Генетическая информация в клетке егэ биология теория

Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот

Генетическая информация в клетке

Воспроизведение себе подобных является одним из фундаментальных свойств живого. Благодаря этому явлению существует сходство не только между организмами, но и между отдельными клетками, а также их органоидами (митохондриями и пластидами). Материальной основой этого сходства является передача зашифрованной в последовательности нуклеотидов ДНК генетической информации, которая осуществляется благодаря процессам репликации (самоудвоения) ДНК. Реализуются все признаки и свойства клеток и организмов благодаря белкам, структуру которых в первую очередь и определяют последовательности нуклеотидов ДНК. Поэтому первостепенное значение в процессах метаболизма играет именно биосинтез нуклеиновых кислот и белка. Структурной единицей наследственной информации является ген.

Гены, генетический код и его свойства

Наследственная информация в клетке не является монолитной, она разбита на отдельные «слова» — гены.

Ген — это элементарная единица генетической информации.

Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, дали нам понимание того, что у человека всего около 25–30 тыс. генов, но информация с большей части нашей ДНК не считывается никогда, так как в ней содержится огромное количество бессмысленных участков, повторов и генов, кодирующих признаки, утратившие значение для человека (хвост, оволосение тела и др.). Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы большего количества людей и станет понятно, чем же все-таки они различаются.

Гены, кодирующие первичную структуру белка, рибосомальной или транспортной РНК называются структурными, а гены, обеспечивающие активацию или подавление считывания информации со структурных генов, — регуляторными. Однако даже структурные гены содержат регуляторные участки.

Наследственная информация организмов зашифрована в ДНК в виде определенных сочетаний нуклеотидов и их последовательности — генетического кода. Его свойствами являются: триплетность, специфичность, универсальность, избыточность и неперекрываемость. Кроме того, в генетическом коде отсутствуют знаки препинания.

Каждая аминокислота закодирована в ДНК тремя нуклеотидами — триплетом, например, метионин закодирован триплетом ТАЦ, то есть код триплетен. С другой стороны, каждый триплет кодирует только одну аминокислоту, в чем заключается его специфичность или однозначность. Генетический код универсален для всех живых организмов, то есть наследственная информация о белках человека может считываться бактериями и наоборот. Это свидетельствует о единстве происхождения органического мира. Однако 64 комбинациям нуклеотидов по три соответствует только 20 аминокислот, вследствие чего одну аминокислоту может кодировать 2–6 триплетов, то есть генетический код избыточен, или вырожден. Три триплета не имеют соответствующих аминокислот, их называют стоп-кодонами, так как они обозначают окончание синтеза полипептидной цепи.

Последовательность оснований в триплетах ДНК и кодируемые ими аминокислоты

*Стоп-кодон, означающий конец синтеза полипептидной цепи.

Сокращения названий аминокислот:

Ала — аланин

Арг — аргинин

Асн — аспарагин

Асп — аспарагиновая кислота

Вал — валин

Гис — гистидин

Гли — глицин

Глн — глутамин

Глу — глутаминовая кислота

Иле — изолейцин

Лей — лейцин

Лиз — лизин

Мет — метионин

Про — пролин

Сер — серин

Тир — тирозин

Тре — треонин

Три — триптофан

Фен — фенилаланин

Цис — цистеин

Если начать считывание генетической информации не с первого нуклеотида в триплете, а со второго, то произойдет не только сдвижка рамки считывания — синтезированный таким образом белок будет совсем иным не только по последовательности нуклеотидов, но и по структуре и свойствам. Между триплетами отсутствуют какие бы то ни было знаки препинания, поэтому нет никаких препятствий для сдвижки рамки считывания, что открывает простор для возникновения и сохранения мутаций.

Матричный характер реакций биосинтеза

Клетки бактерий способны удваиваться каждые 20–30 минут, а клетки эукариот — каждые сутки и даже чаще, что требует высокой скорости и точности репликации ДНК. Кроме того, каждая клетка содержит сотни и тысячи копий многих белков, особенно ферментов, следовательно, для их воспроизведения неприемлем «штучный» способ их производства. Более прогрессивным способом является штамповка, которая позволяет получить многочисленные точные копии продукта и к тому же снизить его себестоимость. Для штамповки необходима матрица, с которой осуществляется оттиск.

В клетках принцип матричного синтеза заключается в том, что новые молекулы белков и нуклеиновых кислот синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).

Биосинтез белка и нуклеиновых кислот

Репликация ДНК. ДНК представляет собой двухцепочечный биополимер, мономерами которого являются нуклеотиды. Если бы биосинтез ДНК происходил по принципу ксерокопирования, то неизбежно возникали бы многочисленные искажения и погрешности в наследственной информации, которые в конечном итоге привели бы к гибели новых организмов. Поэтому процесс удвоения ДНК происходит иным, полуконсервативным способом: молекула ДНК расплетается, и на каждой из цепей синтезируется новая цепь по принципу комплементарности. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называется репликацией (от лат. репликацио — повторение). В результате репликации образуются две абсолютно точные копии материнской молекулы ДНК, каждая из которых несет по одной копии материнской.

Процесс репликации на самом деле крайне сложен, так как в нем участвует целый ряд белков. Одни из них раскручивают двойную спираль ДНК, другие разрывают водородные связи между нуклеотидами комплементарных цепей, третьи (например, фермент ДНК-полимераза) подбирают по принципу комплементарности новые нуклеотиды и т. д. Образовавшиеся в результате репликации две молекулы ДНК в процессе деления расходятся по двум вновь образующимся дочерним клеткам.

Ошибки в процессе репликации возникают крайне редко, однако если они и происходят, то очень быстро устраняются как ДНК-полимеразами, так и специальными ферментами репарации, поскольку любая ошибка в последовательности нуклеотидов может привести к необратимому изменению структуры и функций белка и, в конечном итоге, неблагоприятно сказаться на жизнеспособности новой клетки или даже особи.

Биосинтез белка. Как образно выразился выдающийся философ XIX века Ф. Энгельс: «Жизнь есть форма существования белковых тел». Структура и свойства белковых молекул определяются их первичной структурой, т. е. последовательностью аминокислот, зашифрованной в ДНК. От точности воспроизведения этой информации зависит не только существование самого полипептида, но и функционирование клетки в целом, поэтому процесс синтеза белка имеет огромное значение. Он, по-видимому, является самым сложным процессом синтеза в клетке, поскольку здесь участвует до трехсот различных ферментов и других макромолекул. Кроме того, он протекает с высокой скоростью, что требует еще большей точности.

В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.

Транскрипция (от лат. транскрипцио — переписывание) — это биосинтез молекул иРНК на матрице ДНК.

Поскольку молекула ДНК содержит две антипараллельных цепи, то считывание информации с обеих цепей привело бы к образованию совершенно различных иРНК, поэтому их биосинтез возможен только на одной из цепей, которую называют кодирующей, или кодогенной, в отличие от второй, некодирующей, или некодогенной. Обеспечивает процесс переписывания специальный фермент РНК-полимераза, который подбирает нуклеотиды РНК по принципу комплементарности. Этот процесс может протекать как в ядре, так и в органоидах, имеющих собственную ДНК, — митохондриях и пластидах.

Синтезированные в процессе транскрипции молекулы иРНК проходят сложный процесс подготовки к трансляции (митохондриальные и пластидные иРНК могут оставаться внутри органоидов, где и происходит второй этап биосинтеза белка). В процессе созревания иРНК к ней присоединяются первые три нуклеотида (АУГ) и хвост из адениловых нуклеотидов, длина которого определяет, сколько копий белка может синтезироваться на данной молекуле. Только потом зрелые иРНК покидают ядро через ядерные поры.

Параллельно в цитоплазме происходит процесс активации аминокислот, в ходе которого аминокислота присоединяется к соответствующей свободной тРНК. Этот процесс катализируется специальным ферментом, на него затрачивается АТФ.

Трансляция (от лат. трансляцио — передача) — это биосинтез полипептидной цепи на матрице иРНК, при котором происходит перевод генетической информации в последовательность аминокислот полипептидной цепи.

Второй этап синтеза белка чаще всего происходит в цитоплазме, например на шероховатой ЭПС. Для его протекания необходимы наличие рибосом, активация тРНК, в ходе которой они присоединяют соответствующие аминокислоты, присутствие ионов Mg2+, а также оптимальные условия среды (температура, рН, давление и т. д.).

Для начала трансляции (инициации) к готовой к синтезу молекуле иРНК присоединяется малая субъединица рибосомы, а затем по принципу комплементарности к первому кодону (АУГ) подбирается тРНК, несущая аминокислоту метионин. Лишь после этого присоединяется большая субъединица рибосомы. В пределах собранной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону присоединяется вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь. Рибосома передвигается на один кодон иРНК; первая из тРНК, освободившаяся от аминокислоты, возвращается в цитоплазму за следующей аминокислотой, а фрагмент будущей полипептидной цепи как бы повисает на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется и шаг за шагом полипептидная цепь удлиняется, т. е. происходит ее элонгация.

Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК встретится специфическая последовательность нуклеотидов, которая не кодирует аминокислоту (стоп-кодон). После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок приобретает соответствующую структуру и транспортируется в ту часть клетки, где он будет выполнять свои функции.

Трансляция является весьма энергоемким процессом, поскольку на присоединение одной аминокислоты к тРНК расходуется энергия одной молекулы АТФ, еще несколько используются для продвижения рибосомы по молекуле иРНК.

Для ускорения синтеза определенных белковых молекул к молекуле иРНК могут присоединяться последовательно несколько рибосом, которые образуют единую структуру — полисому.

Клетка — генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Соматические и половые клетки. Жизненный цикл клетки: интерфаза и митоз. Митоз — деление соматических клеток. Мейоз. Фазы митоза и мейоза. Развитие половых клеток у растений и животных. Деление клетки — основа роста, развития и размножения организмов. Роль мейоза и митоза

Клетка — генетическая единица живого

Несмотря на то, что нуклеиновые кислоты являются носителем генетической информации, реализация этой информации невозможна вне клетки, что легко доказывается на примере вирусов. Данные организмы, содержащие зачастую только ДНК или РНК, не могут самостоятельно воспроизводиться, для этого они должны использовать наследственный аппарат клетки. Даже проникнуть в клетку без помощи самой клетки они не могут, кроме как с использованием механизмов мембранного транспорта или благодаря повреждению клеток. Большинство вирусов нестабильно, они гибнут уже после нескольких часов пребывания на открытом воздухе. Следовательно, клетка является генетической единицей живого, обладающей минимальным набором компонентов для сохранения, изменения и реализации наследственной информации, а также ее передачи потомкам.

Большая часть генетической информации эукариотической клетки сосредоточена в ядре. Особенностью ее организации является то, что, в отличие от ДНК прокариотической клетки, молекулы ДНК эукариот не замкнуты и образуют сложные комплексы с белками — хромосомы.

Хромосомы, их строение (форма и размеры) и функции

Хромосома (от греч. хрома — цвет, окраска и сома — тело) — это структура клеточного ядра, которая содержит гены и несет определенную наследственную информацию о признаках и свойствах организма.

Иногда хромосомами называют и кольцевые молекулы ДНК прокариот. Хромосомы способны к самоудвоению, они обладают структурной и функциональной индивидуальностью и сохраняют ее в ряду поколений. Каждая клетка несет всю наследственную информацию организма, но в ней работает только небольшая часть.

Основой хромосомы является двухцепочечная молекула ДНК, упакованная с белками. У эукариот с ДНК взаимодействуют гистоновые и негистоновые белки, тогда как у прокариот гистоновые белки отсутствуют.

Лучше всего хромосомы видны под световым микроскопом в процессе деления клетки, когда они в результате уплотнения приобретают вид палочковидных телец, разделенных первичной перетяжкой — центромеройна плечи. На хромосоме может быть также и вторичная перетяжка, которая в некоторых случаях отделяет от основной части хромосомы так называемый спутник. Концевые участки хромосом называются теломерами. Теломеры препятствуют слипанию концов хромосом и обеспечивают их прикрепление к оболочке ядра в неделящейся клетке. В начале деления хромосомы удвоены и состоят из двух дочерних хромосом — хроматид, скрепленных в центромере.

По форме различают равноплечие, неравноплечие и палочковидные хромосомы. Размеры хромосом существенно варьируют, однако средняя хромосома имеет размеры 5 $×$ 1,4 мкм.

В некоторых случаях хромосомы в результате многочисленных удвоений ДНК содержат сотни и тысячи хроматид: такие гигантские хромосомы называются политенными. Они встречаются в слюнных железах личинок дрозофилы, а также в пищеварительных железах аскариды.

Число хромосом и их видовое постоянство. Соматические и половые клетки

Согласно клеточной теории клетка является единицей строения, жизнедеятельности и развития организма. Таким образом, такие важнейшие функции живого, как рост, размножение и развитие организма обеспечиваются на клеточном уровне. Клетки многоклеточных организмов можно разделить на соматические и половые.

Соматические клетки — это все клетки тела, образующиеся в результате митотического деления.

Изучение хромосом позволило установить, что для соматических клеток организма каждого биологического вида характерно постоянное число хромосом. Например, у человека их 46. Набор хромосом соматических клеток называют диплоидным (2n), или двойным.

Половые клетки, или гаметы, — это специализированные клетки, служащие для полового размножения.

В гаметах содержится всегда вдвое меньше хромосом, чем в соматических клетках (у человека — 23), поэтому набор хромосом половых клеток называется гаплоидным (n), или одинарным. Его образование связано с мейотическим делением клетки.

Количество ДНК соматических клеток обозначается как 2c, а половых — 1с. Генетическая формула соматических клеток записывается как 2n2c, а половых — 1n1с.

В ядрах некоторых соматических клеток количество хромосом может отличаться от их количества в соматических клетках. Если это различие больше на один, два, три и т. д. гаплоидных набора, то такие клетки называют полиплоидными (три-, тетра-, пентаплоидными соответственно). В таких клетках процессы метаболизма протекают, как правило, очень интенсивно.

Количество хромосом само по себе не является видоспецифическим признаком, поскольку различные организмы могут иметь равное количество хромосом, а родственные — разное. Например, у малярийного плазмодия и лошадиной аскариды по две хромосомы, а у человека и шимпанзе — 46 и 48 соответственно.

Хромосомы человека делятся на две группы: аутосомы и половые хромосомы (гетерохромосомы). Аутосом в соматических клетках человека насчитывается 22 пары, они одинаковы для мужчин и женщин, а половых хромосом только одна пара, но именно она определяет пол особи. Существует два вида половых хромосом — X и Y. Клетки тела женщины несут по две X-хромосомы, а мужчин — X и Y.

Кариотип — это совокупность признаков хромосомного набора организма (число хромосом, их форма и величина).

Условная запись кариотипа включает общее количество хромосом, половые хромосомы и возможные отклонения в наборе хромосом. Например, кариотип нормального мужчины записывается как 46, XY, а кариотип нормальной женщины — 46, XX.

Жизненный цикл клетки: интерфаза и митоз

Клетки не возникают каждый раз заново, они образуются только в результате деления материнских клеток. После разделения дочерним клеткам требуется некоторое время для формирования органоидов и приобретения соответствующей структуры, которая обеспечила бы выполнение определенной функции. Этот отрезок времени называется созреванием.

Промежуток времени от появления клетки в результате деления до ее разделения или гибели называется жизненным циклом клетки.

У эукариотических клеток жизненный цикл делится на две основные стадии: интерфазу и митоз.

Интерфаза — это промежуток времени в жизненном цикле, в который клетка не делится и нормально функционирует. Интерфаза делится на три периода: G1-, S- и G2-периоды.

G1-период (пресинтетический, постмитотический) — это период роста и развития клетки, в который происходит активный синтез РНК, белков и других веществ, необходимых для полного жизнеобеспечения вновь образовавшейся клетки. К концу этого периода клетка может начать готовиться к удвоению ДНК.

В S-периоде (синтетическом) происходит сам процесс репликации ДНК. Единственным участком хромосомы, который не подвергается репликации, является центромера, поэтому образовавшиеся молекулы ДНК не расходятся полностью, а остаются скрепленными в ней, и в начале деления хромосома имеет X-образный вид. Генетическая формула клетки после удвоения ДНК — 2n4c. Также в S-периоде происходит удвоение центриолей клеточного центра.

G2-период (постсинтетический, премитотический) характеризуется интенсивным синтезом РНК, белков и АТФ, необходимых для процесса деления клетки, а также разделением центриолей, митохондрий и пластид. До конца интерфазы хроматин и ядрышко остаются хорошо различимыми, целостность ядерной оболочки не нарушается, а органоиды не изменяются.

Часть клеток организма способна выполнять свои функции в течение всей жизни организма (нейроны нашего головного мозга, мышечные клетки сердца), а другие существуют непродолжительное время, после чего погибают (клетки кишечного эпителия, клетки эпидермиса кожи). Следовательно, в организме должны постоянно происходить процессы деления клеток и образования новых, которые замещали бы отмершие. Клетки, способные к делению, называют стволовыми. В организме человека они находятся в красном костном мозге, в глубоких слоях эпидермиса кожи и других местах. Используя эти клетки, можно вырастить новый орган, добиться омоложения, а также клонировать организм. Перспективы использования стволовых клеток совершенно ясны, однако морально-этические аспекты этой проблемы все еще обсуждаются, поскольку в большинстве случаев используются эмбриональные стволовые клетки, полученные из убитых при аборте зародышей человека.

Продолжительность интерфазы в клетках растений и животных составляет в среднем 10– 20 часов, тогда как митоз занимает около 1–2 часов.

В ходе последовательных делений в многоклеточных организмах дочерние клетки становятся все более разнообразными, поскольку в них происходит считывание информации со все большего числа генов.

Некоторые клетки со временем перестают делиться и погибают, что может быть связано с завершением выполнения определенных функций, как в случае клеток эпидермиса кожи и клеток крови или с повреждением этих клеток факторами окружающей среды, в частности возбудителями болезней. Генетически запрограммированная смерть клетки называется апоптозом, тогда как случайная гибель — некрозом.

Митоз — деление соматических клеток. Фазы митоза

Митоз — способ непрямого деления соматических клеток.

Во время митоза клетка проходит ряд последовательных фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, как и в материнской клетке.

Митоз делится на четыре основные фазы: профазу, метафазу, анафазу и телофазу. Профаза — наиболее длительная стадия митоза, в процессе которой происходит конденсация хроматина, в результате чего становятся видны X-образные хромосомы, состоящие из двух хроматид (дочерних хромосом). При этом исчезает ядрышко, центриоли расходятся к полюсам клетки, и начинает формироваться ахроматиновое веретено (веретено деления) из микротрубочек. В конце профазы ядерная оболочка распадается на отдельные пузырьки.

В метафазе хромосомы выстраиваются по экватору клетки своими центромерами, к которым прикрепляются микротрубочки полностью сформированного веретена деления. На этой стадии деления хромосомы наиболее уплотнены и имеют характерную форму, что позволяет изучить кариотип.

В анафазе происходит быстрая репликация ДНК в центромерах, вследствие которой хромосомы расщепляются и хроматиды расходятся к полюсам клетки, растягиваемые микротрубочками. Распределение хроматид должно быть абсолютно равным, поскольку именно этот процесс обеспечивает поддержание постоянства числа хромосом в клетках организма.

На стадии телофазы дочерние хромосомы собираются на полюсах, деспирализуются, вокруг них из пузырьков формируются ядерные оболочки, а во вновь образовавшихся ядрах возникают ядрышки.

После деления ядра происходит деление цитоплазмы — цитокинез, в ходе которого и происходит более или менее равномерное распределение всех органоидов материнской клетки.

Таким образом, в результате митоза из одной материнской клетки образуется две дочерних, каждая из которых является генетической копией материнской (2n2c).

В больных, поврежденных, стареющих клетках и специализированных тканях организма может происходить несколько иной процесс деления — амитоз. Амитозом называют прямое деление эукариотических клеток, при котором не происходит образования генетически равноценных клеток, так как клеточные компоненты распределяются неравномерно. Он встречается у растений в эндосперме, а у животных — в печени, хрящах и роговице глаза.

Мейоз. Фазы мейоза

Мейоз — это способ непрямого деления первичных половых клеток (2n2с), в результате которого образуются гаплоидные клетки (1n1с), чаще всего половые.

В отличие от митоза, мейоз состоит из двух последовательных делений клетки, каждому из которых предшествует интерфаза. Первое деление мейоза (мейоз I) называется редукционным, так как при этом количество хромосом уменьшается вдвое, а второе деление (мейоз II) — эквационным, так как в его процессе количество хромосом сохраняется.

Интерфаза I протекает подобно интерфазе митоза. Мейоз I делится на четыре фазы: профазу I, метафазу I, анафазу I и телофазу I. В профазе I происходят два важнейших процесса — конъюгация и кроссинговер. Конъюгация — это процесс слияния гомологичных (парных) хромосом по всей длине. Образовавшиеся в процессе конъюгации пары хромосом сохраняются до конца метафазы I.

Кроссинговер — взаимный обмен гомологичными участками гомологичных хромосом. В результате кроссинговера хромосомы, полученные организмом от обоих родителей, приобретают новые комбинации генов, что обусловливает появление генетически разнообразного потомства. В конце профазы I, как и в профазе митоза, исчезает ядрышко, центриоли расходятся к полюсам клетки, а ядерная оболочка распадается.

В метафазе I пары хромосом выстраиваются по экватору клетки, к их центромерам прикрепляются микротрубочки веретена деления.

В анафазе I к полюсам расходятся целые гомологичные хромосомы, состоящие из двух хроматид.

В телофазе I вокруг скоплений хромосом у полюсов клетки образуются ядерные оболочки, формируются ядрышки.

Цитокинез I обеспечивает разделение цитоплазм дочерних клеток.

Образовавшиеся в результате мейоза I дочерние клетки (1n2c) генетически разнородны, поскольку их хромосомы, случайным образом разошедшиеся к полюсам клетки, содержат неодинаковые гены.

Сравнительная характеристика митоза и мейоза

Признак Митоз Мейоз
Какие клетки вступают в деление? Соматические (2n) Первичные половые клетки (2n)
Число делений 1 2
Сколько и каких клеток образуется в процессе деления? 2 соматические (2n) 4 половые (n)
Интерфаза Подготовка клетки к делению, удвоение ДНК Подготовка клетки к делению, удвоение ДНК Очень короткая, удвоения ДНК не происходит
Фазы   Мейоз I Мейоз II
Профаза Конденсация хромосом, исчезновение ядрышка, распад ядерной оболочки Конденсация хромосом, исчезновение ядрышка, распад ядерной оболочки, могут происходить конъюгация и кроссинговер Конденсация хромосом, исчезновение ядрышка, распад ядерной оболочки
Метафаза Хромосомы выстраиваются по экватору, формируется веретено деления По экватору располагаются пары хромосом, формируется веретено деления Хромосомы выстраиваются по экватору, формируется веретено деления
Анафаза К полюсам расходятся хроматиды К полюсам расходятся гомологичные хромосомы из двух хроматид К полюсам расходятся хроматиды
Телофаза Хромосомы деспирализуются, формируются новые ядерные оболочки и ядрышки Хромосомы деспирализуются, формируются новые ядерные оболочки и ядрышки Хромосомы деспирализуются, формируются новые ядерные оболочки и ядрышки

Интерфаза II очень короткая, так как в ней не происходит удвоения ДНК, то есть отсутствует S-период.

Мейоз II также делится на четыре фазы: профазу II, метафазу II, анафазу II и телофазу II. В профазе II протекают те же процессы, что и в профазе I, за исключением конъюгации и кроссинговера.

В метафазе II хромосомы располагаются вдоль экватора клетки.

В анафазе II хромосомы расщепляются в центромерах и к полюсам растягиваются уже хроматиды.

В телофазе II вокруг скоплений дочерних хромосом формируются ядерные оболочки и ядрышки.

После цитокинеза II генетическая формула всех четырех дочерних клеток — 1n1c, однако все они имеют различный набор генов, что является результатом кроссинговера и случайного сочетания хромосом материнского и отцовского организмов в дочерних клетках.

Развитие половых клеток у растений и животных

Гаметогенез (от греч. гамете — жена, гаметес — муж и генезис — происхождение, возникновение) — это процесс образования зрелых половых клеток.

Так как для полового размножения чаще всего необходимы две особи — женская и мужская, продуцирующие различные половые клетки — яйцеклетки и спермии, то и процессы образования этих гамет должны быть различны.

Характер процесса в существенной степени зависит и от того, происходит ли он в растительной или животной клетке, поскольку у растений при образовании гамет происходит только митоз, а у животных — и митоз, и мейоз.

Развитие половых клеток у растений. У покрытосеменных растений образование мужских и женских половых клеток происходит в различных частях цветка — тычинках и пестиках соответственно.

Перед образованием мужских половых клеток — микрогаметогенезом (от греч. микрос — маленький) — происходит микроспорогенез, то есть формирование микроспор в пыльниках тычинок. Этот процесс связан с мейотическим делением материнской клетки, в результате которого возникают четыре гаплоидные микроспоры. Микрогаметогенез сопряжен с митотическим делением микроспоры, дающим мужской гаметофит из двух клеток — крупной вегетативной (сифоногенной) и мелкой генеративной. После деления мужской гаметофит покрывается плотными оболочками и образует пыльцевое зерно. В некоторых случаях еще в процессе созревания пыльцы, а иногда только после переноса на рыльце пестика генеративная клетка делится митотически с образованием двух неподвижных мужских половых клеток — спермиев. Из вегетативной клетки после опыления формируется пыльцевая трубка, по которой спермии проникают в завязь пестика для оплодотворения.

Развитие женских половых клеток у растений называется мегагаметогенезом (от греч. мегас — большой). Он происходит в завязи пестика, чему предшествует мегаспорогенез, в результате которого из материнской клетки мегаспоры, лежащей в нуцеллусе, путем мейотического деления формируются четыре мегаспоры. Одна из мегаспор трижды делится митотически, давая женский гаметофит — зародышевый мешок с восемью ядрами. При последующем обособлении цитоплазм дочерних клеток одна из образовавшихся клеток становится яйцеклеткой, по бокам от которой лежат так называемые синергиды, на противоположном конце зародышевого мешка формируются три антипода, а в центре в результате слияния двух гаплоидных ядер образуется диплоидная центральная клетка.

Развитие половых клеток у животных. У животных различают два процесса образования половых клеток — сперматогенез и овогенез.

Сперматогенез (от греч. сперма, сперматос — семя и генезис — происхождение, возникновение) — это процесс образования зрелых мужских половых клеток — сперматозоидов. У человека он протекает в семенниках, или яичках, и делится на четыре периода: размножение, рост, созревание и формирование.

В период размножения первичные половые клетки делятся митотически, вследствие чего образуются диплоидные сперматогонии. В период роста сперматогонии накапливают питательные вещества в цитоплазме, увеличиваются в размерах и превращаются в первичные сперматоциты, или сперматоциты 1-го порядка. Лишь после этого они вступают в мейоз (период созревания), в результате которого образуется сначала два вторичных сперматоцита, или сперматоцита 2-го порядка, а затем — четыре гаплоидных клетки с еще достаточно большим количеством цитоплазмы — сперматиды. В период формирования они утрачивают почти всю цитоплазму и формируют жгутик, превращаясь в сперматозоиды.

Сперматозоиды, или живчики, — очень мелкие подвижные мужские половые клетки, имеющие головку, шейку и хвостик.

В головке, кроме ядра, находится акросома — видоизмененный комплекс Гольджи, обеспечивающий растворение оболочек яйцеклетки в процессе оплодотворения. В шейке находятся центриоли клеточного центра, а основу хвостика образуют микротрубочки, непосредственно обеспечивающие движение сперматозоида. В нем также расположены митохондрии, обеспечивающие сперматозоид энергией АТФ для движения.

Овогенез (от греч. оон — яйцо и генезис — происхождение, возникновение) — это процесс образования зрелых женских половых клеток — яйцеклеток. У человека он происходит в яичниках и состоит из трех периодов: размножения, роста и созревания. Периоды размножения и роста, аналогичные таковым в сперматогенезе, происходят еще во время внутриутробного развития. При этом из первичных половых клеток в результате митоза образуются диплоидные оогонии, которые превращаются затем в диплоидные первичные ооциты, или ооциты 1-го порядка. Мейоз и последующий цитокинез, протекающие в период созревания, характеризуются неравномерностью деления цитоплазмы материнской клетки, так что в итоге сначала получается один вторичный ооцит, или ооцит 2-го порядка, и первое полярное тельце, а затем из вторичного ооцита — яйцеклетка, сохраняющая весь запас питательных веществ, и второе полярное тельце, тогда как первое полярное тельце делится на два. Полярные тельца забирают избыток генетического материала.

У человека яйцеклетки вырабатываются с промежутком 28–29 суток. Цикл, связанный с созреванием и выходом яйцеклеток, называется менструальным.

Яйцеклетка — крупная женская половая клетка, которая несет не только гаплоидный набор хромосом, но и значительный запас питательных веществ для последующего развития зародыша.

Яйцеклетка у млекопитающих покрыта четырьмя оболочками, снижающими вероятность ее повреждения различными факторами. Диаметр яйцеклетки у человека достигает 150–200 мкм, тогда как у страуса он может составлять несколько сантиметров.

Деление клетки — основа роста, развития и размножения организмов. Роль митоза и мейоза

Если у одноклеточных организмов деление клетки приводит к увеличению количества особей, т. е. размножению, то у многоклеточных этот процесс может иметь различное значение. Так, деление клеток зародыша, начиная с зиготы, является биологической основой взаимосвязанных процессов роста и развития. Подобные же изменения наблюдаются у человека в подростковом возрасте, когда число клеток не только увеличивается, но и происходит качественное изменение организма. В основе размножения многоклеточных организмов также лежит деление клетки, например при бесполом размножении благодаря этому процессу из части организма происходит восстановление целостного, а при половом — в процессе гаметогенеза образуются половые клетки, дающие впоследствии новый организм. Следует отметить, что основные способы деления эукариотической клетки — митоз и мейоз — имеют различное значение в жизненных циклах организмов.

В результате митоза происходит равномерное распределение наследственного материала между дочерними клетками — точными копиями материнской. Без митоза было бы невозможным существование и рост многоклеточных организмов, развивающихся из единственной клетки — зиготы, поскольку все клетки таких организмов должны содержать одинаковую генетическую информацию.

В процессе деления дочерние клетки становятся все более разнообразными по строению и выполняемым функциям, что связано с активацией у них все новых групп генов вследствие межклеточного взаимодействия. Таким образом, митоз необходим для развития организма.

Этот способ деления клеток необходим для процессов бесполого размножения и регенерации (восстановления) поврежденных тканей, а также органов.

Мейоз, в свою очередь, обеспечивает постоянство кариотипа при половом размножении, так как уменьшает вдвое набор хромосом перед половым размножением, который затем восстанавливается в результате оплодотворения. Кроме того, мейоз приводит к появлению новых комбинаций родительских генов благодаря кроссинговеру и случайному сочетанию хромосом в дочерних клетках. Благодаря этому потомство получается генетически разнообразным, что дает материал для естественного отбора и является материальной основой эволюции. Изменение числа, формы и размеров хромосом, с одной стороны, может привести к появлению различных отклонений в развитии организма и даже его гибели, а с другой — может привести к появлению особей, более приспособленных к среде обитания.

Таким образом, клетка является единицей роста, развития и размножения организмов.

Генетическая информация в клетке — один из разделов общей биологии. Школьники обзорно проходят его в 9 классе, а затем более подробно в 10-11. Несмотря на это, задания из ЕГЭ по этой теме вызывают много вопросов. Самые частые проблемы — неумение писать различные виды РНК по данной матрице, а также незнание таких терминов, как гаплоидные и диплоидные клетки. В статье рассмотрим теоретические моменты, а также разберемся, как решать задание 3 из ЕГЭ по биологии. Если вы хотите более подробно изучить задание 3 по биологии и другие номера, отправляйтесь на курсы подготовки в Москве. Во время занятий преподаватели разбирают каждую тему, благодаря чему вы будете глубже разбираться в предмете. 

Что проверяется в задании 3

3 задание из ЕГЭ по биологии представляет собой текстовую задачу. Чтобы решить ее, нужно провести несложные вычисления. Ответ — целое число. Иногда при расчетах получается дробь, в таком случае ее нужно округлить. Номер касается 2 разделов: генетики и цитологии. Необходимо знать следующие темы: 

  • гены и генетический код;
  • репликация ДНК;
  • биосинтез белка;
  • строение и свойства хромосом;
  • видовое постоянство хромосом;
  • жизненный цикл. 

Теория по цитологии

Теория по цитологииПервый вопрос теории для ЕГЭ — гены. Под этим термином понимают единицу генетической информации, то есть участок молекулы ДНК, кодирующий структуру одного белка. Ученые установили, что в человеческом организме 25-30 тысяч генов, однако большинство из них являются вспомогательными. Они запускают или останавливают процесс считывания генетической информации, поэтому называются регуляторными. Кодирующие белки — структурные. Генетическим кодом называется особая последовательность ДНК. За нее отвечают нуклеотиды, собранные в группы по 3 штуки (триплеты). Каждый триплет кодирует только одну аминокислоту, но у большинства аминокислот есть несколько соответствующих им триплетов. Для решения задач на генетический код используется таблица. 

Следующий процесс, важный для разбора 3 задания ЕГЭ по биологии — репликация ДНК. Она происходит во время деления клетки. Все дочерние единицы должны иметь одинаковый генетический материал, поэтому в природе используются механизм, допускающий минимальное количество погрешностей. Двухцепочечная ДНК распадается, после чего на каждой половине синтезируется новая молекула. Это происходит по принципу комплементарности, открытому Чаргаффом: напротив аденина (А) встает тимин (Т), а напротив гуанина (Г) — цитозин (Ц). В РНК тимина нет, его заменяет урацил (У). Другой процесс — биосинтез белка, состоящий из 2 этапов: 

  1. транскрипция. Это «переписывание» генетической информации с матрицы ДНК на иРНК. В нем участвует только одна из цепочек, а сам процесс происходит в ядре;
  2. трансляция. Генетическая информация с иРНК превращается в полипептидную молекулу. Трансляция идет в рибосомах при участии тРНК, которые приносят отдельные аминокислоты в органоид.

Теория по генетике

Мы разобрали теорию 3 задания по биологии из раздела цитологии. Теперь переходим к генетике. Основное понятие — хромосома. Под ним понимают часть ядра, которая содержит гены, является хранителем и переносчиком генетической информации. Состоит из молекулы ДНК и белков, образующих саму структуру. Хромосома способна удваиваться. Во время деления клетки она увеличивается, и можно увидеть ее составные части: перетяжку-центромеру и образованные ей плечи. В начале деления хромосома состоит из двух частей — хроматид. Число хромосом у каждого вида постоянно. Например, у человека их 46. Это диплоидный набор, характерный для соматических клеток (клеток тела). Обозначается 2n2c. Гаплоидный набор — nc, то есть уменьшенный в два раза. Он наблюдается у половых клеток. 

Последний вопрос по теме «Генетическая информация в клетке» — жизненный цикл. Клетки не возникают сами по себе, а образуются в результате деления. Время от появления клетки до ее смерти или разделения называется жизненным циклом. Самый длинный его период — интерфаза (10-20 часов). Это время обычного функционирования. Состоит из 3 периодов:

  1. пресинтетический. Накапливаются белки и полезные вещества, идет подготовка к удвоению ДНК;
  2. синтетический. Происходит репликация ДНК, формула клетки — 2n4c;
  3. постсинтетический. Делятся центриоли, митохондрии и пластиды, ядрышко становится крупным и хорошо заметным. 

Различают 2 вида деления — митоз (соматические клетки) и мейоз (половые). Подробное описание этих процессов для 3 задания по биологии не нужно, его рассматривают при комплексной подготовке на курсах. Составим таблицу с краткой характеристикой.

Признак сравнения

Митоз

Мейоз

Какие клетки вступают

Соматические 2n2c

Первичные половые 2n2c

Сколько делений

1

2 (редукционное и митотическое)

Какие клетки образуются 

2 диплоидных 2n2c

4 гаплоидных nc

Примеры из ЕГЭ

примеры из егэ генетическая информация

Посмотрим решение 3 задания из ЕГЭ по биологии. 

Задание 1. В эпителиальной клетке человека содержится 46 хромосом. Сколько хромосом в яйцеклетке? 

Решение. Эпителиальная ткань образована соматическими клетками, то есть 46 — это 2n. Яйцеклетка — половая клетка с гаплоидным набором хромосом. 46 / 2 = 23 хромосомы. 

Ответ: 23.

Задание 2. ДНК содержит 210 нуклеотидов. Сколько аминокислот в ней закодировано? 

Решение. Аминокислоты кодируются иРНК. Она списывается с ДНК, следовательно, количество нуклеотидов будет таким же — 210. 3 нуклеотида кодируют одну аминокислоту, число из условия нужно разделить на 3: 210 / 3 = 70.

Ответ: 70. 

Теперь вы знаете, как решать задание 3 из ЕГЭ по биологии. Мы изучили основную теорию и провели разбор номера. Краткий конспект, представленный в статье, поможет вам в подготовке. Но не забывайте, что в теоретических вопросах по цитологии и генетике спрашивают намного больше. Чтобы правильно выполнить их, нужно уделить внимание самоподготовке или записаться на курсы. Мы уверены, что вы справитесь!

Видеоурок 1: Генетический код. Транскрипция

Видеоурок 2: Генетический код. Трансляция

Лекция: Генетическая информация в клетке

Генетическая информация

Генетическая информация – важнейший признак организма, определяющий все его качества – внешний вид, химическую структуру, жизненные циклы и приспособленность к среде обитания.

Единицей этой информации является ген – часть молекулы ДНК, в которой записана структура одного белка.

Каждый живой организм синтезирует собственные белки, которые управляют им, обеспечивают скорость химических реакций в клетках, защищают, переносят необходимые вещества. Жизнь недаром называется белковой формой существования материи.

Основными свойствами генетической информации являются:

  • ее уникальность для каждого организма (кроме размножающихся бесполыми способами);

  • возможность ее изменения путем мутаций и комбинирования геномов при половом размножении;

  • возможность ее реализации путем синтеза белков.

Генетический код

Генетическая информация распространяется от ДНК к РНК и далее к синтезу белков, в настоящее время наука не знает примеров обратной передачи, кроме некоторых вирусов и раковых клеток.

На одной молекуле ДНК записана информация о сотнях тысяч белков. На сегодня наука оценивает количество наследственной информации человека в 30 тыс. генов. Каждый ген кодирует один белок. Информация на нити ДНК записана самой последовательностью нуклеотидов.

В синтезе белков используются 20 аминокислот, каждая из которых кодируется последовательностью из трех азотистых оснований нити ДНК, называемой триплетом. К 1965 году ученые расшифровали генетический код. Оказалось, что существует 61 триплет для кодировки аминокислот и 3 стоп-триплета, которые означают конец гена. Многим аминокислотам соответствует по нескольку триплетов.

Свойствами генетического кода являются:

  • Непрерывность. Молекула ДНК является однородной, состоящей только из нуклеотидов на всей своей длине. Роль знаков препинания при переходе от одного гена к другому играют стоп-триплеты.

  • Триплетность. Информационной единицей кода является порядок из трех нуклеотидов.

  • Однозначность. Каждому кодону (триплету) соответствует конкретная аминокислота.

  • Избыточность или вырожденность – одной аминокислоте соответствует несколько триплетов.

  • Универсальность. Геном работает абсолютно одинаково у всех живых организмов.

Транскрипция и трансляция белка

Синтез белков – это сложный многоэтапный процесс, основными его этапами являются:

  • транскрипция – считывание и копирование гена в структуру информационной РНК;

  • трансляция – использование и-РНК в качестве матрицы, по которой собирается молекула белка.

Транскрипция происходит в ядре – фермент РНК-полимераза присоединяется к специальному участку ДНК, который называется «промотор» и начинает двигаться по нему. 

При этом двойная спираль расплетается перед полимеразой на расстояние примерно 18 нуклеотидов, а затем снова сплетается позади нее. Двигаясь вдоль цепочки ДНК, РНК-полимераза собирает по принципу комплементарности молекулу информационной или матричной РНК. Длина цепочки мРНК может достигать почти 2,5 млн нуклеотидов. Процесс транскрипции заканчивается, когда РНК-полимераза встречает участок цепи ДНК, названный «терминатором».

Когда молекула мРНК собрана, она подвергается «созреванию» – метилированию, удалению некодирующих белок участков молекулы (процесс назван сплайсингом). После этого зрелая мРНК выходит через поры ядра в цитоплазму и с помощью специальных белков транспортируется к рибосомам.

Рибосома – это нуклеопротеид, комплекс, содержащий рибосомную РНК в виде магниевой ее соли и белок. 

Матричная РНК присоединяется к рибосоме. Рибосома распознает последовательности нуклетидов по трое – считывает кодон, тут же выбирая подходящую аминокислоту из молекул, доставленных транспортной РНК. Рибосома двигается вдоль матричной РНК, подбирая и соединяя нужные молекулы и создавая таким образом цепочки аминокислот, которые являются первичной структурой белка.

Нуклеиновые кислоты являются важнейшей частью жизни. Их синтез различается в зависимости от типа НК.

ДНК синтезируется на начальном этапе деления клетки, когда двойная ее спираль раскручивается. Специальные белки удерживают ее нити в полностью или частично разведенном состоянии. В местах образования репликационной вилки активизируется специальный тип РНК-полимеразы, создающей начальные участки молекулы, которые потом передаются ДНК-полимеразе – ферменту, комплементарно дополняющему участки цепи ДНК. Этот фермент достраивает недостающую половину двойной молекулы, создавая вторую цепочку ДНК. В этом же время другая молекула фермента строит зеркально недостающую цепочку на второй из разведенных цепочек ДНК.

Разные виды РНК создаются РНК-полимеразами различных типов:

  • матричная – в ядре, на участках молекулы ДНК;

  • рибосомная – в ядрышке (которое является молекулярным комплексом из белков и рибонуклеопротеидов, находящимся на некоторых участках ДНК);

  • транспортная  – в нуклеоплазме.

Все виды РНК синтезируются по матричному принципу на участках ДНК.

Предмет генетики

Генетика (греч. γενητως — порождающий, происходящий от кого-то) — наука о наследственности и изменчивости. Это определение
отлично соответствует афоризму А.П. Чехова «Краткость — сестра таланта». В словах наследственность и изменчивость скрыта
вся сущность генетики, к изучению которой мы приступаем.

Грегор Мендель

Наследственность подразумевает возможность передачи из поколения в поколение различных признаков и свойств, общих
особенностей развития. Это происходит благодаря способности ДНК к самоудвоению (репликации) и дальнейшему равномерному
распределению генетического материала.

Изменчивость подразумевает способность организмов приобретать новые признаки, которые отличают их от родительских особей.
Вследствие этого формируется материал для главного направленного фактора эволюции — естественного отбора, который
отбирает наиболее приспособленных особей.

Мы с вами — истинное чудо генетики :) Очевидно, что в чем-то мы схожи с собственными родителями, в чем-то отличаемся от них.
Гены, которые собраны в нас, уже миллионы лет передаются из поколения в поколение, в каждом поколении совершая
чудо вновь и вновь.

Отец и сын в одинаковом возрасте

Ген и генетический код

Ген — участок молекулы ДНК, кодирующий последовательность аминокислот для синтеза одного белка. Генетическая информация
в ДНК реализуется с помощью процессов транскрипции и трансляции, изученных нами ранее.

Ген

В одной молекуле ДНК зашифрованы сотни тысяч различных белков. Все наши соматические клетки имеют одну и ту же молекулу ДНК.
Задумайтесь: почему же в таком случае клетки кожи отличаются от клеток печени, миоцитов, клеток эпителия рта — ведь ДНК везде
одинакова!

Это происходит потому, что в разных клетках одни гены «выключены», а другие «активны»: транскрипция идет только
с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.

Разнообразие клеток в организме

Способ кодирования последовательности аминокислот в белке с помощью генов — универсальный способ для всех живых организмов,
доказывающий единство их происхождения. Выделяют следующие свойства генетического кода:

  • Триплетность
  • Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются
    нонсенс кодонами (стоп-кодонами)

  • Непрерывность (компактность)
  • Информация считывается непрерывно — внутри гена нет знаков препинания: так как ген кодирует один белок, то было бы
    нецелесообразно разделять его на части. Стоп-кодоны — «знаки препинания» — есть между генами, которые кодируют разные белки.

  • Неперекрываемость
  • Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного
    триплета.

  • Специфичность (однозначность)
  • Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.

  • Избыточность (вырожденность)
  • Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)

    Таблица генетического кода

  • Коллинеарность (лат. con — вместе и linea — линия)
  • Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.

  • Однонаправленность
  • Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе
    трансляции.

    Генетический код

  • Универсальность
  • Генетический код един для всех живых организмов, что свидетельствует о единстве происхождения всего живого.

Аллельные гены

Аллельные гены (греч. allélon — взаимно) — гены, занимающие одинаковое положение в локусах гомологичных хромосом и
отвечающие за развитие одного и того же признака. Такими признаками могут являться: цвет глаз (карий и голубой), владение рукой (праворукость и леворукость), тип волос (вьющиеся и прямые волосы).

Локусом (лат. locus — место) — в генетике обозначают положение определенного гена в хромосоме.

Аллельные гены

Обратите внимание, что гены всегда парные, по этой причине генотип должен быть записан двумя генами — AA, Aa, aa. Писать
только один ген было бы ошибкой.

Признаки бывают доминантными (от лат. dominus — господствующий), которые проявляются у гибридов первого поколения, и рецессивными (лат. recessus — отступающий) — не проявляющимися. У человека доминантный признак — карий цвет глаз (ген — А),
рецессивный признак — голубой цвет глаз (ген — а). Именно поэтому у человека с генотипом Aa будет карий цвет глаз: А — доминантный аллель подавляет a — рецессивный аллель.

Доминантные и рецессивные признаки

Генотип организма (совокупность генов — AA, Aa, aa) может быть описан терминами:

  • Гомозиготный (в случае, когда оба гена либо доминантны, либо рецессивны) — AA, aa
  • Гетерозиготный (в случае, когда один ген доминантный, а другой — рецессивный) — Аа

Понять, какой признак является подавляемым — рецессивным, а какой подавляющим — доминантным, можно в результате основного метода
генетики — гибридологического, то есть путем скрещивания особей и изучения их потомства.

Гаметы

Гамета (греч. gamos — женщина в браке) — половая клетка, образующаяся в результате гаметогенеза (путем мейоза) и обеспечивающая
половое размножение организмов. Гамета (сперматозоид/яйцеклетка) имеет гаплоидный набор хромосом — n, при слиянии двух гамет набор восстанавливается до диплоидного — 2n.

Часто в генетических задачах требуется написать гаметы для особей с различным генотипом. Для правильного решения задачи
необходимо знать и понимать следующие правила:

  • В гаметах представлены все гены, составляющие гаплоидный набор хромосом — n
  • В каждую гамету попадает только одна хромосома из гомологичной пары
  • Число возможных вариантов гамет можно рассчитать по формуле 2i = n, где i — число генов в
    гетерозиготном состоянии в генотипе
  • К примеру для особи AABbCCDDEeFfGg количество гамет будет рассчитываться исходя из количества генов в гетерозиготном состоянии, которых в генотипе 4: Bb, Ee, Ff, Gg. Формула будет записана 24 = 16 гамет.

  • Одну гомологичную хромосому ребенок всегда получает от отца, другую — от матери
  • Организмы, у которых проявляется рецессивный признак — гомозиготны (аа). У гетерозигот (при полном доминировании) всегда проявляется доминантный
    ген (гетерозигота — Aa).

Осознайте изученные правила и посмотрите на картинку ниже. Здесь мы образуем гаметы для различных особей: AA, Aa, aa.
При решении генетических задач гаметы принято обводить в кружок, не следует повторяться при написании гамет — это ошибка.

К примеру, у особи «AA» мы напишем только одну гамету «А» и не будем повторяться, а у особи «Aa» напишем два типа гамет
«A» и «a», так как они различаются между собой.

Образование гамет

Гибридологический метод

Мы приступаем к изучению методологии генетики, то есть тех методов, которые использует генетика. Один из первых методов
генетики, предложенный самим Грегором Менделем — гибридологический.

Этот метод основан на скрещивании организмов между собой и дальнейшем анализе полученного потомства от данного скрещивания.
С помощью гибридологического метода возможно изучение наследственных свойств организмов, определение рецессивных и доминантных
генов.

Гибридологический метод

Цитогенетический метод

С помощью данного метода становится возможным изучение наследственного материала клетки. Врач-генетик может построить
карту хромосом пациента (кариотип) и на основании этого сделать вывод о наличии или отсутствии
наследственных заболеваний.

Если быть более точным, кариотипом называют совокупность признаков хромосом: строения, формы, размера и числа. При наследственных заболеваниях может быть нарушена структура хромосом (часто летальный исход), иногда нарушено их количество (синдром Дауна, Шерешевского-Тернера,
Клайнфельтера).

Цитогенетический метод исследования

Генеалогический метод (греч. γενεαλογία — родословная)

Генеалогический метод является универсальным методом медицинской генетики и основан на составлении родословных.
Человек, с которого начинают составление родословной — пробанд. В результате изучения родословной врач-генетик
может предположить вероятность возникновения тех или иных заболеваний.

Правила написания родословной

По мере изучения законов Менделя, хромосомной теории, я непременно буду обращать ваше внимание на родословные. Вы
научитесь видеть детали, по которым можно будет сказать об изучаемом признаке: «рецессивный он или доминантный?»,
«сцеплен с полом или не сцеплен?»

Генеалогический метод

На предложенной родословной в поколениях семьи хорошо прослеживается наследование не сцепленного с полом (аутосомного)
рецессивного признака (например, альбинизма). Это можно определить по ряду признаков, которые я в
следующих статьях научу вас видеть. Аутосомно-рецессивный тип наследования можно заподозрить, если:

  • Заболевание проявляется только у гомозигот
  • Родители клинически здоровы
  • Если больны оба родителя, то все их дети будут больны
  • В браке больного со здоровым рождаются здоровые дети (если здоровый не гетерозиготен)
  • Оба пола поражаются одинаково

Сейчас это может показаться сложным, но не волнуйтесь — решая генетические задачи вы сами «дойдете» до этих правил,
и через некоторое время они будут казаться вам очевидными.

Близнецовый метод

Применение близнецового метода в генетике — вопрос удачи. Ведь для этого нужны организмы, чьи генотипы похожи «один в один»:
такими являются однояйцевые близнецы, их появление подчинено случайности.

Близнецовый метод

Близнецовый метод изучает влияние наследственных факторов и внешней среды на формирование фенотипа — совокупности внешних и
внутренних признаков организма. К фенотипу относят физические черты: размеры частей тела, цвет кожи, форму и особенности
строения внутренних органов и т.д.

Часто изучению подвергают склонность к различным заболеваниям. Интересный факт: если психическое расстройство — шизофрения
— развивается у первого из однояйцевых близнецов, то у второго она возникает с вероятностью 90%. Таким образом, удается
сделать вывод о значительной доле наследственного фактора в развитии данного заболевания.

Гебефреническая шизофрения

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

«Гены. Генетический код»

Раздел ЕГЭ: 2.6. Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот



На Земле живет уже более 6 млрд людей. Если не считать 25-30 млн пар однояйцевых близнецов, то генетически все люди разные. Это означает, что каждый из них уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом и многими другими качествами. Чем же определяются такие различия между людьми? Конечно различиями в их генотипах, т.е. наборах генов данного организма. У каждого человека он уникален, так же как уникален генотип отдельного животного или растения. Но генетические признаки данного человека воплощаются в белках, синтезированных в его организме. Следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека. Вот почему возникает проблема пересадки органов, вот почему возникают аллергические реакции на продукты, укусы насекомых, пыльцу растений и т.д. Сказанное не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцевых близнецов), у которых все белки были бы одинаковы.

гены

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК — гене. Ген — это единица наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Кодирование наследственной информации происходит с помощью генетического кода. Код подобен всем известной азбуке Морзе, которая точками и тире кодирует информацию. Азбука Морзе универсальна для всех радистов, и различия состоят только в переводе сигналов на разные языки. Генетический код также универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены и кодирующих белки конкретных организмов.

Свойства генетического кода: триплетность, специфичность, универсальность, избыточность и неперекрываемость.

Итак, что же собой представляет генетический код? Изначально он состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности. Например, ААТ, ГЦА, АЦГ, ТГЦ и т.д. Каждый триплет нуклеотидов кодирует определенную аминокислоту, которая будет встроена в полипептидную цепь. Так, например, триплет ЦГТ кодирует аминокислоту аланин, а триплет ААГ — аминокислоту фенилаланин. Аминокислот 20, а возможностей для комбинаций четырех нуклеотидов в группы по три — 64. Следовательно, четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот. Вот почему одна аминокислота может кодироваться несколькими триплетами. Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

структура гена

Собственно генетическим кодом считается последовательность нуклеотидов в молекуле иРНК, ибо она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции). В состав иРНК входят нуклеотиды АЦГУ. Триплеты нуклеотидов иРНК называются кодонами. Уже приведенные примеры триплетов ДНК на иРНК будут выглядеть следующим образом — триплет ЦГТ на иРНК станет триплетом ГЦА, а триплет ДНК — ААГ — станет триплетом УУЦ. Именно кодонами иРНК отражается генетический код в записи. Итак, генетический код триплетен, универсален для всех организмов на земле, вырожден (каждая аминокислота шифруется более чем одним кодоном). Между генами имеются знаки препинания — это триплеты, которые называются стоп-кодонами. Они сигнализируют об окончании синтеза одной полипептидной цепи. Существуют таблицы генетического кода, которыми нужно уметь пользоваться, для расшифровки кодонов иРНК и построения цепочек белковых молекул (в скобках — комплементарные ДНК).

генетический код таблица

аминокислоты


Это конспект для 10-11 классов по теме «Гены. Генетический код».
Читайте также другие конспекты, относящиеся к разделу ЕГЭ 2.6:

  • Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот.
  • Вернуться в Кодификатор ЕГЭ.

Уважаемый посетитель!

Если у вас есть вопрос, предложение или жалоба, пожалуйста, заполните короткую форму и изложите суть обращения в текстовом поле ниже. Мы обязательно с ним ознакомимся и в  30-дневный срок ответим на указанный вами адрес электронной почты

Статус Абитуриент Студент Родитель Соискатель Сотрудник Другое

Филиал Абакан Актобе Алагир Алматы Алушта Анапа Ангарск Архангельск Армавир Асбест Астана Астрахань Атырау Баку Балхаш Барановичи Барнаул Белая Калитва Белгород Бельцы Берлин Бишкек Благовещенск Бобров Бобруйск Борисов Боровичи Бронницы Брянск Бузулук Чехов Челябинск Череповец Черкесск Дамаск Дербент Димитровград Дмитров Долгопрудный Домодедово Дубай Дубна Душанбе Екатеринбург Электросталь Елец Элиста Ереван Евпатория Гана Гомель Гродно Грозный Хабаровск Ханты-Мансийск Хива Худжанд Иркутск Истра Иваново Ижевск Калининград Карабулак Караганда Каракол Кашира Казань Кемерово Киев Кинешма Киров Кизляр Королев Кострома Красноармейск Краснодар Красногорск Красноярск Краснознаменск Курган Курск Кызыл Липецк Лобня Магадан Махачкала Майкоп Минеральные Воды Минск Могилев Москва Моздок Мозырь Мурманск Набережные Челны Нальчик Наро-Фоминск Нижневартовск Нижний Новгород Нижний Тагил Ногинск Норильск Новокузнецк Новосибирск Новоуральск Ноябрьск Обнинск Одинцово Омск Орехово-Зуево Орел Оренбург Ош Озёры Павлодар Пенза Пермь Петропавловск Подольск Полоцк Псков Пушкино Пятигорск Радужный Ростов-на-Дону Рязань Рыбинск Ржев Сальск Самара Самарканд Санкт-Петербург Саратов Сергиев Посад Серпухов Севастополь Северодвинск Щербинка Шымкент Слоним Смоленск Солигорск Солнечногорск Ставрополь Сургут Светлогорск Сыктывкар Сызрань Тамбов Ташкент Тбилиси Терек Тихорецк Тобольск Тольятти Томск Троицк Тула Тверь Тюмень Уфа Ухта Улан-Удэ Ульяновск Ургенч Усть-Каменогорск Вёшенская Видное Владимир Владивосток Волгодонск Волгоград Волжск Воркута Воронеж Якутск Ярославль Юдино Жлобин Жуковский Златоуст Зубова Поляна Звенигород

Тип обращения Вопрос Предложение Благодарность Жалоба

Тема обращения Поступление Трудоустройство Обучение Оплата Кадровый резерв Внеучебная деятельность Работа автоматических сервисов университета Другое

* Все поля обязательны для заполнения

Я даю согласие на обработку персональных данных, согласен на получение информационных рассылок от Университета «Синергия» и соглашаюсь c  политикой конфиденциальности



Скачать материал

Задание 3.Генетическая информация в клетке



Скачать материал

  • Сейчас обучается 27 человек из 18 регионов

Описание презентации по отдельным слайдам:

  • Задание 3.Генетическая информация в клетке

    1 слайд

    Задание 3.
    Генетическая информация в клетке

  • Задание проверяет знания основных законов генетики и цитологии. Чтобы решить...

    2 слайд

    Задание проверяет знания основных законов генетики и цитологии. Чтобы решить такое задание, необходимо знать генетико-цитологические особенности организации и функционирования жизни. Хранения и передачи наследственной информации.

  • Задание представляет собой текстовую задачу, которая решается с помощью арифм...

    3 слайд

    Задание представляет собой текстовую задачу, которая решается с помощью арифметических вычислений либо основных правил комплементарности генетического кода.
    В ответе надо записать целое число. Если при вычислении получится дробное число, его следует округлить до целого согласно основным правилам округления дробных чисел.

  • План выполнения

1. Внимательно прочитайте задачу
2.Проанализируйте о каком г...

    4 слайд

    План выполнения

    1. Внимательно прочитайте задачу
    2.Проанализируйте о каком генетическом процессе идет речь.
    3.Выполните необходимые вычисления на черновике.
    4.Запишите целое число в поле ответа КИМ и бланк ответов №1.

  • У плодовой мухи дрозофилы в соматических клетках содержится 8 хромосом, а в п...

    5 слайд

    У плодовой мухи дрозофилы в соматических клетках содержится 8 хромосом, а в половых клетках? В ответ запишите только соответствующее число.

  • Пояснение

Соматические (телесные) клетки животных содержат диплоидный набор...

    8 слайд

    Пояснение

    Соматические (телесные) клетки животных содержат диплоидный набор хромосом (2n), а половые клетки (яйцеклетки и сперматозоиды) — гаплоидный набор хромосом (n).

     В условии задания указан набор хромосом соматических клеток плодовой дрозофилы, т.е. диплоидный набор хромосом — 2n=8 хромосом. Следовательно, в половых клетках дрозофилы, содержащих гаплоидный набор (n), будет в два раза меньше — 2n:2=8:2=4 хромосомы.

    Ответ: 4.

  • Сколько нуклеотидов во фрагменте матричной цепи ДНК кодируют 55 аминокислот...

    9 слайд

    Сколько нуклеотидов во фрагменте матричной цепи ДНК кодируют 55 аминокислот во фрагменте полипептида? В ответе запишите только соответствующее число.

  • Необходимо помнить:

1.Каждая аминокислота кодируется тремя нуклеотидами(одни...

    13 слайд

    Необходимо помнить:

    1.Каждая аминокислота кодируется тремя нуклеотидами(одним триплетом или кодоном), поэтому количество кодирующих нуклеотидов всегда в три раза больше, а количество триплетов(кодонов)равно количеству аминокислот в белке.

  • Необходимо помнить:

2. каждая аминокислота доставляется к рибосомам одной тР...

    14 слайд

    Необходимо помнить:

    2. каждая аминокислота доставляется к рибосомам одной тРНК, следовательно, количество аминокислот в белке равно количеству молекул ТРНК, участвующих в синтезе белка.

  • Необходимо помнить:

3.Каждая тРНК имеет антикодон, комплементарный кодону иР...

    15 слайд

    Необходимо помнить:

    3.Каждая тРНК имеет антикодон, комплементарный кодону иРНК, поэтому количество антикодонов, а значит, и в целом молекул тРНК, равно количеству кодонов иРНК.

  • Необходимо помнить:

4.иРНК комплементарна одной из цепей ДНК, поэтому количе...

    16 слайд

    Необходимо помнить:

    4.иРНК комплементарна одной из цепей ДНК, поэтому количество нуклеотидов иРНК равно количеству нуклеотидов ДНК. Количество триплетов, разумеется, также будет одинаковым.

  • Пояснение
Одну аминокислоту в полипептиде кодируют три нуклеотида в матричной...

    17 слайд

    Пояснение
    Одну аминокислоту в полипептиде кодируют три нуклеотида в матричной цепи ДНК.

    1 аминокислоту кодируют 3 нуклеотида, 55 аминокислот кодируют 165 нуклеотидов (55×3=165).

    Ответ: 165.

  • В молекуле ДНК количество нуклеотидов с гуанином составляет 20% от общего чис...

    18 слайд

    В молекуле ДНК количество нуклеотидов с гуанином составляет 20% от общего числа. Сколько нуклеотидов в % с тимином в этой молекуле. В ответ запишите только соответствующее число.

  • Пояснение
Количество разных видов нуклеотидов (аденина, тимина, гуанина и цит...

    19 слайд

    Пояснение
    Количество разных видов нуклеотидов (аденина, тимина, гуанина и цитозина) в составе молекулы ДНК подчиняется правилу Чаргаффа: количество аденина равно количеству тимина, а гуанина — цитозину: А=Т, Г=Ц.

     Количество всех нуклеотидов ДНК составляет 100% (А+Т+Г+Ц=100%). Согласно правила Чаргаффа, количество гуанина равно количеству цитозина (Г=Ц=20%), а сумма количества гуанина и цитозина равна 40% (Г+Ц=40%). На тимин и аденин остается 60% (Т+А=100-(Г+Ц)=100-40=60%). А так как аденин и тимин содержатся в молекуле ДНК в равных количествах, то количество и аденина, и тимина составит по 30% (А=Т=60:2=30%).

    Ответ: 30.

  • В ядре соматической клетки тела человека в норме содержится 46 хромосом. Скол...

    20 слайд

    В ядре соматической клетки тела человека в норме содержится 46 хромосом. Сколько хромосом содержится в оплодотворённой яйцеклетке? В ответ запишите только соответствующее число.

  • Пояснение
Для соматических (все, кроме половых) клеток человека характерен ди...

    21 слайд

    Пояснение
    Для соматических (все, кроме половых) клеток человека характерен диплоидный набор хромосом (2n). Половые клетки (яйцеклетка и сперматозоид) имеют гаплоидный набор хромосом (n). Оплодотворенная яйцеклетка — это яйцеклетка (n) после слияния со сперматозоидом (n); она имеет диплоидный набор хромосом (2n) и называется зигота (одноклеточный зародыш).

    В ядре соматической клетки — 46 хромосом, что соответствует диплоидному набору хромосом (2n). Оплодотворенная яйцеклетка, как и соматическая, содержит диплоидный набор хромосом (2n), что соответствует 46 хромосомам.

    Ответ: 46.

  • Гамета пшеницы содержит 14 хромосом. Каково число хромосом в клетке её стебля...

    22 слайд

    Гамета пшеницы содержит 14 хромосом. Каково число хромосом в клетке её стебля? В ответ запишите только соответствующее число.

  • Пояснение
Соматические клетки покрытосеменных (цветковых) растений содержат д...

    23 слайд

    Пояснение
    Соматические клетки покрытосеменных (цветковых) растений содержат диплоидный набор хромосом (2n). Гаметы (половые клетки) растений и других организмов содержат гаплоидный набор хромосом (n).

    Поскольку гамета (половая клетка) пшеницы содержит 14 хромосом, что соответствует гаплоидному набору хромосом (n=14), то клетка её стебля, имеющая диплоидный набор хромосом (2n), содержит 28 хромосом (2n= 2х14 = 28.

    Ответ: 28.

  • Сколько полноценных гамет образуется в овогенезе у человека из одной исходной...

    24 слайд

    Сколько полноценных гамет образуется в овогенезе у человека из одной исходной клетки? В ответ запишите только соответствующее число.

  • Пояснение
Овогенез (или оогенез) — процесс образования женских половых клеток...

    25 слайд

    Пояснение
    Овогенез (или оогенез) — процесс образования женских половых клеток (яйцеклеток). В результате овогенеза из одной первичной женской половой клетки (оогония) образуется 1 полноценная зрелая (гамета) и 3 направильных тельца, которые редуцируются.

    В результате овогенеза из одной исходной клетки (оогония) образуется одна полноценная гамета (яйцеклетка).

    Ответ: 1.

  • Сколько аутосом содержится в сперматозоиде у человека? В ответ запишите тольк...

    26 слайд

    Сколько аутосом содержится в сперматозоиде у человека? В ответ запишите только соответствующее число.

  • Пояснение
Аутосомы — это хромосомы, одинаковые у женских и мужских организмов...

    27 слайд

    Пояснение
    Аутосомы — это хромосомы, одинаковые у женских и мужских организмов.
    Половые хромосомы — хромосомы, которыми различаются хромосомные наборы женских и мужских организмов.
    У человека в соматических клетках (с диплоидным набором хромосом) содержится всего 46 хромосом, из них 2 хромосомы половые (у женщин — две одинаковых: X и X, у мужчин — две разные: X и Y) и 44 — неполовые, или аутосомы.
    В половых клетках человека (с гаплоидным набором хромосом) находится 23 хромосомы, из них только одна половая (в яйцеклетках женщин — X, в сперматозоидах мужчин — либо X (50% сперматозоидов), либо Y (50% сперматозоидов)), а остальные 22 являются аутосомами (неполовыми хромосомами).

    В сперматозоиде человека — 22 аутосомы.

    Ответ: 22.

  • В молекуле ДНК количество нуклеотидов с гуанином составляет 30% от общего чис...

    28 слайд

    В молекуле ДНК количество нуклеотидов с гуанином составляет 30% от общего числа. Сколько нуклеотидов в % с тимином в этой молекуле?

  • Пояснение
Количество разных видов нуклеотидов (аденина, тимина, гуанина и цит...

    29 слайд

    Пояснение
    Количество разных видов нуклеотидов (аденина, тимина, гуанина и цитозина) в составе молекулы ДНК подчиняется правилу Чаргаффа: количество аденина равно количеству тимина, а гуанина — цитозину: А=Т, Г=Ц.

    Количество всех нуклеотидов ДНК составляет 100% (А+Т+Г+Ц=100%). Согласно правила Чаргаффа, количество гуанина равно количеству цитозина (Г=Ц=30%), а сумма количества гуанина и цитозина равна 60% (Г+Ц=60%). На тимин и аденин остается 40% (Т+А=100-(Г+Ц)=100-60=40%). А так как аденин и тимин содержатся в молекуле ДНК в равных количествах, то количество и аденина, и тимина составит по 20% (А=Т=40:2=20%).

    Ответ: 20.

  • Сколько аминокислот кодирует 900 нуклеотидов? В ответ запишите только соответ...

    30 слайд

    Сколько аминокислот кодирует 900 нуклеотидов? В ответ запишите только соответствующее число.

  • Пояснение
Генетический код триплетен — одну аминокислоту кодируют 3 нуклеотид...

    31 слайд

    Пояснение
    Генетический код триплетен — одну аминокислоту кодируют 3 нуклеотида.

    Поскольку три нуклеотида кодируют одну аминокислоту, то 900 нуклеотидов — кодируют 300 аминокислот (900:3=300).

    Ответ: 300.

  • В двух цепях молекулы ДНК насчитывается 3000 нуклеотидов. Информация о структ...

    32 слайд

    В двух цепях молекулы ДНК насчитывается 3000 нуклеотидов. Информация о структуре белка кодируется на одной из цепей. Подсчитайте сколько закодировано аминокислот на одной цепи ДНК. В ответ запишите только соответствующее количеству аминокислот число.

  • Пояснение
Одну аминокислоту кодирует три нуклеотида.

По условию задачи в дву...

    33 слайд

    Пояснение
    Одну аминокислоту кодирует три нуклеотида.

    По условию задачи в двух цепях молекулы ДНК — 3000 нуклеотидов, а одна цепь ДНК, соответственно, состоит из 1500 нуклеотидов (3000:2=1500). Поскольку три нуклеотида кодируют одну аминокислоту, то 1500 — кодируют 500 аминокислот (1500:3=500).

    Ответ: 500.

  • Какой триплет в тРНК комплементарен кодону ГЦУ на иРНК?

    34 слайд

    Какой триплет в тРНК комплементарен кодону ГЦУ на иРНК?

  • Пояснение
Антикодон иРНК по принципу комплементарности соответствует кодону и...

    35 слайд

    Пояснение
    Антикодон иРНК по принципу комплементарности соответствует кодону иРНК (А тРНК соответствует У на иРНК, У — А, Ц — Г, Г — Ц).

    Антикодон тРНК находится по принципу комплементарности с учётом антипараллельности кодона и антикодона. Кодон иРНК ГЦУ соответствует антикодону тРНК АГЦ.

    Ответ: ЦГА.

  • Какой антикодон транспортной РНК соответствует триплету ТГА в молекуле ДНК?

    36 слайд

    Какой антикодон транспортной РНК соответствует триплету ТГА в молекуле ДНК?

  • Пояснение
Триплету ДНК (матричной цепи, транскрибируемой цепи) соответствует...

    37 слайд

    Пояснение
    Триплету ДНК (матричной цепи, транскрибируемой цепи) соответствует по принципу комплементарности (А на ДНК соответствует У на иРНК, Т — соответствует А, Ц — Г, Г — Ц) кодон иРНК. Кодону иРНК, в свою очередь, по принципу комплементарности соответствует антикодон тРНК (А иРНК соответствует У на тРНК, У — А, Ц — Г, Г — Ц). При этом нужно учитывать, что в молекулах РНК нет тимина (Т), тимин (Т) во всех молекулах РНК заменен на урацил (У).

    Для решения задачи сначала по триплету ДНК по принципу комплементарности находим кодон иРНК: триплет ДНК ТГА соответствует кодону иРНК АЦУ. По найденному кодону иРНК находим комплементарный ему антикодон тРНК: кодону иРНК АЦУ соответствует антикодон тРНК УГА.

    ПРИМЕЧАНИЕ: в заданиях данного типа рассматриваются молекулы, участвующие в синтезе белка. Под молекулой ДНК подразумевается матричная (транскрибируемая) цепь ДНК.

     Ответ: УГА.

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 153 460 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Биология. Базовый уровень», Пономарева И.Н. и др.

Другие материалы

«Биология. Базовый уровень», Пономарева И.Н. и др.

«Биология. Базовый уровень», Пономарева И.Н. и др.

«Биология. Базовый уровень», Пономарева И.Н. и др.

Квест- игра «Биологическая мозаика»

  • Учебник: «Биология. Базовый уровень», Пономарева И.Н. и др.
  • Тема: § 18. Клеточный уровень организации живой материи и его роль в природе
  • 19.10.2020
  • 459
  • 12

«Биология. Базовый уровень», Пономарева И.Н. и др.

«Биология. Базовый уровень», Пономарева И.Н. и др.

  • 11.10.2020
  • 94
  • 0

«Биология. Базовый уровень», Пономарева И.Н. и др.

«Биология. Базовый уровень», Пономарева И.Н. и др.

«Биология. Базовый уровень», Пономарева И.Н. и др.

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Организация и руководство учебно-исследовательскими проектами учащихся по предмету «Биология» в рамках реализации ФГОС»

  • Курс повышения квалификации «Медико-биологические основы безопасности жизнедеятельности»

  • Курс повышения квалификации «Методические аспекты реализации элективного курса «Антропология и этнопсихология» в условиях реализации ФГОС»

  • Курс повышения квалификации «Государственная итоговая аттестация как средство проверки и оценки компетенций учащихся по биологии»

  • Курс повышения квалификации «Нанотехнологии и наноматериалы в биологии. Нанобиотехнологическая продукция»

  • Курс повышения квалификации «Основы биоэтических знаний и их место в структуре компетенций ФГОС»

  • Курс профессиональной переподготовки «Анатомия и физиология: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Гендерные особенности воспитания мальчиков и девочек в рамках образовательных организаций и семейного воспитания»

  • Курс профессиональной переподготовки «Биология и химия: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Организация производственно-технологической деятельности в области декоративного садоводства»

  • Курс повышения квалификации «Инновационные технологии обучения биологии как основа реализации ФГОС»

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Генетика человека егэ теория
  • Генетика человека егэ задачи
  • Генетика человека егэ биология задания
  • Генетика теория для егэ по биологии
  • Генетика с нуля для егэ

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии