?

Из условия задачи нетрудно сделать вывод о том,
что черная окраска шерсти доминирует над белой, и
не потому, что в потомстве черных особей больше,
чем белых, а потому, что у родителей, имеющих
черную окраску, появились детеныши с белой
шерстью. На основе этого введем условные
обозначения: черная окраска шерсти — А, белая —
а.

Запишем условия задачи в виде схемы:

Используя названное выше правило, мы можем
сказать, что морские свинки с белой шерстью
(гомозиготные по рецессивному признаку) могли
появиться только в том случае, если их родители
были гетерозиготными. Проверим это
предположение построением схемы скрещивания:

Р Аа X Аа
G А, а;   А, а;
F1 АА;   Аа; Аа; аа

Расщепление признаков по фенотипу — 3:1. Это
соответствует условиям задачи.

Убедиться в правильности решения задачи можно
построением схем скрещивания морских свинок с
другими возможными генотипами.

Схема 1

Р АА X АА
G А;   А
F1 АА    

Схема 2

Р Аа X АА
G А а;   А
F1 АА; Аа    

В первом случае в потомстве не наблюдается
расщепления признаков ни по генотипу, ни по
фенотипу. Во втором случае генотипы особей будут
различаться, однако феиотипически они будут
одинаковыми. Оба случая противоречат условиям
задачи, следовательно, генотипы родителей — Аа;
Да.

Правило второе. Если в результате
скрещивания особей, отличающихся феиотипически
по одной паре признаков, получается потомство, у
которого наблюдается расщепление по этой же паре
признаков, то одна из родительских особей была
гетерозиготна, а другая — гомозиготна по
рецессивному признаку.

Задача. При скрещивании
вихрастой и гладкошерстной морских свинок
получено потомство: 2 гладкошерстные свинки и 3
вихрастые. Известно, что гладкошерстность
является доминантным признаком. Каковы генотипы
родителей?

Используя второе правило, мы можем сказать, что
одна свинка (вихрастая) имела генотип Аа, а другая
(гладкошерстная) — аа.

Проверим это построением схемы скрещивания:

Р Аа X аа
Г А, а; а    
F1 Аа; аа    

Расщепление по генотипу и фенотипу — 1:1, что
соответствует условиям задачи. Следовательно,
решение было правильным.

Правило третье. Если при скрещивании
феиотипически одинаковых (по одной паре
признаков) особей в первом поколении гибридов
происходит расщепление признаков на три
фенотипические группы в отношениях 1:2:1, то это
свидетельствует о неполном доминировании и о
том, что родительские особи гетерозиготны.

Задача. При скрещивании петуха и
курицы, имеющих пеструю окраску перьев, получено
потомство: 3 черных цыпленка, 7 пестрых и 2 белых.
Каковы генотипы родителей?

Согласно третьему правилу, в данном случае
родители должны быть гетерозиготными, Учитывая
это, запишем схему скрещивания:

Р Аа X Аа
G А, а; А, а    
F АА; Аа; Аа; аа    

Из записи видно, что расщепление признаков по
генотипу составляет соотношение 1:2:1. Если
предположить, что цыплята с пестрой окраской
перьев имеют генотип Аа, то половина гибридов
первого поколения должны иметь пеструю окраску.
В условиях задачи сказано, что в потомстве из 12
цыплят 7 были пестрыми, а это действительно
составляет чуть больше половины. Каковы же
генотипы черных и белых цыплят? Видимо, черные
цыплята имели генотип АА, а белые — аа, так как
черное оперение, или, точнее, наличие пигмента,
как правило, доминантный признак, а отсутствие
пигмента (белая окраска) — рецессивный признак.
Таким образом, можно сделать вывод о том, что в
данном случае черное оперение у кур неполно
доминирует над белым; гетерозиготные особи имеют
пестрое оперение.

Правило четвертое. Если при скрещивании двух
феиотипически одинаковых особей в потомстве
происходит расщепление признаков в соотношении
9:3:3:1, то исходные особи были дигетерозиготными.

