Под изменчивостью понимают способность организмов приобретать признаки и свойства, отличные от родительских, характерных для данного вида. Изменчивость
является общим свойством всех живых систем и может выражаться в изменении как генотипа, так и фенотипа.
Традиционно различают ненаследственную и наследственную изменчивость.
Модификационная изменчивость
Модификационная (фенотипическая) изменчивость — изменения фенотипа организма, обусловленные влиянием факторов внешней среды. Данный вид изменчивости не
приводит к изменениям генотипа особи — все изменения касаются только фенотипа.
Напомню, что генотипом называют генетическую конституцию — совокупность генов одного организма, полученных от родителей. Фенотип (греч. phаino — обнаруживаю) —
совокупность наблюдаемых характеристик организма (любой морфологический, гистологический, биохимический, поведенческий признак).
Для модификационной изменчивости характерен групповой характер, она часто (но не всегда) служит приспособлением к условиям внешней среды. Известным примером модификационной изменчивости является изменение окраски шерсти у зайца-беляка в зависимости от сезона года.
Такое изменение окраски делает их более приспособленными, повышает выживаемость: заяц сливается с внешней средой и становится незаметен для хищников.
Однако не стоит забывать об относительности любой приспособленности: если среда резко изменится, то белый заяц на фоне темной земли станет легкой добычей для
хищников.
Еще одним примером модификационной изменчивости служит изменение окраски шерсти у гималайских кроликов. Они рождаются полностью белыми, так как их эмбриональное
развитие протекает в условиях повышенной температуры.
Однако в результате воздействия холода на разные участки их тела, шерсть начинает темнеть. В естественных условиях шерсть темная на ушах, носе, лапах и хвосте.
В эксперименте лед привязывают к спине, и через некоторое время шерсть на этом месте начинает темнеть. Это наглядно демонстрирует влияние внешней среды на проявление
признака.
Вам известно, что человек, побывавший на солнце, получает его «отпечаток» — загар. Потемнение цвета кожи в данном случае связано с активной выработкой
пигмента меланина, который защищает кожу и внутренние органы от УФ излучения.
Загар также является типичным примером модификационной изменчивости. Одни люди загорают быстро, у других этот процесс занимает гораздо больше времени
— все дело в норме реакции.
Норма реакции
Нормой реакции называют генетически (наследственно) закрепленные пределы (границы) изменчивости признака. Принято говорить, что у каждого признака существует определенная норма реакции: она может быть узкой или широкой.
Узкая норма реакции характерна для признаков, которые относятся к качественным: форма глаза, желудка, сердца, размеры головного мозга, рост.
Количественные признаки имеют широкую норму реакцию и достаточно вариабельны в течение жизни: яйценоскость кур, удойность коров, вес, размер листьев.
Итак, подведем итоги. Для фенотипической (ненаследственной, групповой, определенной) изменчивости характерно:
- Причина изменения — влияние факторов внешней среды
- Изменения признаков организма не затрагивают генотип, происходят в соматических клетках и не передаются потомкам
- Изменение признаков ограничено в пределах нормы реакции, которая определяется генотипом
- Изменчивость носит групповой характер, характерна для многих особей (к примеру, сезонная изменчивость)
Наследственная изменчивость
Наследственная изменчивость (неопределенная, индивидуальная, генотипическая) — форма изменчивости, вызванная изменениями генотипа организма,
которые могут быть связаны с мутационной или комбинативной изменчивостью.
В отличие от модификационной изменчивости, где затрагивается только фенотип (внешние проявления), генотипическая изменчивость затрагивает генотип, а
это означает, что генетические изменения затрагивают и половые клетки, которые передаются потомству. Поэтому и называется она — наследственная.
Комбинативная изменчивость
Комбинативная изменчивость возникает в результате появления у потомков новых сочетаний генов (комбинаций). Эти комбинации возникают во время
мейоза в результате хорошо вам знакомого (я надеюсь!) кроссинговера — обмена участками между гомологичными хромосомами.
Запомните, что в основе комбинативной изменчивости лежит три краеугольных момента:
- Случайная комбинация генов в ходе кроссинговера
- Независимое расхождение хромосом в мейозе
- Случайная встреча гамет при оплодотворении
Я всегда говорю ученикам, что комбинативная изменчивость — это полная неопределенность: мы не знаем, какие комбинации возникнут между генами при кроссинговере,
не знаем, какие хромосомы образуются и в какие гаметы они разойдутся, и, наконец, не знаем какие половые клетки (гаметы) встретятся при оплодотворении.
То, что мы отличаемся от своих родителей, и есть результат этих неопределенностей.
Мутационная изменчивость
Мутационная изменчивость связана с возникновением мутаций. Мутации (лат. mutatio — изменение) — внезапные, возникающие спонтанно или вызванные мутагенами
наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.
Для того, чтобы понять суть мутационной изменчивости, давайте дадим характеристику мутациям:
- Мутации — резкие спонтанные изменения генотипа
- Стойкие, передаются потомкам через половые клетки (гаметы)
- Ненаправленные. Большинство мутаций — вредные (часть из них летальные), лишь очень небольшая часть носит полезный приспособительный характер, мутации также могут быть безразличными (нейтральными) для организма
- Носят индивидуальный характер
Среди мутаций различают следующие виды:
- Генные (точечные)
- Хромосомные
- Геномные мутации
- Автополиплоидию — кратное увеличение числа наборов хромосом
- Аллополиплоидия (греч. állos — другой и polýploos — многократный) — объединение в организме хромосомных наборов от разных видов или родов
- Анеуплоидия (греч. ἀν- — отрицательная приставка + εὖ — полностью + πλόος — кратный + εἶδος — вид
Изменения при генных мутациях происходят в последовательности нуклеотидов молекулы ДНК. Может случаться такое, что один или несколько
нуклеотидов выпадают из ДНК (делеция), вставляются новые нуклеотиды, удваиваются имеющиеся нуклеотиды (дупликация).
Изменения ДНК ведут к тому, что в результате на рибосомах синтезируется белок с иной аминокислотной последовательностью. К примеру:
изначально триплет ДНК «ТАЦ» кодировал аминокислоту «Мет», нуклеотид «Т» выпал из триплета произошла вставка нуклеотида «Г». В результате
вместо аминокислоты «Мет» теперь синтезируется аминокислота Вал.
Новые аминокислоты могут поменять свойства белка, так что признак, за который он отвечает, будет меняться. Только что вы узнали об универсальной
схеме — изменении фенотипа в результате изменений генотипа.
В результате хромосомных мутаций происходят структурные изменения хромосом (не следует путать с кроссинговером, который происходит в норме
и подразумевает обмен участками между гомологичными хромосомами). Последствия хромосомных мутаций часто оказываются летальны.
В результате таких мутаций может происходить утрата (делеция) участка хромосомы, его удвоение (дупликация), поворот на 180° (инверсия),
перенос участка одной хромосомы на другую (транслокация), перенос участка внутри одной хромосомы (транспозиция).
Данный тип мутаций проявляется в изменении числа хромосом. Выделяют:
В результате таких мутаций количество хромосом увеличивается в кратное количество раз (2,3,4 и т.д.). В результате получаются организмы триплоиды, тетраплоиды и т.д. Иногда такие мутации вызывают искусственно, к примеру, в селекции растений. Известно, что у полиплоидов
более крупные и сочные плоды.
В селекции полиплоидию у растений вызывают добавлением специального химического вещества — колхицина, который блокирует образование
нитей веретена деления. Вследствие этого хромосомы не расходятся и остаются в одной клетке — набор хромосом увеличивается в 2 раза.
Имеет значение в процессе видообразования. Примером данной мутации может послужить отдаленная гибридизация (аутбридинг) пшеницы и
ржи. Их генотип состоит из гаплоидного набора пшеницы (n) и гаплоидного набора ржи (m).
В результате такого скрещивания в 1875 году в Шотландии был получен первый искусственный стерильный гибрид — тритикале. Тритикале дает отличный урожай, в дальнейшем путем полиплоидии стерильность данного гибрида была преодолена.
Также примером отдаленной гибридизации, соответственно и аллополиплоидии, является гибрид осла (самца) и лошади (самки) — мул. Это животное отличается большой выносливостью, но опять-таки бесплодное вследствие геномной мутации.
Анеуплоидия — изменение кариотипа (совокупность признаков хромосом), при котором число хромосом в клетках не кратно
гаплоидному набору (n). Таким образом, в результате анеуплоидии отсутствует одна (или несколько) хромосом, либо же хромосомы имеются в избытке («лишние» хромосомы).
В случае отсутствия в хромосомном наборе одной хромосомы говорят о моносомии, двух хромосом — нуллисомии. Если к паре хромосом
добавляется одна лишняя, говорят о трисомии.
Наследственные болезни, в том числе связанные с геномными мутациями: синдром Шерешевского-Тёрнера, Дауна — мы более детально обсудим
в следующей статье, которая посвящена наследственным заболеваниям.
Раз уж мы затронули аутбридинг, то следует коснуться явления инбридинга и гетерозиса для их полного понимания.
Инбридинг (англ. in — в, внутри + breeding — разведение) — скрещивание близкородственных форм, в результате которого в ряду
поколений увеличивается гомозиготность. С помощью инбридинга выводят чистые линии (AA, aa, BB, bb). Однако известно, что близкородственное
скрещивание может приводить к проявлению рецессивных генов заболеваний и ослаблению потомства.
Гетерозис (греч. ἕτερος — другой + -ωσις — состояние) — явление увеличения жизнеспособности гибридов, вследствие унаследования ими различных
вариантов аллельных генов от своих разнородных родителей. Увеличение жизнеспособности связывают с переходом генов в гетерозиготное состояние.
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
в условии
в решении
в тексте к заданию
в атрибутах
Категория:
Атрибут:
Всего: 388 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Найдите три ошибки в приведённом тексте «Мутации». Укажите номера предложений, в которых сделаны ошибки, исправьте их.
(1)Мутационная изменчивость — один из способов увеличения генетического разнообразия популяции. (2)К мутациям относят редкие случайные изменения генетического материала, происходящие сразу в нескольких клетках организма. (3)Генными называют мутации, связанные с изменением нуклеотидной последовательности одного конкретного гена. (4)Хромосомные мутации — это мутации, затрагивающие целые хромосомы и меняющие их число. (5)К геномным мутациям относят такие явления, как полиплоидию и анеуплоидию. (6)В течение жизни в клетках человека происходит множество мутаций, однако большинство из них не передаются потомкам. (7)Потомкам могут передаться только мутации, происходящие в соматических клетках.
Установите соответствие между примерами и видами мутаций: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ПРИМЕРЫ
А) разворот участка хромосомы
Б) удвоение одной из хромосом
В) нерасхождение хромосом в мейозе
Г) рождение ребёнка с трисомией XXY
Д) полиплоидия
Е) обмен участками между негомологичными хромосомами
ВИДЫ МУТАЦИЙ
1) хромосомные
2) геномные
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д | Е |
Найдите три ошибки в приведённом тексте. Укажите номера предложений, в которых сделаны ошибки, исправьте их.
1. Мутации – это случайно возникшие стойкие изменения генотипа организма. 2. Генные или точковые мутации связаны с изменением последовательности нуклеотидов в молекуле ДНК. 3. Хромосомные мутации — наиболее часто встречающийся класс мутационных изменений. 4. Хромосомными называют мутации, приводящие к изменению числа хромосом. 5. Появление геномных мутаций всегда связано с возникновением двух или более разрывов хромосом с последующим их соединением, но в неправильном порядке. 6. Наиболее распространённым типом геномных мутаций является полиплоидия – кратное изменение числа хромосом.
Найдите три ошибки в приведённом тексте «Хромосомные мутации». Укажите номера предложений, в которых сделаны ошибки, исправьте их.
(1)Хромосомные мутации — это перестройки хромосом. (2)Появление хромосомных мутаций связано с делецией, дупликацией, инверсией или транслокацией в хромосомах. (3)Часто причиной хромосомных мутаций может быть случайное сочетание хромосом при оплодотворении. (4)Хромосомные мутации называют точковыми. (5)Вследствие хромосомной мутации образуются новые аллели генов. (6)Хромосомные мутации относят к генотипической изменчивости.
Раздел: Основы генетики
Получение селекционерами сортов полиплоидной пшеницы возможно благодаря мутации
Значение рецессивных мутаций в эволюционном процессе состоит в том, что они
1) являются скрытым резервом наследственной изменчивости
2) проявляются всегда у организмов в первом поколении
3) уменьшают генетическую неоднородность особей в популяции
4) затрагивают только гены соматических клеток тела
Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Сибирь. Вариант 3.
Установите соответствие между примерами и видами мутаций: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ПРИМЕРЫ
А) однонуклеотидная замена
Б) перенос участка на негомологичную хромосому
В) замена триплета в гене
Г) удвоение участка хромосомы, содержащего три гена
Д) вставка двух нуклеотидов
Е) удвоение участка гена
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д | Е |
Установите соответствие между характеристикой мутации и ее типом.
ХАРАКТЕРИСТИКА
А) включение двух лишних нуклеотидов в молекулу ДНК
Б) кратное увеличение числа хромосом в гаплоидной клетке
В) нарушение последовательности аминокислот в молекуле белка
Г) поворот участка хромосомы на 180 градусов
Д) уменьшение числа хромосом в соматической клетке
Е) обмен участками негомологичных хромосом
ТИП МУТАЦИИ
1) хромосомная
2) генная
3) геномная
Запишите в таблицу выбранные цифры под соответствующими буквами.
A | Б | В | Г | Д | Е |
Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они допущены, исправьте их.
1. Мутациями называются наследственные изменения в молекулах РНК.
2. Есть много разных видов мутаций – генные, хромосомные, комбинативные, геномные. 3. Мутация, возникшая в одной из соматических клеток, может изменить наследственные признаки самой этой клетки и тех частей организма, которые образуются из её потомков. 4. Мутации, происходящие в половых клетках, изменяют только геномы потомков. 5. Вызываются мутации мутагенами – например, радиоактивным излучением, химическими веществами. 6. Небольшое число мутаций оказывается полезным для организмов.
Установите соответствие между характеристикой мутации и её видом.
ХАРАКТЕРИСТИКА
A) изменение последовательности нуклеотидов в молекуле ДНК
Б) изменение строения хромосом
B) изменение числа хромосом в ядре
Г) полиплоидия
Д) изменение последовательности расположения генов
ВИД МУТАЦИИ
1) генная
2) хромосомная
3) геномная
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
A | Б | В | Г | Д |
Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Сибирь. Вариант 4.
Выберите два верных ответа из пяти. Соматические мутации у позвоночных животных
1) формируются в гаметах
2) передаются следующему поколению
3) возникают в клетках органов тела
4) обусловлены нарушением обмена веществ
5) не передаются потомству
Источник: РЕШУ ЕГЭ
Найдите три ошибки в тексте «Наследственная изменчивость». Укажите номера предложений, в которых сделаны ошибки, исправьте их. Дайте правильную формулировку.
(1) Генотипическую изменчивость подразделяют на мутационную (генная, хромосомная, геномная) и комбинативную. (2) Генные мутации связаны с изменением последовательности нуклеотидов в молекулах нуклеиновых кислот. (3) Появление хромосомных мутаций связано с потерей, переносом, поворотам или удвоением участков в хромосомах. (4) В световой микроскоп можно увидеть генные и хромосомные мутации. (5) К хромосомным мутациям относят полиплоидию. (6) Геномные мутации характеризуются изменением количества хромосом в кариотипе.(7) Независимое расхождение хромосом в профазе I мейоза, рекомбинация генов при кроссинговере, случайная встреча гамет при оплодотворении — процессы, лежащие в основе комбинативной изменчивости.
Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи
Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.
1. Все организмы обладают наследственностью и изменчивостью.
2. Мутации – это случайно возникшие стойкие изменения генотипа, затрагивающие целые хромосомы, их части или отдельные гены.
3. Изменения, связанные с удвоением какого-либо нуклеотида в гене, относят к геномным мутациям.
4. Внутрихромосомные перестройки могут быть связаны с удвоением гена.
5. Если в клетке происходит изменение числа хромосом, то такие мутации называют генными.
6. Мутации всегда полезны организму.
Рассмотрите таблицу «Виды мутаций» и заполните пустую ячейку, вписав соответствующий термин.
Вид мутации | Признак мутации |
---|---|
Замена одного нуклеотида в молекуле ДНК | |
Геномная | Нерасхождение хромосом в мейозе |
Почему мутации называют одной из движущих сил эволюции? В каких случаях генная мутация, произошедшая в ядре половой клетки, не проявится в фенотипе и не повлияет на жизнеспособность организма, а следовательно, не окажет влияния на ход естественного отбора в популяции?
Изменение последовательности нуклеотидов в молекуле ДНК — это мутация
Выберите два верных ответа из пяти. Какие изменения в организме собаки Жучки могут привести к генетическим изменениям в организмах ее щенков?
1) модификации, возникшие у Жучки после ee рождения
2) мутации в соматических клетках Жучки
3) мутации в половых клетках Жучки
4) новые условные рефлексы, выработанные у Жучки
5) мутации в яйцеклетках Жучки
Источник: РЕШУ ЕГЭ
Мутации ведут к изменению
1) первичной структуры белка
2) этапов оплодотворения
3) генофонда популяции
4) нормы реакции признака
5) последовательности фаз митоза
6) полового состава популяции
Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Дальний Восток. Вариант 3.
Установите правильную последовательность возникновения приспособлений организма к окружающей среде.
1) возникновение мутации
2) влияние фактора внешней среды
3) внешнее проявление признака
4) передача мутации потомству
5) сохранение и усиление признака естественным отбором
6) появление приспособлений
Установите правильную последовательность появления адаптаций к условиям окружающей среды
А) фенотипическое проявление мутаций
Б) естественный отбор признака
В) появление рецессивной мутации у ряда особей популяции
Г) возникновение адаптации
Д) скрещивание особей-носителей мутации
Источник: Диагностическая работа по биологии 06.04.2011 Вариант 2.
Всего: 388 1–20 | 21–40 | 41–60 | 61–80 …
Мутации
Автор статьи — Л.В. Окольнова.
Сразу на ум приходят Люди Х… или Человек — Паук …
Но это в кино, в биологии тоже так, но немного более научно, менее фантастично и более обыденно.
Мута́ция (в переводе — изменение) — устойчивое, передающееся по наследству изменение ДНК, происходящее под влиянием внешних или внутренних изменений.
Мутагенез — процесс появления мутаций.
Обыденность в том, что эти изменения (мутации) происходят в природе и у человека постоянно, почти каждодневно.
В первую очередь, мутации подразделяются на соматические — возникают в клетках тела, и генеративные — появляются только в гаметах.
Соматические мутации |
Генеративные мутации |
Не всегда передаются при половом размножении.
Передаются при вегетативном (бесполом размножении). |
Передаются по наследству. |
Разберем сначала виды генеративных мутаций.
Генные мутации
Что такое ген? Это участок ДНК (т.е. несколько нуклеотидов), соответственно, это и участок РНК, и участок белка, и какой-либо признак организма.
Т.е. генная мутация — это выпадение, замена, вставка, удвоение, изменение последовательности участков ДНК.
Вообще, это не всегда ведет к болезни. Например, при удвоении ДНК случаются такие “ошибки”. Но они возникают редко, это очень малый процент от всего количества, поэтому они незначительны, что практически не влияют на организм.
Бывают и серьезные мутагенезы:
— серповидно-клеточная анемия у человека;
— фенилкетонурия — нарушение обмена веществ, вызывающее довольно серьезные нарушения умственного развития
— гемофилия
— гигантизм у растений
Геномные мутации
Вот классическое определение термина “геном”:
Геном—
— совокупность наследственного материала, заключенного в клетке организма;
— геном человека и геномы всех остальных клеточных форм жизни, построены из ДНК;
— совокупность генетического материала гаплоидного набора хромосом данного вида в парах нуклеотидов ДНК на гаплоидный геном.
Для понимания сути мы очень сильно упростим, получится такое определение:
Геном — это количество хромосом
Геномные мутации — изменение числа хромосом организма. В основном, их причина — нестандартное расхождение хромосом в процессе деления.
— синдром Дауна — в норме у человека 46 хромосом (23 пары), однако при этой мутации образуются 47 хромосом
рис. синдром Дауна
— полиплойдия у растений (для растений это вообще норма — большинство культурный растений — полиплойдные мутанты)
Хромосомные мутации — деформации самих хромосом.
Примеры (некоторые перестройки такого рода есть у большинства людей и вообще никак не отражаются ни внешне, ни на здоровье, но есть и неприятные мутации):
— синдром кошачьего крика у ребенка
— задержка в развитии
и т.д.
Цитоплазматические мутации — мутации в ДНК митохондрий и хлоропластов.
Есть 2 органеллы со своими собственными ДНК (кольцевыми, в то время как в ядре — двойная спираль) — митохондрия и растительные пластиды.
Соответственно, есть мутации, вызванные изменениями именно в этих структурах.
Есть интересная особенность — этот вид мутации передается только женским полом, т.к. при образовании зиготы остаются только материнские митохондрии, а “мужские” отваливаются с хвостом при оплодотворении.
Примеры:
— у человека — определенная форма сахарного диабета, туннельное зрение;
— у растений — пестролистность.
Соматические мутации.
Это все описанные выше виды, но возникают они в клетках тела ( в соматических клетках).
Мутантных клеток обычно намного меньше, чем нормальных, и они подавляются здоровыми клетками. (Если не подавляются, то организм перерождаться или болеть).
Примеры:
— у дрозофилы глаз красный, но может иметь белые фасеты
— у растения это может быть целый побег, отличающийся от других (И.В. Мичурин таким образом выводил новые сорта яблок).
— раковые клетки у человека
Примеры вопросов ЕГЭ:
Синдром Дауна является результатом мутации
1))геномной;
2) цитоплазматической;
3)хромосомной;
4) рецессивной.
Ответ: 1.
Генные мутации связаны с изменением
А) числа хромосом в клетках;
Б) структуры хромосом;
B) последовательности генов в аутосоме;
Г) нуклеогидов на участке ДНК.
Ответ: Г.
Мутации, связанные с обменом участками негомологичных хромосом, относят к
А) хромосомным;
Б) геномным;
В) точковым;
Г) генным.
Ответ: А.
Животное, в потомстве которого может появиться признак, обусловленный соматической мутацией
А) гидра
Б) волк
В) еж
Г) выдра
Ответ: А.
Если вам понравился наши материалы на тему «Мутации» — записывайтесь на курсы подготовки к ЕГЭ по биологии онлайн
Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Мутации» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
08.03.2023
Наследственность и изменчивость — свойства организмов
Наследственность — это способность организмов передавать свои признаки и свойства в ряду поколений.
Изменчивость — свойство организмов приобретать новые признаки в течение жизни.
Признаки — это любые морфологические, физиологические, биохимические и иные особенности организмов, по которым одни из них отличаются от других, например цвет глаз. Свойствами же называют любые функциональные особенности организмов, в основе которых лежит определенный структурный признак или группа элементарных признаков.
Признаки организмов можно разделить на качественные и количественные. Качественные признаки имеют два-три контрастных проявления, которые называют альтернативными признаками, например голубой и карий цвет глаз, тогда как количественные (удойность коров, урожайность пшеницы) не имеют четко выраженных различий.
Материальным носителем наследственности является ДНК. У эукариот различают два типа наследственности: генотипическую и цитоплазматическую. Носители генотипической наследственности локализованы в ядре и далее речь пойдет именно о ней, а носителями цитоплазматической наследственности являются находящиеся в митохондриях и пластидах кольцевые молекулы ДНК. Цитоплазматическая наследственность передается в основном с яйцеклеткой, поэтому называется также материнской.
В митохондриях клеток человека локализовано небольшое количество генов, однако их изменение может оказывать существенное влияние на развитие организма, например приводить к развитию слепоты или постепенному снижению подвижности. Пластиды играют не менее важную роль в жизни растений. Так, в некоторых участках листа могут присутствовать бесхлорофильные клетки, что приводит, с одной стороны, к снижению продуктивности растения, а с другой — такие пестролистные организмы ценятся в декоративном озеленении. Воспроизводятся такие экземпляры в основном бесполым способом, так как при половом размножении чаще получаются обычные зеленые растения.
Наследственные болезни человека, их причины, профилактика
Наследственные болезни составляют большую группу заболеваний, связанных с изменением генетической информации. По характеру их возникновения выделяют генные и хромосомные болезни, болезни несовместимости матери и плода, а также болезни с наследственной предрасположенностью.
Генные болезни обусловлены генными мутациями, возникшими как сотни лет назад и передающимися из поколения в поколение, так и недавно, в гаметах одного из родителей. Характерным примером такого рода заболеваний является «королевская» гемофилия, поразившая за столетие все монархии Европы. Несмотря на то, что в роду королевы Виктории не зафиксировано ни одного случая этой болезни, один из ее сыновей был болен, а две дочери стали носительницами гена. К генным заболеваниям относятся болезни обмена веществ (фенилкетонурия, глицинемия) и не связанные с ним аномалии (серповидноклеточная анемия, арахнодактилия). Вероятность проявления у детей генных заболеваний сильно повышается при близкородственных браках.
Хромосомные болезни обусловлены изменением структуры хромосом или их числа (хромосомные и геномные мутации), например, синдромы Дауна, Шерешевского – Тернера и Клайнфельтера. Синдром Дауна вызван наличием трех хромосом в 21-й паре. Он сопровождается не только задержкой в развитии ребенка, но и патологиями многих внутренних органов.
Синдром Шерешевского – Тернера (45, Х0), обусловленный недостатком одной половой хромосомы, негативно влияет на фенотип женщины с такой болезнью, которая, помимо низкого роста, может иметь патологии половой сферы и других органов.
Синдром Клайнфельтера связан с наличием лишней X-хромосомы в кариотипе (47, XXY). По фенотипу это высокий мужчина с телосложением по женскому типу, патологиями развития половых органов и их функционирования.
Рождение детей с вышеперечисленными хромосомными аномалиями может быть обусловлено вредными привычками, неблагоприятным состоянием окружающей среды и возрастом родителей.
Болезни несовместимости матери и плода являются следствием иммунологического конфликта, как, например, в случае резус-конфликта, который возникает, когда резус-отрицательная женщина вступает в брак с резус-положительным мужчиной, и у плода при этом резус будет положительным. Резус-конфликт может быть причиной гибели плода или рождения ребенка с серьезными патологиями нервной и других систем организма.
Болезни с наследственной предрасположенностью могут проявляться не сразу после рождения, а только через некоторое время, поскольку для активации соответствующих генов нужен целый комплекс факторов, в том числе характер питания и образ жизни человека. К таким заболеваниям относятся сахарный диабет и подагра.
Защита окружающей среды от загрязнения и ужесточение контроля за исполнением соответствующих решений, проверка поступающих на рынок продуктов питания, лекарственных препаратов и товаров бытового назначения на мутагенное и канцерогенное действие — необходимые меры по снижению частоты наследственных заболеваний у человека.
Не менее значимым для профилактики этой группы болезней является отсутствие у родителей вредных привычек, а также медико-генетическое консультирование супругов, в ходе которого можно не только определить вероятность рождения ребенка с отклонениями, но и скорректировать ход развития уже родившегося малыша.
Вредное влияние мутагенов, алкоголя, наркотиков, никотина на генетический аппарат клетки
Как физические, так и химические мутагены негативно влияют не только на саму материальную основу наследственности — ДНК, вызывая ее разрывы, перестройки и замещение одних нуклеотидов другими, но и подавляют активность ферментов репарации ДНК. Некоторые из этих веществ способны разрушать микротрубочки веретена деления и приводить к неправильному расхождению хромосом при митозе и мейозе. Вызванные таким образом мутации могут приводить к развитию у живущих особей раковых заболеваний, а у их потомков — наследственных заболеваний, таких как синдром Дауна.
Особую опасность для окружающих представляет курение, поскольку большая часть вредных веществ оседает не в легких курильщика, а в легких других людей, которых называют «пассивными курильщиками». Среди этих веществ содержатся многие канцерогенные (вызывающие рак) соединения, а также ионы тяжелых металлов.
Защита среды от загрязнения мутагенами
На современном этапе развития общества практически немыслим отказ от химической промышленности, интенсивных технологий в сельском хозяйстве, атомной энергетики и других источников мутагенов, однако степень загрязнения среды достигла такого критического уровня, что даже льды Антарктиды подвержены результатам хозяйственной деятельности человека. Это приводит не только к усилению процесса мутагенеза, но и к ухудшению состояния здоровья. Поэтому становятся все более актуальными вопросы очистки окружающей среды от загрязнения мутагенами. Для этого на государственном уровне устанавливаются предельные нормативы загрязнения вредными выбросами и отходами производства атмосферы, воды и почвы, а также значительные штрафные санкции за нарушение данных норм. В ряде стран мира вводятся даже ограничения на въезд в центр городов автомобилей и на курение в общественных местах, запрещается реклама продукции табачной и ликеро-водочной промышленности, проводятся интенсивные агитационные кампании по борьбе с курением и употреблением наркотиков.
Кроме того, вся продукция, поступающая на рынок, проверяется на соответствие установленным нормам содержания вредных веществ и изымается из продажи в случае нарушения данных норм. Постоянно контролируется и уровень загрязнения воды, атмосферы и почвы в крупных городах, а в случаях аварий проводится быстрая очистка окружающей среды от загрязнения с целью недопущения ухудшения условий жизни населения и нарушения экологического баланса. Например, после крушения в результате шторма десятка судов в Керченском проливе были собраны и откачаны более 1500 тонн мазута, которые уже вызвали гибель многих тысяч водоплавающих птиц и рыбы, но тем самым был предотвращен еще более существенный ущерб окружающей среде.
Выявление источников мутагенов в окружающей среде (косвенно) и оценка возможных последствий
их влияния на организм человека
При всем разнообразии мутагенов существует только три основных пути их проникновения в тело человека: через дыхательные пути с воздухом, через пищеварительную систему с водой и пищей, а также через кожу. В связи с этим можно провести поиск источников мутагенов по тем средам, которые они загрязняют: воздух, вода и почва.
Загрязнение атмосферы осуществляется в основном автотранспортом и промышленными предприятиями. Его можно обнаружить по угнетению растительности вдоль автодорог, по быстро образующемуся слою пыли на окружающих предметах, по неприятному запаху. Определенную трудность в идентификации представляют некоторые источники ионизирующего и других видов излучения, например электромагнитного (станции мобильной связи, мобильные телефоны, мониторы телевизоров и компьютеров и т. д.), однако, например, в районе высоковольтных линий зачастую наблюдается либо угнетение, либо усиленный рост растений. Существенную угрозу жизни и здоровью окружающих представляют и курильщики, поэтому места, где они собираются, могут быть источниками химических мутагенов.
Выбросы загрязняющих веществ в водную среду могут приводить к изменению цвета воды, ее прозрачности, запаха и вкуса. Кроме того, в воде может наблюдаться усиленный рост водорослей («цветение» воды) с последующим замором рыбы и появлением гнилостного запаха.
Загрязнение почвы приводит чаще всего к тому, что нарушаются нормальные процессы роста и развития растений, появляются разнообразные уродства, меняется также видовой состав флоры. Например, всхожесть черной редьки на загрязненных территориях гораздо ниже, чем на незагрязненных. Отличается на таких территориях и видовой состав животного мира. Так, индикаторным видом является дождевой червь — он исчезает при увеличении степени загрязнения.
В зависимости от выявленных источников загрязнения определяют характер загрязнения и его степень, что может служить основанием для прогноза развития различных заболеваний (респираторных, аллергических, раковых и др.), а также мутагенного эффекта.
Генотипические мутации
Ключевые слова: Генотипические мутации; генные (точковые), хромосомные, геномные; хромосомные перестройки (аберрации): делеция, дупликация, транслокация, инверсия; геномные мутации: полиплоидия, анеуплоидия (гетероплоидия).
Раздел ЕГЭ: 3.6. … Виды мутаций и их причины.
В предыдущем конспекте были рассмотрены почти все виды мутаций: 1) по характеру изменения фенотипа (биохимические, физиологические, анатомо-морфологические; 2) по степени приспособленности (полезные и вредные); 3) по направленности мутации (прямые и обратные); 4) по способу возникновения (спонтанные и индуцированные); 5) по локализации в клетке (ядерные и цитоплазматические); 6) в зависимости от типа клеток (половые и соматические). Осталось рассмотреть классификацию по характеру изменения генотипа — генотипические мутации.
Все мутации так или иначе связаны с изменениями генотипа организма. Они затрагивают хромосомный аппарат клетки. Наиболее часто мутации происходят в самих клетках и не связаны с изменениями внешней структуры хромосом. По характеру изменения генотипа различают генные, хромосомные и геномные мутации. Рассмотрим их.
Генные мутации
Качественные перестройки отдельных генов, связанные с изменениями в структуре молекулы ДНК, называют генными мутациями. В результате генных мутаций происходят изменения в единичных нуклеотидах ДНК, поэтому такие мутации иначе называют точковыми. Они приводят к образованию аномального гена, а следовательно, и аномальной структуры белка, что вызывает развитие аномального признака.
Генная мутация — это результат «ошибки» при репликации ДНК. Эти «ошибки» могут быть разными. В случаях добавления или выпадения одного нуклеотида сдвигается вся рамка считывания генетического кода, что может привести к изменению всей последующей структуры гена. В результате изменится вся структура белка и возникнет совершенно новый белок, а значит, и признак. При замене одного нуклеотида на другой структура гена в целом меняется мало, а в белке одна аминокислота может замениться на другую. В этом случае возникает новая модификация белковой молекулы.
Схема возможных вариантов мутаций в ДНК: 1 — нормальный ген; 2 — добавление лишнего нуклеотида; 3 — выпадение одного нуклеотида; 4 — замена одного нуклеотида другим
Результатами генных мутаций у человека являются такие заболевания, как серповидно-клеточная анемия, фенилкетонурия, дальтонизм, гемофилия, альбинизм. При серповидно-клеточной анемии происходит замена одного нуклеотида, в результате чего в одной из цепей гемоглобина аминокислота глутамин заменяется на валин. Это, казалось бы, ничтожное изменение приводит к деформации эритроцитов, которые, приобретая форму серпа, уже не способны транспортировать кислород.
Вследствие генной мутации возникают новые аллели генов, что имеет значение для появления нового признака у организма.
Проявление генных мутаций
Наиболее часто в природе встречаются именно генные мутации. Рассмотрим их проявление на примере генетического кода.
Известно, что код триплетен, каждая тройка нуклеотидов соответствует одной аминокислоте. В целом определённый набор аминокислот соответствует молекуле одного белка, и от их состава и последовательности зависят свойства этого белка. Для наглядности представим, что буквы алфавита — это нуклеотиды, а каждые три буквы, составляющие слово, — это одна аминокислота. Соединяя трёхбуквенные слова, мы получим предложение — белок. Например, возьмём такое исходное предложение (белок) — дым был сер. В этом предложении три слова, значит, в нашем случае три аминокислоты. Запишем его без пропусков между словами: дымбылсер. Тем не менее, зная, что каждое слово состоит из трёх букв, мы можем прочитать предложение правильно. Теперь представим, что один нуклеотид заменился на другой: например, букву ы в первом слове заменили на букву о. Теперь получается предложение — домбылсер. Зная трёхбуквенный код, мы опять его можем прочитать: дом был сер. Предложение тоже имеет смысл, но уже другой. Произошла замена одного слова на другое. В нашем варианте одна аминокислота заменяется другой и получается опять белок, но уже другого качества. Замена одного нуклеотида на другой приводит к образованию качественно иного белка.
Теперь рассмотрим другой вариант — выпадение одного нуклеотида. Уберём букву м в исходном предложении. У нас получится: дыбылсер. Зная трёхбуквенный код, попробуем прочитать предложение: дыб ылс ер. Предложение бессмысленно. Потеря нуклеотида существенно меняет всю структуру гена. Происходит смещение рамки считывания генетического кода, и теперь либо вообще теряется весь белок, либо он становится другим.
Хромосомные мутации
Это изменения структуры, размеров хромосом, которые иначе называют хромосомными перестройками или аберрациями. Хромосомные мутации затрагивают сразу несколько генов. Их можно наблюдать в световой микроскоп, так как изменяется общий вид хромосомы.
Известны следующие виды хромосомных перестроек:
- 1) делеция — потеря участка хромосомы в результате отрыва её части; при этом сохраняется её центромера, однако теряется часть генов;
- 2) дупликация — удвоение генов в определённом участке хромосомы, при котором один участок хромосомы представлен более одного раза;
- 3) транслокация — межхромосомные перестройки, связанные с переносом части генов на другую негомологичную хромосому; результатом является изменение группы сцепления генов;
- 4) инверсия — поворот участка хромосомы на 180°; при этом меняется последовательность сцепления генов.
Хромосомные мутации. Виды хромосомных перестроек
Примером хромосомной мутации у человека является делеция в коротком плече 5-й хромосомы, в результате возникает синдром «кошачьего крика» (см. далее конспект «Наследственные заболевания человека»). Хромосомные мутации чаще всего приводят к изменению функционирования генов, вследствие чего возникают патологические нарушения в организме. Однако такие мутации играют существенную роль в эволюции вида. Предполагается, что в процессе эволюции человека произошла по крайней мере одна перестройка: два плеча 2-й хромосомы человека соответствуют 12-й и 13-й хромосомам шимпанзе и 13-й и 14-й хромосомам гориллы и орангутана. Исследования показали, что 4, 5, 12 и 17-я хромосомы человека и шимпанзе отличаются инверсиями.
Геномные мутации
Геномные мутации — количественные изменения числа хромосом в клетке. Они являются результатом нарушения веретена деления, которое приводит к нерасхождению хромосом в мейозе. Встречаются два вида таких мутаций: полиплоидия и анеуплоидия.
Геномные мутации: 1 — полиплоидия; 2, 3 — анеуплоидия
Полиплоидия (от греч. polyploos — многократный и eidos — вид) – это кратное увеличение числа хромосом (3n, 4n и т. д.). В некоторых случаях при делении клетки ядро делится быстрее цитоплазмы. В результате число хромосом в клетке удваивается по сравнению с исходной, возникает тетраплоидная клетка. Она может дать начало диплоидным гаметам, которые, затем сливаясь, образуют тетраплоидный организм. Иногда при нарушении веретена деления в мейозе возникают диплоидные гаметы, которые, сливаясь с гаплоидной гаметой, образуют триплоидный организм. Этот вид мутации часто встречается у растений. Многие культурные растения являются полиплоидами по отношению к диким предкам. У полиплоидных форм увеличены размеры клеток, вегетативных органов, плодов и семян.
Примером полиплоидии является дельфиниум, который образует более крупные цветки и в большем количестве. Другой пример — сахарная свёкла с триплоидным набором хромосом: у неё увеличена масса корнеплода и значительно выше содержание сахара. Известен также триплоидный виноград, отсутствие семян у которого повышает вкусовые качества.
Полиплоидия у дельфиниума: 1 — диплоид; 2 — полиплоид
У животных полиплоидия, как правило, не встречается. Эмбрионы с триплоидным и тетраплоидным набором хромосом нежизнеспособны и погибают на ранних стадиях развития. В редких случаях отмечается рождение полиплоидных особей, но они погибают на 5—7-й день. Полиплоидия резко снижает жизнеспособность животных.
Анеуплоидия (от греч. ап — отрицательная частица, ей — хорошо, ploos — кратный и eidos — вид), или гетероплоидия, — увеличение или уменьшение числа хромосом в кариотипе на одну, две и т. д. Подобные аномалии связаны с нерасхождением одной или нескольких хромосом в мейозе после конъюгации или сестринских хроматид. В результате могут возникнуть гаметы с аномальным числом хромосом, которые при оплодотворении образуют: моносомию (2n—1), трисомию (2n+1), тетрасомию (2n+2) и т. д.
Причины анеуплоидии: нерасхождение хромосом в мейозе
У животных и человека такие мутации приводят к аномалиям развития, иногда к гибели организма. Трисомия у человека описана по большинству хромосом, однако только при трисомии по 21-й, 22-й и половой 23-й паре организмы обычно жизнеспособны. Примером трисомии по 21-й паре является синдром Дауна, когда в клетке оказывается 47 хромосом. Более подробно мутации человека будут рассмотрены в следующем конспекте.
Это конспект для 10-11 классов по теме «Генотипические мутации». Выберите дальнейшее действие:
- Вернуться к Списку конспектов по Биологии.
- Найти конспект в Кодификаторе ЕГЭ по биологии
Наследственная (генотипическая) изменчивость проявляется в изменении генотипа особи, поэтому передается при половом размножении потомкам.
Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях. В каждой достаточно длительно существующей совокупности особей спонтанно и ненаправленно возникают различные мутации, которые в дальнейшем комбинируются более или менее случайно с уже имеющимися вариантами генов.
Виды наследственной изменчивости:
- комбинативная: обусловленная перекомбинированием генов в результате мейоза и оплодотворения;
- мутационная: обусловленная возникновением мутаций.
Комбинативная изменчивость
Комбинативной называют изменчивость, в основе которой лежит образованиерекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.
В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости в ходе полового размножения эукариот служат три процесса:
- Независимое расхождение гомологичных хромосом в анафазе первого деления мейоза. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.
- Взаимный обмен участками гомологичных хромосом, или кроссинговер, в профазе первого деления мейоза. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.
- Случайное сочетание гамет при оплодотворении.
Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение. Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако она, как правило, не порождает стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Стабильные, долгоживущие изменения возникают в результате мутаций.
Мутационная изменчивость
Мутация — это устойчивое и ненаправленное изменение в геноме.
Мутация сохраняется неограниченно долго в ряду поколений.
Значение мутаций в эволюции огромно — благодаря им возникают новые варианты генов. Говорят, что мутации — это сырой материал эволюции. Мутации носят индивидуальный (каждая мутация в отдельной молекуле ДНК возникает случайно) и ненаправленный характер.
Мутации могут как приводить, так и не приводить к изменению признаков и свойств организма.
Мутации возникают постоянно на протяжении всего онтогенеза человека. Чем на более раннем этапе развития организма возникнет конкретная мутация, тем большее влияние она может оказать на развитие организма (рис. 1).
Рис. 1. Влияние мутаций в разные периоды онтогенеза
Мутации делятся на:
- нейтральные;
- вредные;
- полезные.
Современные генетики считают, что большинство вновь возникающих мутацийнейтральны, то есть никак не отражаются на приспособленности организма. Нейтральные мутации происходят в межгенных участках — интронах (участках ДНК, не кодирующих белки); либо это синонимичные мутации в кодирующей части гена — мутации, которые приводят к возникновению кодона, обозначающего ту же аминокислоту (это возможно из-за вырожденности генетического кода).
Следующими по частоте являются вредные мутации. Вредоносное действие мутаций объясняется тем, что изменения касаются наследственных признаков, имеющих чаще всего адаптивное значение, т. е. признаков, полезных в данных условиях среды.
Лишь небольшая часть мутаций повышает приспособленность организма, то есть является полезной («ломать не строить»).
Однако вредность и полезность мутаций — понятия относительные, т. к. то, что полезно (вредно) в данных условиях, может оказать обратное действие при изменении условий среды. Именно поэтому мутации являются материалом для эволюции.
Мутагенез — процесс возникновения мутаций.
Мутации могут появиться как в соматических, так и в половых клетках (рис. 2).
Рис. 2. Результат мутаций
Соматические мутации |
Генеративные мутации |
Не всегда передаются при половом размножении.
Передаются при вегетативном (бесполом размножении). |
Передаются по наследству. |
Не смотря на то, что мутации возникают постоянно, существует ряд факторов, так называемых мутагенов, увеличивающих вероятность появления мутаций.
Мутагены — факторы, увеличивающие вероятность появления мутаций.
Мутагенами могут быть:
- химические вещества (кислоты, щелочи и т. п.);
- температурные воздействия;
- УФ-излучение;
- радиация;
- вирусы.
Канцерогены — факторы, повышающие вероятность возникновения злокачественных новообразований (опухолей) в организме животных и человека.
По характеру изменения генома различают мутации:
- генные (точечные)
- хромосомные
- геномные
ГЕННЫЕ МУТАЦИИ
Генные, или точечные мутации — результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена.
Если такая мутация происходит в гене, это приводит к изменению последовательности иРНК. А изменение последовательности иРНК может привести к изменению последовательности аминокислот в полипептидной цепи. В результате синтезируется другой белок, а в организме изменяется какой-либо признак.
Это наиболее распространённый вид мутаций и важнейший источник наследственной изменчивости организмов.
Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене:
- дупликации — повторение участка гена,
- вставки — появление в последовательности лишней пары нуклеотидов,
- делеции — выпадение одной или более пар нуклеотидов,
- замены нуклеотидных пар — AT -><- ГЦ; AT -><- ЦГ; или AT -><- ТА,
- инверсии — переворот участка гена на 180°.
Эффекты генных мутаций чрезвычайно разнообразны.
Большая часть из них — нейтральные мутации.
ХРОМОСОМНЫЕ МУТАЦИИ
Хромосомные мутации — это изменения в структуре хромосом. Как правило, их можно выявить и изучить под световым микроскопом.
Хромосомные мутации подразделяются на виды:
— делеция – выпадение участка хромосомы (рис. 6).
Рис. 6. Делеция
— дупликация – удвоение какого-то участка хромосом (рис. 7).
Рис. 7. Дупликация
— инверсия – поворот участка хромосомы на 1800, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с нормой (рис. 8).
Рис. 8. Инверсия
— транслокация – перемещение какого либо участка хромосомы в другое место (рис. 9).
Рис. 9. Транслокация
При делециях и дупликациях изменяется общее количество генетического материала, степень фенотипического проявления этих мутаций зависит от размеров изменяемых участков, а также от того, насколько важные гены попали в эти участки.
При инверсиях и транслокациях изменение количества генетического материала не происходит, изменяется лишь его расположение. Подобные мутации нужны эволюционно, так как мутанты часто уже не могут скрещиваться с исходными особями.
ГЕНОМНЫЕ МУТАЦИИ
К геномным мутациям относится изменение числа хромосом:
- анеуплоидия;
- полиплоидия.
Анеуплоидия — увеличение или уменьшение числа хромосом в генотипе.
Она возникает при нерасхождении хромосом в мейозе или хроматид в митозе.
Анеуплоиды встречаются у растений и животных и характеризуются низкой жизнеспособностью.
Вследствие нерасхождения какой-либо пары гомологичных хромосом в мейозе одна из образовавшихся гамет содержит на одну хромосому меньше, а другая на одну хромосому больше, чем в нормальном гаплоидном наборе. При слиянии с другой гаметой возникает зигота с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для вида. Пример — трисомия 21 (лишняя 21-я хромосома), приводящая к синдрому Дауна (рис. 3).
Рис. 3. Синдром Дауна
Полиплоидия — это кратное увеличение гаплоидного набора хромосом (Зn, 4n и т. д.).
Чаще всего появляется при нарушении расхождения хромосом к полюсам клетки в мейозе или митозе под действием мутагенных факторов.
Она широко распространена у растений и простейших и крайне редко встречается у животных.
С увеличением числа хромосомных наборов в кариотипе возрастает надёжность генетической системы, уменьшается вероятность снижения жизнеспособности в случае мутаций. Поэтому полиплоидия нередко влечёт за собой повышение жизнеспособности, плодовитости и других жизненных свойств (рис. 4).
Рис. 4. Обычное и полиплоидное растение энотеры
В растениеводстве это свойство используют, искусственно получая полиплоидные сорта культурных растений, отличающиеся высокой продуктивностью.
У высших животных полиплоидия, как правило, не встречается (известны исключения среди амфибий, у скальных ящериц).
В результате геномных мутаций происходит изменение числа хромосом внутри генома. Это связано с нарушением работы веретена деления, таким образом, гомологичные хромосомы не расходятся к разным полюсам клетки.
В результате одна клетка приобретает в два раза больше хромосом, чем положено (рис. 1):
Рис. 1. Геномная мутация
Гаплоидный набор хромосом остается прежним, изменяется только количество комплектов гомологичных хромосом(2n).
В природе такие мутации нередко закрепляются в потомстве, они встречаются чаще всего у растений, а также у грибов и водорослей (рис. 2).
Рис. 2. Высшие растения, грибы, водоросли
Такие организмы называются полиплоидными, полиплоидные растения могут содержать от трех до ста гаплоидных наборов. В отличие от большинства мутаций полиплоидность чаще всего приносит пользу организму, полиплоидные особи крупнее обычных. Многие культурные сорта растений являются полиплоидными (рис. 3).
Рис. 3. Полиплоидные культурные растения
Человек может вызывать полиплоидность искусственно, воздействуя на растения колхицином (рис. 4).
Рис. 4. Колхицин
Колхицин разрушает нити веретена деления и приводит к образованию полиплоидных геномов.
Иногда при делении может происходить нерасхождение в мейозе не всех, а только некоторых хромосом, такие мутации называются анеуплоидными. К примеру, для человека характерна мутация трисомия 21: в этом случае не расходится двадцать первая пара хромосом, в результате ребенок получает не две двадцать первые хромосомы, а три. Это приводит к развитию синдрома Дауна (рис. 5), в результате чего ребенок получается умственно и физически неполноценным и стерильным.
Рис. 5. Синдром Дауна
Разновидностью геномных мутаций является также разделение одной хромосомы на две и слияние двух хромосом в одну.
Наследственные заболевания
В диплоидном организме большинство новых мутаций фенотипически не проявляется, поскольку они рецессивны. Это очень важно для существования вида, так как в большинстве своём вновь возникающие мутации оказываются вредными. Однако их рецессивный характер позволяет им длительное время сохраняться у особей вида в гетерозиготном состоянии без вреда для организма и проявиться в будущем при переходе в гомозиготное состояние.
Наследственные заболевания:
- сцепленные с полом (гены в половых хромосомах — дальтонизм, гемофилия);
Синдром Клайнфельтера — патология, которая характеризуется наличием у мальчиков лишней X хромосомы (минимум одной), в результате чего нарушается их половое созревание. Заболевание в 1942 г. впервые было описано Клайнфельтером. У некоторых мальчиков может быть 3, 4 или 5 Х-хромосом с одной Y-хромосомой. При увеличении числа Х-хромосом также возрастает тяжесть пороков развития и умственной отсталости. Например, вариант набора хромосом 43 ХХХХV имеет столько характерных особенностей, что диагностировать его возможно в детском возрасте (рис. 5).
-
-
Рис. 5. Синдром Клайнфельтера
- аутосомно-доминантные (в аутосомах, Аа и АА): чаще проявляются → больше подвергаются естественному отбору;
- аутосомно-рецессивные (в аутосомах, только аа): реже проявляются → меньше подвергаются естественному отбору → дольше сохраняются в популяциях; чаще проявляются при близкородственных скрещиваниях (изолированные популяции, этнические и религиозные группы, правящие династии и т. п.).
Многие аутосомно-рецессивные заболевания связаны с нарушение обмена веществ.
Например, фенилкетонурия — 1 на 1000 случаев. Отсутствует фермент, превращающий аминокислоту фенилаланин в тирозин → накопление фенилаланина → поражение нервной системы → слабоумие (рис. 6).
Рис. 6. Больной фенилкетонурией
Лейциноз — тяжелое наследственное заболевание, которое связанно с нарушением аминокислотного обмена, имеет аутосомно-рецессивный тип наследования. Заболевание более известно как болезнь кленового сиропа. Заболевание получило такое название из-за специфического запаха мочи, который имеет схожесть с запахом сиропа из клёна. При данной патологии организм ребёнка неспособен усваивать аминокислоты: лейцин, изолейцин, валин. Специфический запах моча приобретает из-за наличия вещества, образующегося из лейцина.
Вместе с тем известен ряд случаев, когда изменение лишь одного основания в определённом гене оказывает заметное влияние на фенотип (генная мутация).
Одним из примеров генной мутации служит серповидноклеточная анемия. Рецессивный аллель, вызывающий в гомозиготном состоянии это наследственное заболевание, выражается в замене всего одного аминокислотного остатка в β-цепи молекулы гемоглобина (глутаминовая кислота → валин). Это приводит к тому, что в крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются (рис. 7). При этом развивается острая анемия и наблюдается снижение количества кислорода, переносимого кровью. Анемия вызывает физическую слабость, нарушения деятельности сердца и почек и может привести к ранней смерти людей, гомозиготных по мутантному аллелю.
Рис. 7. Нормальный эритроцит и эритроцит при серповидноклеточной анемии
Цитоплазматическая изменчивость
Цитоплазматические мутации — связанные с мутациями, генов находящихся в митохондриальной ДНК и ДНК пластид.
При половом размножении цитоплазматические мутациинаследуются по материнской линии, т. к. зигота при оплодотворении всю цитоплазму получает от яйцеклетки.
У высших растений пестролистные мутанты в ряде случаев являются примером возникновения пластидных мутаций. Например: пестролистность ночной красавицы (рис.
и львиного зева (рис. 9) связана с мутациями в хлоропластах.
Рис. 8. Пестролистность у ночной красавицы Рис. 9. Пестролистность у львиного зева
Спонтанные цитоплазматические мутации выявляются реже, чем мутации хромосомных генов. Это можно объяснить рядом причин. Очевидно, одна из причин лежит во множественности цитоплазматических структур и органоидов. Всякая цитоплазматическая мутация, возникшая в одном из многих идентичных органоидов, не может проявиться до тех пор, пока она не размножится в цитоплазме клетки.
Цитоплазматическая мутация может проявиться в двух случаях: если данный органоид в клетке является единичным или представлен малым и постоянным числом, либо если мутаген имеет специфическое действие на органоиды клетки, вызывая массовое изменение их.
Для изучения цитоплазматических мутаций очень удобным объектом оказалась хламидомонада. Стрептомицин вызывает у неё большое количество мутаций нехромосомных генов. При обработке раствором стрептомицина штаммов, чувствительных к этому антибиотику, были выделены мутанты, устойчивые к стрептомицину.
-
-
Закон гомологических рядов наследственной изменчивости Н.И. Вавилова
«Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство».
Этот закон можно проиллюстрировать на примере семейства Мятликовые, к которому относятся пшеница, рожь, ячмень, овес, просо и т.д. Так, черная окраска зерновки обнаружена у ржи, пшеницы, ячменя, кукурузы и других растений, удлиненная форма зерновки — у всех изученных видов семейства. Закон гомологических рядов в наследственной изменчивости позволил самому Н.И. Вавилову найти ряд форм ржи, ранее не известных, опираясь на наличие этих признаков у пшеницы. К ним относятся: остистые и безостые колосья, зерновки красной, белой, черной и фиолетовой окраски, мучнистое и стекловидное зерно и т.д.
Наследственное варьирование признаков* Рожь Пшеница Ячмень Овес Просо Сорго Кукуруза Рис Пырей Зерно Окраска Черная + + + — — + + + + Фиолетовая + + + — — + + + — Форма Округлая + + + + + + + + + Удлиненная + + + + + + + + + Биол. признаки Образ жизни Озимые + + + + + Яровые + + + + + + + + *Примечание. Знак «+» означает наличие наследственных форм, обладающих указанным признаком.
Открытый Н.И. Вавиловым закон справедлив не только для растений, но и для животных. Так, альбинизм встречается не только в разных группах млекопитающих, но и птиц, и других животных. Короткопалость наблюдается у человека, крупного рогатого скота, овец, собак, птиц, отсутствие перьев — у птиц, чешуи — у рыб, шерсти — у млекопитающих и т.д.
Закон гомологических рядов наследственной изменчивости имеет большое значение для селекции, поскольку позволяет предугадать наличие форм, не обнаруженных у данного вида, но характерного для близкородственных видов. Причем искомая форма может быть обнаружена в дикой природе или получена путем искусственного мутагенеза
-
https://bio-ege.sdamgia.ru/test?theme=72
Генетические закономерности
[su_spoiler title=”Разделы из кодификатора, соответствующие заданию №7″]
Закономерности изменчивости. Ненаследственная (модификационная) изменчивость. Норма реакции. Наследственная изменчивость: мутационная, комбинативная. Виды мутаций и их причины. Значение изменчивости в жизни организмов и в эволюции.
Значение генетики для медицины. Наследственные болезни человека, их причины, профилактика. Вредное влияние мутагенов, алкоголя, наркотиков, никотина на генетический аппарат клетки. Защита среды от загрязнения мутагенами. Выявление источников мутагенов в окружающей среде (косвенно) и оценка возможных последствий их влияния на собственный организм.
Биотехнология, ее направления. Клеточная и генная инженерия, клонирование. Роль клеточной теории в становлении и развитии биотехнологии. Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты. Этические аспекты развития некоторых исследований в биотехнологии (клонирование человека, направленные изменения генома).
Воспроизведение организмов, его значение. Способы размножения, сходство и различие полового и бесполого размножения. Оплодотворение у цветковых растений и позвоночных животных. Внешнее и внутреннее оплодотворение.
[/su_spoiler]
Задание с выбором вариантов ответа, относится к повышенному уровню. За верное выполнение можно получить 2 балла.
«Решу ЕГЭ» делит задания на три подгруппы:
- Воспроизведение организмов/Биотехнология
- Закономерности наследственности и изменчивости
- Онтогенез. Жизненный цикл растений/Зародышевые листки
Упражнений достаточно много. Только лишь на сайте их под сотню, что уж говорить об открытом банке заданий. При том, они достаточно разнообразны, так что предстоит большая работа.
Опять же, переберем все типы заданий, какие нам доступны.
Воспроизведение организмов/Биотехнология
Гаплоидность/диплоидность
[su_note note_color=”#defae6″]
Выберите клетки, в которых набор хромосом диплоиден.
- ооциты первого порядка
- яйцеклетки растений
- сперматозоиды животных
- клетки печени мыши
- нейроны мозга
- клетки листьев мха
[/su_note]
Будем рассуждать:
Обратимся сразу к животным, так как они нам просто ближе и более знакомы, ведь и мы относимся к этому царству.
- сперматозоиды животных
- клетки печени мыши
- нейроны мозга
Для того, чтобы зигота была диплоидна, гаплоидный сперматозоид должен оплодотворить гаплоидную яйцеклетку, таким образом, сперматозоид животного нам не подходит, он гаплоиден.
Клетки печени мыши и нейроны мозга- соматические клетки организма, они диплоидны, эти варианты нам подходят. Переберем остальные.
- клетки листьев мха
- яйцеклетки растений
- ооциты первого порядка
В жизненном цикле мха преобладает гаметофит, так что его листья гаплоидны.
Яйцеклетки растений так же гаплоидны, как и яйцеклетки животных.
Ооцитами называются яйцеклетки на одной из стадий своего развития. Пусть пока мы не знаем овогенез (развитие яйцеклетки). Ооцит первого порядка- тот, что только начал свое развитие, пока что он диплоиден. В ходе овогенеза он станет гаплоидным и сможет участвовать в размножении.
Ответ: 145.
Найти лишний термин
[su_note note_color=”#defae6″]
Все приведённые ниже термины, кроме двух, используются для описания полового размножения организмов. Определите два термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
- гонада
- спора
- оплодотворение
- овогенез
- почкование
[/su_note]
Задание легкое, даже для новичков. Для полового размножения, как минимум, характерно оплодотворение.
Теперь известен такой процесс как овогенез. Есть, кстати, еще и сперматогенез. Об этом поговорим подробно чуть позже. Это так же относится к половому размножению.
Допустим, вы не знаете, то такое гонада. Остались: гонады, почкование и спора. Известный факт, что спорами размножаются грибы, это бесполое размножение. Почкуются дрожжи и грибы, это тоже должно быть на слуху. Остаются гонады.
Гонады- органы животных, в который продуцируются половые клетки. У самок – яичники, у самцов – семенники.
Ответ: 25.
Половое размножение
[su_note note_color=”#defae6″]
Все приведённые ниже признаки, кроме двух, можно использовать для описания значения полового размножения. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
- изменению плодовитости организмов
- обострению межвидовой борьбы
- комбинации генетического материала родительских гамет
- увеличению разнообразия фенотипов
- увеличению генетического разнообразия благодаря кроссинговеру
[/su_note]
Вся суть полового размножения в том, чтобы произвести генетически, а, значит, и фенотипически разнообразное потомство. Происходит это благодаря кроссинговеру, когда при конъюгации хромосомы приближаются и обмениваются участками гомологичных хромосом.
Варианты 345 описывают половое размножение а 12 не подходят.
Ответ: 12.
Искусственный мутагенез
[su_note note_color=”#defae6″]
Выберите два верных ответа из пяти. Искусственный мутагенез применяется в
- селекции растений
- выведении новых пород домашних животных (коров, лошадей)
- лечении человека
- профилактике заболеваний человека
- селекции микроорганизмов
[/su_note]
Искусственный мутагенез применяется только по отношению к растениям и микроорганизмам, так как если внедрять его в работу с животными или людьми, то велик риск летального исхода, что невыгодно и негуманно.
Ответ: 15.
Закономерности наследственности и изменчивости
Наследственность — способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа сохраняют в своих потомках характерные черты вида.
Изменчивость — разнообразие признаков среди представителей данного вида, а также свойство потомков приобретать отличия от родительских форм.
Разберемся в схеме.
Если у растения листья вытянулись из-за недостатка света, но растение изменилось только внешне, то есть фенотипически. В генотипе у него ничего не изменилось. Это был пример ненаследственной изменчивости, она же фенотипическая, она же модификационная.
Ситуация 2. У животных в размножении участвуют две особи, в процессе кроссинговера генетический материал как бы перетасовывается, как карты в колоде, но в соответствии с вариантами развития признака. Есть гены, отвечающие, к примеру за цвет глаз. Пусть в роду у одной особи были карие и зеленые глаза, у другой – зеленые и голубые. Какую «карту» вы вытяните- неизвестно. Может, это будет карий и голубой, где карий доминирует. Может, карий и зеленые, где карий доминирует, может, зеленый и зеленый, потомство будет с зелеными глазами. А может, зеленый и голубой, тогда потомство будет с зелеными глазами. И вот это множество комбинаций и называется комбинативной изменчивостью.
Мутационная изменчивость возникает внезапно. Есть несколько разновидностей этой изменчивости, в зависимости от локации перестроек.
Генная мутация – изменения ДНК в пределах одного гена.
Геномная мутация– мутация, в результате которой происходит изменение числа хромосом.
- Гаплоидия– уменьшение в кариотипе соматических клеток числа хромосом вдвое.
- Полиплоидия– увеличение в кариотипе соматических клеток числа хромосом в какое-то количество раз.
- Анеуплоидия– изменение в кариотипе соматических клеток числа хромосом на какое-то число.
- Полисомия– появление в генотипе дополнительных половых хромосом (X,Y).
Хромосомные мутации – изменения в структуре хромосом.
- Делеция – утрата участка хромосомы.
- Дупликация – удвоение участка хромосомы.
- Инверсия – поворот на 180 градусов участка хромосомы
- Транслокация – перестановка участка хромосомы на другое место.
Наследственная изменчивость
[su_note note_color=”#defae6″]
Выберите два верных ответа из пяти. К наследственной изменчивости не относится изменчивость
- индивидуальная
- мутационная
- модификационная
- комбинативная
- определенная
[/su_note]
К ненаследственной изменчивости относятся только фенотипическая и определенная изменчивости, это одно и то же.
Ответ: 35.
Ненаследственная изменчивость
[su_note note_color=”#defae6″]
Все приведённые ниже признаки, кроме двух, можно использовать для описания фенотипической изменчивости. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
- соответствует изменению действия фактора среды
- определяется пределами нормы реакции генотипа особи
- возникает в процессе кроссинговера
- имеет групповой характер
- имеет индивидуальный характер
[/su_note]
Фенотипическая изменчивость – это как бы отклик на факторы окружающей среды. Она не сказана с хромосомами и имеет групповой характер. Если где-то в лесу, в тени вырастет несколько растений, которым не будет хватать света, то у них у всех вытянутся листовые пластины, а не только у одного экземпляра.
Отдельно стоит поговорить о норме реакции.
Норма реакции — это та максимальная доля от фенотипического значения признака, на которую может изменить признак среда.
То есть, вернемся к примеру с листьями. Есть среднее значение длины листа. Если слишком темно и листу необходимо вытянуться, то он не будет расти до тех пор, пока не перекроет елку, которая создает тень. Есть верхний предел этого роста.
Если вдруг солнца слишком много, то необходимо уменьшить площадь поверхности испарения влаги. Лист не будет уменьшаться до размеров капли. Нижний предел так же имеется. Это и называется нормой реакции.
Ответ: 35.
Мутационная изменчивость
[su_note note_color=”#defae6″]
Выберите два верных ответа из пяти. Мутационная изменчивость передается по наследству, так как возникает в многоклеточном организме в
- миокарде
- яйцеклетках
- плазме крови
- межклеточном веществе
- сперматозоидах
[/su_note]
Мутационная изменчивость относится к наследственной изменчивости. В том, чтобы передать генетический материал, участвуют половые клетки, то есть сперматозоиды и яйцеклетки.
Ответ: 25.
Комбинативная изменчивость
[su_note note_color=”#defae6″]
Выберите два верных ответа из пяти. Выберите из приведённых случаев пример комбинативной изменчивости.
- В чистой прямокрылой линии дрозофил появился потомок с загнутыми крыльями.
- Среди потомков нескольких поколений серых мышей один оказался белым.
- На кусте сирени с сиреневыми цветами один цветок белый.
- У отца глаза голубые, а у дочери — карие.
- У матери мелковьющиеся волосы, а у дочери — прямые.
[/su_note]
Чистая линия — группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей.
1) Раз линия была чистой, но произошло такое отклонение, то это мутация.
2) Несколько поколений мышей серые, значит, это чистая линия. Появление белого мышонка- мутация.
3) Появление одного белого цветка на сиреневом кусте- мутация.
4) и 5) Рождение ребенка с карими глазами от голубоглазого отца и рождение девочки с прямыми волосами от матери с вьющимися волосами- примеры комбинативной изменчивости.
Ответ: 45.
Генная мутация
[su_note note_color=”#defae6″]
Определите два признака, поясняющие причины генных мутаций — это нарушения, происходящие при
- выпадение нуклеотида при редупликации ДНК
- биосинтезе углеводов
- образовании АТФ
- синтезе аминокислот
- замена нуклеотида при редупликации ДНК
[/su_note]
Генная мутация – это мутация происходящая в пределах одного гена. Ген состоит из нуклеотидов. Следовательно, генные мутации связаны с нуклеотидами. В таком случае, нам подходят варианты 1 и 5.
Ответ: 15.
Геномная мутация
[su_note note_color=”#defae6″]
Чем характеризуется геномная мутация?
- изменением нуклеотидной последовательности ДНК
- утратой одной хромосомы в диплоидном наборе
- кратным увеличением числа хромосом
- изменением структуры синтезируемых белков
- удвоением участка хромосомы
- изменением числа хромосом в кариотипе
[/su_note]
При геномной мутации происходит изменение числа хромосом.
Задание полезное, разберем все варианты по мутациям.
1. изменение нуклеотидной последовательности ДНК
Раз речь идет про нуклеотиды, то это генная мутация.
2. утрата одной хромосомы в диплоидном наборе
Число хромосом изменилось, это подходит под описание геномной мутации. Это анеуплоидия.
3. кратное увеличением числа хромосом
Число хромосом опять же изменилось. Это геномная мутация, а именно – полиплоидия.
4. изменение структуры синтезируемых белков
Если эти белки – ДНК, то это хромосомная мутация.
5. удвоение участка хромосомы
Мутации на уровне участка хромосомы- хромосомные. Удвоение – дупликация участка хромосомы.
6. изменением числа хромосом в кариотипе
Число хромосом- геномная изменчивость.
Ответ: 236.
Хромосомная мутация
[su_note note_color=”#defae6″]
Все приведённые ниже признаки, кроме двух, можно использовать в качестве примера хромосомных перестроек. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны:
- Поворот участка хромосомы на 180 градусов относится к мутациям
- Замена одного нуклеотида на другой в структуре ДНК
- Копирование участка хромосомы
- Утрата участка хромосомы
- Изменение количества хромосом, которое кратно гаплоидному набору
[/su_note]
- Поворот хромосомы на 180 градусов- инверсия, хромосомная мутация.
- Нуклеотиды – генная мутация.
- Участок хромосомы – хромосомная мутация. Копирование = удвоение, то есть это дупликация участка хромосомы.
- Утрата участка хромосомы – делеция, хромосомная мутация.
- Изменение числа хромосом – геномная мутация.
Ответ: 25.
Онтогенез. Жизненный цикл растений/Зародышевые листки
Зародышевые листки
[su_note note_color=”#defae6″]
Какие ткани и органы позвоночного животного образуются из клеток, обозначенных на рисунке цифрой 1?
- потовые железы
- костная ткань
- ногтевые пластинки
- соединительная ткань
- кожный эпидермис
- гладкая мышечная ткань
[/su_note]
Для начала разберемся, с тем какой здесь обозначен зародышевый листок.
- Эктодерма
- Мезодерма
- Энтодерма
Каждый листок дает начало развитию тканям и органам:
Зародышевый листок | Системы органов |
Эктодерма | Кожа, нервная система, органы чувств |
Мезодерма | Пищеварительный канал, печень, поджелудочная железа, легкие, хорда |
Энтодерма | Мышцы, кровь, сосуды, кости, хрящи, гонады |
На рисунке изображена эктодерма, внешний зародышевый листок.
В первую очередь, из нее развивается кожа и ее производные, а именно: ногти, волосы, потовые железы.
Ответ: 135.
Оплодотворение у цветковых растений
[su_note note_color=”#defae6″]
Процесс оплодотворения у цветковых растений характеризуется
- образованием цветка
- слиянием спермия с центральной клеткой
- формированием пыльцевого зерна
- слиянием спермия и яйцеклетки
- образованием зиготы в зародышевом мешке
- делением зиготы путём мейоза
[/su_note]
Процесс оплодотворения у цветковых растений характеризуется слиянием спермия с центральной клеткой и слиянием спермия и яйцеклетки; образованием зиготы в зародышевом мешке
Органом полового размножения покрытосеменных растений является цветок. Оплодотворение происходит после попадания пыльцы на рыльце пестика. Этому процессу предшествует прорастание пыльцевого зерна на рыльце пестика. Прорастание начинается с набухания пыльцевого зерна и развития пыльцевой трубки, которая растет через ткани рыльца и столбика, врастает в полость завязи, достигает семязачатка и входит в него через микропиле (от греч. «микро» малый и «пиле» — ворота).
В семязачатке к этому времени бывает развит зародышевый мешок, образовавшийся из мегаспоры и состоящий из семи клеток, одна из которых — яйцеклетка (женская гамета), а самая крупная — центральная клетка с двумя ядрами.
Когда пыльцевая трубка дорастает до зародышевого мешка и входит в него, она лопается и спермии осуществляют оплодотворение — один сливается с яйцеклеткой, образуя зиготу, а другой — с центральной клеткой. Этот процесс называют двойным оплодотворением. Из зиготы затем развивается зародыш, а из центральной клетки эндосперм (ткань, запасающая питательные вещества). После оплодотворения из семязачатков формируются семена, а сам цветок превращается в плод.
Ответ: 246.
[su_note note_color=”#defae6″]
Все приведённые ниже термины, кроме двух, используются для описания изображённого на рисунке процесса двойного оплодотворения у цветковых растений. Определите два термина, «выпадающие» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
- Пыльцевая трубка достигает зародышевого мешка.
- В оплодотворении участвуют вегетативная клетка и спермий.
- Из материнских клеток спор образуются микро и макроспоры.
- Гаметы — спермии и яйцеклетки — образуются в результате мейоза микроспор.
- Яйцеклетка оплодотворяется одним спермием, а другой спермий оплодотворяет центральную клетку.
[/su_note]
2) В оплодотворении участвует спермий и яйцеклетка. Из вегетативной клетки и другого спермия развивается эндосперм.
4) Гаметы образуются путем митоза, а не мейоза.
Ответ: 24.
Сперматогенез
[su_note note_color=”#defae6″]
Все приведённые ниже признаки, кроме двух, можно использовать для описания процесса сперматогенеза. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
- образуются мужские половые клетки
- образуются женские половые клетки
- уменьшается вдвое число хромосом
- образуются четыре половые клетки из одной
- образуется одна половая клетка
[/su_note]
Поговорим про сперматогенез и сразу про овогенез.
Сперматогенез — развитие мужских половых клеток (сперматозоидов), происходящее под регулирующим воздействием гормонов. Одна из форм гаметогенеза.
Оогенез или овогенез — развитие женской половой клетки — яйцеклетки. Одна из форм гаметогенеза.
На каждой стадии у клеток есть свои названия:
Клетки, получившиеся в результате митозов называются сперматогонии и овогонии.
Клетки, которые делятся первый раз мейозом- сперматоцит и овоциты I порядка.
Второй раз мейоз – сперматоциты и овоциты II порядка.
После второго мейоза сперматоциты становятся сперматидами, а потом- сперматозоидами.
После второго мейоза 3 клетки отмирают, а одна становится яйцеклеткой.
Таким образом, к сперматогенезу не относятся два ответа: образуются женские половые клетки и в результате образуется одна клетка.
Ответ: 25.
Жизненный цикл папоротника
[su_note note_color=”#defae6″]
Все приведённые ниже признаки, кроме двух, — гаплоидные стадии развития папоротника. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
- спермий
- листья
- спора
- зигота
- заросток
[/su_note]
Найдем все, что гаплоидно. Следуя схеме, это спермий, споры и заросток. Значит, листья и зигота – диплодны.
Ответ: 24.
Эмбриогенез
[su_note note_color=”#defae6″]
Все приведённые ниже термины, кроме двух, используются для обозначения стадий эмбриогенеза кишечнополостных животных. Определите два термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
- стадия бластулы
- дробление
- гаметогенез
- стадия нейрулы
- стадия гаструлы
[/su_note]
Кишечнополостные – двуслойные животные. Соответственно, у них есть экто- и энтодерма. Исходя из этого, посмотрим на стадии эмбриогенеза.
Кишечнополостным будет свойственно дробление, бластула и гаструла, потому что в процессе гаструляции образуются эктодерма и энтодерма. Это будет последняя стадия эмбриогенеза кишечнополостного.
125- стадии эмбриогенеза кишечнополостных животных, а варианты 3 и 4 не подходят. Гаметогенез вообще не стадия эмбриогенеза.
Ответ: 34.
Ксения Алексеевна | Просмотров: 8.1k