Задача. При скрещивании двух
морских свинок с черной v. вихрастой шерстью
получены 10 черных свинок с вихрастой шерстью, 3
черных с гладкой шерстью, 4 белых с вихрастой
шерстью и 1 белая с гладкой шерстью. Каковы
генотипы родителей?

Итак, расщепление признаков у гибридов первого
поколения в денном случае было близко к
соотношению 9:3:3:1, т. е. к тому отношению, которое
получается при скрещивании дигетерозигот между
собой (АаВв Х АаВв, где А — черная окраска шерсти,
а — белая; В — вихрастая шерсть, в — гладкая).
Проверим это.

Р АаВв X АаВв
Г АВ, Ав, аВ, ав;   АВ, Ав, аВ, ав
F1 1 ААВВ, 2 ААВв, 2 АаВВ, 4 АаВв    
  1 ААвв, 2 Аавв, 1 ааВВ, 2 ааВв, 1 аавв    

Расщепление по фенотипу 9:3:3:1.

Решение показывает, что полученное расщепление
соответствует условиям задачи, а это значит, что
родительские особи были дигетерозиготными.

Задания второй части оцениваются от нуля до
двух баллов в зависимости от его условия. Успех
выполнения заданий с развернутым ответом во
многом зависит от правильности их выполнения и
объяснения полученных результатов(составления
схемы скрещивания, указания закона, который
проявляется в конкретном случае и приведении
доказательств.

  • Приложение 1
  • Приложение 2
  • Приложение 3
  • Приложение 4
  • Приложение 5
  • Приложение 6
  • Приложение 7
  • Приложение 8
  • Приложение 9
  • Приложение 10
  • Приложение 11
  • Приложение 12
  • Приложение 13
  • Приложение 14

На ЕГЭ по биологии вам попадается неожиданная новая задача! Вы решали много задач и не понимаете, с чего начать? Вас беспокоят типы наследования, законы наследственности и варианты записи схем задач? Вы не понимаете, как и по каким принципам текст задачи многие легко превращаются в запись генотипов? Вам неясно, как уверенно записывать каждый символ родителей и потомков?

Ниже представлены универсальные инструкции для решения всех типов задач. В них вы увидите рекомендации перейти на другие инструкции, а также единую логическую последовательность работы с каждой задачей.

Основные этапы решения задачи.

1.      Введение символики, определение типа скрещивания.

2.      Запись всех обозначений аллелей в виде признаков фенотипа, если аллели частично даны в задаче.

3.      Запись обозначений аллелей в виде признаков фенотипа, если в задаче с моногибридным скрещиванием они НЕ даны.

4.      Запись генотипов родителей и потомков в задаче с моногибридным скрещиванием, если обозначения доминантных и рецессивных аллелей явно НЕ даны.

5.      Анализ задачи с дигибридным скрещиванием в виде двух параллельных моногибридных для определения генотипов родителей.

6.      Идентификация в задачах с дигибридным скрещиванием независимого и сцепленного наследования (если о них не указано).

Очень удобно, когда все символы (аллели) в задачах даны. Я буду использовать фрагменты текста разных задач, чтобы показывать отдельные предложения в задачах и анализировать их в процессе решения задачи.

Например, как во фрагменте текста этой задачи: «У человека тёмный цвет волос (А) доминирует над светлым цветом (а), карий цвет глаз (В) — над голубым (в)…» Однако такое бывает не всегда. Много задач, в которых вам самостоятельно нужно ввести нужные символы. Часто в задаче требуется определить, за что символ (аллель) отвечает. Смотрите инструкции ниже.

Инструкция 1. Введите верные символы в задаче, если они не даны, определите тип скрещивания.

Цели инструкции 1.

1)      Введение символов в задаче (не их обозначений).
В любой задаче введите символы, даже если вы пока не уверены, что они обозначают (обозначения могут быть не даны в задаче).

2)      Почему важно ввести символы?
После этого вы сможете адекватно записать обозначения символов (конкретные признаки) и схему скрещивания. Схемы часто требуются в задаче, их проверяют. В генотипах особей может быть разное количество символов (аллелей).

3)      Определение типа скрещивания для выявления количества символов в схеме решения. Символов в ЕГЭ по биологии может быть либо 2 при моногибридном, либо 4 при дигибридном скрещивании.

Инструкция 1.1.  Определите тип наследования в задаче – сцепленное с полом, либо аутосомное.

Цели инструкции 1.1. 

1)      Вводить верные символы для сцепленного с полом и аутосомного наследования в задаче.

2)      Уметь определить, что конкретно ввести в задаче: символы сцепленного с полом наследования, символы аутосомного наследования, либо оба вида символов.

Шаги инструкции 1.1.

1.      Читайте каждое слово задачи. Определите, сказано ли в задаче о признаках, сцепленных с полом, о половой принадлежности не только родителей, но и потомков.

2.      Если об этом написано, вводите обозначение половых хромосом с индексами Ха, ХА, Y и т.п.

3.      Вот пример такой задачи. «Две красноглазые длиннокрылые особи дрозофилы при скрещивании между собой дали следующее потомство: самок: 3/4 красноглазых длиннокрылых, 1/4 красноглазых с зачаточными крыльями; самцов: 3/8 красноглазых длиннокрылых, 3/8 белоглазых длиннокрылых, 1/8 красноглазых с зачаточными крыльями, 1/8 белоглазых с зачаточными крыльями.  Объясните расщепления. Как наследуются данные признаки? Каковы генотипы родителей?»

4.      Обратите внимание, в этой задаче сказано именно о самках и самцах в потомстве. На этом сделан акцент. Явный признак сцепления с полом. Однако в этой задаче есть еще и аутосомное наследование. Как его определить, читайте ниже.

5.      Также в задаче могут писать о гемофилии и дальтонизме. Ученик должен знать, что их гены сцеплены с полом.

6.      Если в задаче ничего не сказано о сцеплении с полом, о половой принадлежности потомков, о расположении гена в Х-хромосоме, о дальтонизме, гемофилии, значит, наследование аутосомное.

7.      Вводите символы аутосомных генов, например, А, а, либо В, b.

Инструкция 1.2.  Определите количество аллелей — символов в задаче и запишите их.

1.      Если вы видите, что в задаче фигурируют только два альтернативных признака одного гена, вводите два аллеля: А и а.  

2.      Запишите эти два символа в системе «дано» к вашей задаче. Не стоит спешить ставить тире и писать обозначения к каждому символу. В разных задачах может быть не указано, что они обозначают. Не делайте ошибок заранее!

3.      Например, в задаче речь об аллелях цвета глаз. И речь о двух аллелях: один аллель отвечает за карие глаза, другой за голубые. Вы просто вводите А и а.  Даже, если не указано, что за А — аллель карих глаз, а — голубых (хотя об этом написано во многих учебниках). Пока просто напишите две аллели. Что вы должны представить визуально? Эти аллели относятся к одному гену — гену цвета глаз. Скрещивание особей, отличающихся аллелями одного гена, является моногибридным.

4.      Вот фрагмент задачи, в которой всего 2 аллели. В ней фактически через текст даны обозначения аллелей. «Женщина, носительница рецессивного гена гемофилии, вышла замуж за здорового мужчину. Составьте схему решения задачи. Обратите внимание, здесь вы вводите половые хромосомы Хd, ХD, Y. Из текста задачи вы можете вынести такое: Хd
– наличие гена гемофилии, ХD
– здоровый человек. Если женщина-носительница гена гемофилии вы ее записываете так: ХDХd. Генотип здорового мужчины: ХDY.

5.      Если в задаче два гена и у каждого по 2 аллеля, вы вводите не только А, а, но и В, b. Подобное скрещивание называется дигибридным.  Вы можете ввести и другую символику. Важно, чтобы вы видели ясный смысл, визуально представляли в задаче два гена и два аллеля каждого их этих генов.

6.      Например, в задаче о горохе вы четко увидели два гена: ген цвета семени и ген формы. Ваша цель ввести аллели. В дальнейшем, по мере решения, вы будете выяснять, за что они отвечают, если не даны. Об этих 4 аллелях написано во всех учебниках.

7.      У каждого из двух генов имеются две аллели, которые вы также должны визуально представлять. Ген цвета имеет аллель А — она отвечает за желтый цвет (первый альтернативный признак гена цвета), аллель а — за зеленый (второй альтернативный признак гена цвета). Ген формы имеет аллель В — он ответственен за гладкую форму семян (первый альтернативный признак гена формы) и аллель b, реализующий морщинистую форму (второй альтернативный признак гена формы). В задачах на ЕГЭ у вас могут быть новые неизвестные аллели и надо самостоятельно вводить обозначения. Об этом смотрите инструкцию 3 ниже.

Инструкция 2. Запишите обозначения аллелей в виде признаков фенотипа, если обозначения частично даны в задаче.

Я буду использовать фрагменты текста разных задач, чтобы показывать отдельные предложения в задачах и анализировать их в процессе решения задачи.

Задача 1.
Альбинизм (а) и фенилкетонурия (
b) — за­болевание, связанное с нарушением обмена веществ (ФКУ) — на­следуются у человека как рецессивные аутосомные несцепленные признаки.

Цели инструкции 2.

1)      Решить и записать, за какой признак фенотипа отвечает символ (аллель). Зачем? В дальнейшем это позволит вам визуально представить ясную схему решения задачи.

2)      Внимательно вынести из задачи все указанные составителями аллели с их признаками. Зачем? Чтобы верно написать в дальнейшем генотипы скрещиваемых особей.

Шаги инструкции 2.

1.      Выпишите в черновик символы аллелей и укажите, за что они отвечают. Например, а — альбинизм, b — фенилкетонурия (ФКУ).

2.      Если в задаче два гена и указаны только две аллели, а не четыре, запишите другие две аллели «от обратного». Например, в задаче выше укажите так: А — отсутствие альбинизма, B — отсутствие ФКУ.  Внимательность в обозначении аллелей имеет большое значение для правильного решения задачи.

3.      В задаче 1 фактически в условии даны два гена, у каждого по 2 аллели, значит, скрещивание дигибридное.

Инструкция 3. Запишите обозначений аллелей в виде признаков фенотипа, если в задаче с моногибридным скрещиванием они НЕ даны.

Вот пример такой задачи. Задача 2. От скрещивания комолого быка айширской породы с рогатыми коровами в F1 получили 18 телят (все комолые — безрогие), в F2 – 95. Каково количество комолых телят в F2?

Решение. Признак: наличие рогов (моногибридное скрещивание). Обозначения аллелей: D – комолые, d – рогатые.

Цели инструкции 3.

1)      Верно и быстро записывать в начале задачи фенотипические обозначения аллелей, если они не даны.

2)      Использовать данные обозначения для записи генотипов родителей и потомков.

3)      Верно оформлять схему решения задачи, ясно осознавая и записывая внизу генотипов фенотипы всех полученных особей.

Шаги инструкции 3.

1.      Используйте инструкцию только, если в задаче явно не даны фенотипические обозначения доминантных и рецессивный аллелей. Вот задача, в которой дано обозначение рецессивной аллели: «Задача 3. У человека фенилкетонурия наследуется как рецессивный признак. Определите вероятность развития заболевания у детей в семье, где оба родителя гетерозиготны по данному признаку». Для такой задачи не требуется данная инструкция. От обратного вы вводите обозначение доминантной аллели.

2.      Если в результате скрещивания появились единообразные потомки, значит, данные потомки гетерозиготны (Аа). У гетерозиготных потомков доминантная аллель соответствует их фенотипу.

3.      Вводите обозначения в начале задачи (например, D — безрогие телята), если в ней фигурируют всего два фенотипа (при неполном доминировании может появиться третий).

4.      Второй вывод: согласно 1 закону Менделя, родители гомозиготны, один по рецессивному признаку, другой по доминантному.

Инструкция 4. Верно запишите генотипы родителей и потомков в задаче с моногибридным скрещиванием, если обозначения доминантных и рецессивных аллелей явно НЕ даны.

Вот примеры задач.

Задача 4. Плоды арбуза могут иметь зеленую или полосатую окраску. Все арбузы, полученные от скрещивания растений с зелеными и полосатыми плодами, имели только зеленый цвет корки плода. Какая окраска плодов арбуза может быть в F2?

Решение. Так как в первом поколении все особи зеленые, значит А — зеленый цвет корки, а — полосатый.

1)      АА*аа. F1: Aa.

2)      Аа*Aa. F2: АА, 2Аa, аа. В это(й) схеме 3 части плодов имеют зеленую окраску, 1 часть полосатую (соотношение по фенотипу 3:1).

Задача 5. В семье, где оба родителя имели нормальный слух, родился глухой ребенок. Какой признак является доминантным? Каковы генотипы всех членов этой семьи?

Решение. Так как родители здоровы (у них родился больной ребенок), они гетерозиготны (Аа). Значит А — нормальный слух, а — полосатый. (Слух бывает полосатый?)

1)      Генотипы родителей: Аа*Аа.

2)      F1: генотипы всех членов семьи: АА, 2Aa, аа (глухой ребенок).

Задача 6. Голубоглазый мужчина женат на кареглазой женщине, родители которой были также кареглазыми, но сестра – голубоглазая. Может ли у них родиться голубоглазый ребенок? Какой закон действует в данной ситуации? Назовите и сформулируйте его. 

Решение. Так как у кареглазой женщины родители были кареглазыми, а сестра отличалась от них, и была голубоглазой, значит, родители гетерозиготны — Аа (см. пункт 3, инструкция 4). При скрещивании подобных родителей потомство, согласно 2 закону Менделя было таково: АА (кареглазый ребенок), 2Аа (кареглазый ребенок), аа (голубоглазая сестра). Соответственно, А — карие глаза, а — голубые.  Сама кареглазая женщина может иметь генотип либо АА, либо Аа.

1)      Генотипы родителей (первый вариант): аа*Аа. F1: аа (может родиться голубоглазый ребенок), Аа.

2)      Генотипы родителей (второй вариант): аа*АА. F1: Aа (все дети будут кареглазыми). В этом случае действует первый закон Менделя: при скрещивании двух гомозигот (доминантной и рецессивной) все потомство единообразно по фенотипу и гетерозиготно по генотипу.

Цели инструкции 4.

1.      Научиться верно записывать генотипы родителей и потомков в задачах с моногибридным скрещиванием.

2.      В будущем в задачах с дигибридным скрещиванием уметь видеть два параллельных моногибридных и также легко определять прежде всего генотипы родителей (если они не даны).

3.      Научиться верно отвечать на вопрос о типах наследования в задаче с моногибридным скрещиванием.

Шаги инструкции 4.

1.      Используйте инструкцию только, если в задаче явно не даны фенотипические обозначения доминантных и рецессивный аллелей.

2.      Определите, наблюдается ли при скрещивании двух фенотипически различных особей в их потомстве единообразие.

3.      При наличии единообразия, сделайте вывод, что эти особи гомозиготны, а все потомство по 1 закону Менделя гетерозиготно (смотрите задачу 4).

4.      Определите, наблюдается ли в потомстве при скрещивании двух фенотипически одинаковых особей расщепление признаков (появляются новые фенотипы у потомков).

5.      При наличии расщепления, сделайте вывод о том, что особи гетерозиготны, запишите их в схеме задачи. Соответственно, по второму закону Менделя, в потомстве будет расщепление по генотипу: АА, 2 Аа, аа 1:2:1), по фенотипу 3:1 (смотрите задачу 5).

6.      Определите, наблюдается ли в потомстве при скрещивании особей, отличающихся фенотипически по одной паре признаков (часто Аа и аа), расщепление по фенотипу по этой же паре признаков («дети абсолютно внешне похожи на родителей – Аа и аа»).

7.      При наличии такого расщепления, сделайте вывод о том, что одна из родительских особей была гетерозиготна (Аа), а другая – гомозиготна (аа) по рецессивному признаку (смотрите задачу 6).

8.      Если в задаче скрещиваются особи с одинаковым фенотипом (например, полосатые с полосатыми) и в потомстве все единообразны (полосатые), значит, родители и дети имеют абсолютно одинаковые генотипы (либо АА, либо аа).

9.      Пункты 6-8 инструкции 4 надо использовать в задачах с аутосомным наследованием.

10.    При наличии сцепленного с полом наследования по аналогии родители могут быть XAXa
и XaY. Расщепление по фенотипу по признакам, сцепленным с половой хромосомой X, в целом также будет соответствовать фенотипам родителей. Однако в потомстве возникнет своеобразное расщепление по полу. Особи разного пола смогут иметь разные варианты фенотипа каждого из двух родителей.

11.    Если в задаче с моногибридным скрещиванием спросили о типе наследования, то оно может быть либо аутосомным, либо сцепленным с полом.

12.   Для определения типа наследования смотрите инструкцию 1.1.

Инструкция 5.  Рассматривайте задачу с дигибридным скрещиванием в виде двух параллельных моногибридных для важной цели — определения генотипов родителей.

Цели инструкции 5.

1.      Получить полный визуальный обзор задачи с дигибридным скрещиваем (очень частый тип задач в ЕГЭ).

2.      Верно определять обозначения аллелей при дигибридном скрещивании, если они не даны.

3.      Верно определять и записывать генотипы родителей при дигибридном скрещивании, даже если в задаче даны обозначения аллелей.

4.      Научиться видеть в задачах с дигибридным скрещиванием не только два моногибридных скрещивания с аутосомным наследованием, но и одно с аутосомным, другое со сцепленным с полом.

Шаги инструкции 5.

1.      Определите, что в задаче рассматривается два неаллельных гена (дигибридное скрещивание).

2.      Сфокусируйтесь на фенотипах родителей по первому гену. Например, в задаче скрестили белых стелющихся растений с окрашенными кустистыми. В фенотипе белых стелющихся растений сфокусируйтесь сначала на признаке белого цвета. В фенотипе окрашенных кустистых растений сфокусируйтесь сначала на признаке окрашенности. Ваш первый фокус — на гене цвета, но не на гене формы кроны. Именно этим вы как будто выделяете первое моногибридное скрещивание в дигибридном. В гене цвета два варианта (альтернативных признака) — окрашенные и белые.

3.      Если в задаче не указано, какие аллели отвечают за какие признаки, определите это самостоятельно. Каким образом?

4.      Составьте обзорную схему задачи на черновике. Для этого фенотипы скрещиваемых особей напишите кратко словами под чертой, оставив вверху место для внесения в дальнейшем обозначений генотипов (два блока, по четыре аллели в каждом, например, АаВb* aaBb и т.д.). Ни в коем случае не пишите сразу генотипы наугад или без полной уверенности в них!

5.      При анализе фенотипов родителей обратите внимание, станет ли в потомстве любого из указанных в задаче скрещивания какой-нибудь фенотип единообразным.

6.      Лидерство одного признака среди потомков говорит нам о том, что за него отвечает доминантная аллель. Например, при скрещивании длинношерстных хомяков с короткошерстными, в первом поколении все потомки длинношерстные, значит, А — длинная шерсть, а — короткая. Такой вывод нам позволяет делать 1 закон Менделя, который мы изучаем в рамках моногибридного скрещивания. Мы можем пользоваться им и при дигибридном скрещивании, так как оно представляет собой два параллельных моногибридных.

7.      После фиксации обозначений аллелей (рекомендую записать их рядом со схемой скрещивания) досконально составьте генотипы родителей. Каким образом?

8.      Сфокусируйтесь на первом рассматриваемом гене, содержащим две аллели (например, ген цвета растения, две аллели — окрашенные и белые).

9.      Если в схеме скрещивания при анализе этого гена проявился 1 закон Менделя, сделайте вывод согласно п. 3 инструкции 4.

10.    Если в схеме скрещивания при анализе этого гена проявился 2 закон Менделя, сделайте вывод согласно п. 4-5 инструкции 4.

11.    Если родительские фенотипы различаются и в потомстве такие же по фенотипу две группы детей, используйте п. 6 и 7 инструкции 4.

12.    При наличии в схеме одинаковых по фенотипу родителей и потомков, используйте п. 8 инструкции 4.

Инструкция 6.  Идентификация в задачах с дигибридным скрещиванием независимого и сцепленного наследования (если о них не указано).

Цели инструкции 6.

1.      В любой задаче дигибридным скрещиванием легко видеть независимое или сцепленное наследование.

2.      Определять тип сцепленного наследования: сцепленное с кроссинговером или без.

3.      Различать сцепленное с полом наследование и сцепленное наследование.

Шаги инструкции 6.

1.      Введите символы в задаче, определите тип скрещивания согласно инструкциям 1 и 2.

2.      Если в задаче дигибридное скрещивание, оформите схему решения задачи согласно инструкции 5.

3.      Определите, скрещиваются ли в задаче дигетерозиготы АаВb.

4.      Выясните, в каком соотношении по фенотипу появляется потомство в задаче при скрещивании дигетерозигот между собой, либо с дигомозиготами (например, с ааbb, либо с ААbb, ааВВ).

5.      Если в задаче скрещиваются дигетерозиготы АаВb между собой и отсутствует соотношение по фенотипу 9:3:3:1 (согласно 3 закону Менделя), значит, в ней имеется сцепленное наследование, а независимое отсутствует.

6.      Если в задаче скрещиваются дигетерозиготы АаВb с дигомозиготами (например, с ааbb, либо с ААbb, ааВВ) и отсутствует соотношение по фенотипу 1:1:1:1, значит, в ней имеется сцепленное наследование, а независимое отсутствует. Соотношение по фенотипу 1:1:1:1 при подобном скрещивании будет именно при независимом наследовании.

7.      Если в задаче скрещиваются дигетерозиготы АаВb с дигомозиготами (например, с ааbb, либо с ААbb, ааВВ) и появляется соотношение по фенотипу 1:1 (две фенотипические группы), значит имеет место  сцепленное наследование без кроссинговера. Дигетерозигота АаВb дает только два сорта гамет.

8.      Если в задаче скрещиваются дигетерозиготы АаВb с дигомозиготами (например, с ааbb, либо с ААbb, ааВВ) и появляется четыре фенотипические группы в неравном соотношении (в опытах Моргана две группы в процентном соотношении были по 41.5% и две по 8.5%), значит имеет место сцепленное наследование с кроссинговером. Дигетерозигота АаВb дает четыре сорта гамет в неравном соотношении — кроссоверных гамет меньше.

9.      При сцепленном с полом наследовании ген расположен в половой хромосоме. В этом случае часто не идет речи о двух генах. В этом случае мы имеем дело совсем с другой классификацией типов наследования — по критерию расположения генов в аутосомах или половых хромосомах. В сцепленном наследовании мы чаще имеем дело с двумя неаллельными аутосомными генами, расположенными в одной паре аутосом. Однако эти неаллельные гены могут располагаться и в одной паре половых хромосом.

Get it on Apple Store

Get it on Google Play

Public user contributions licensed under
cc-wiki license with attribution required

Skolkovo resident

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Генетика кириленко егэ биология скачать
  • Генетика какие предметы сдавать егэ
  • Генетика законы менделя егэ
  • Генетика егэ ютуб
  • Генетика егэ по биологии конспект

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии