Генератор вариантов егэ математика профиль

Для генерации нового варианта ЕГЭ по математике — просто обновите страницу.

Задачи

Отзывы учеников


  • Светлана Иванова

    К ЕГЭ по математике я готовилась сама, без репетитора. Ничего сверхъестественного я не делала: зубрила формулы и решала задачи на сайте ШпаргалкаЕГЭ.

    Вообще к части В я готовилась в основном в конце 10-го класса, в 11-ом я занималась только частью С. Мой результат — 75 баллов.


  • Влад Долгорукий

    Большое спасибо! Сервис нереально помог. К ЕГЭ готовился с репетитором. На занятиях использовали сайт для закрепления навыков решения различных типов задач, особенно части С. Всем рекомендую Генератор Вариантов.


  • Александр Шпик

    Hello People. Я продвигаю свою идеологию «Втопку книжки». Зайди в ВК или на сайт ShpargalkaEGE смотри ролики по задачам. Все, что не знаешь, включая самые мелочи конспектируй и учи. Не ленись закреплять результат. Мои баллы ЕГЭ — 82.

  

Тема 2 (Математика, 6 класс). Признаки делимости (7 типов заданий)

  • 2.1  Даны числа: 5125; 1622; 9330; 1616; 5495; 2352; 4115; 9920; 9820. Выпишите те из них, которые:
    а) не кратны 2
    б) делятся на 5
    в) делятся на 10.
    [Ответ: а) 5125; 5495; 4115; б) 5125; 9330; 5495; 4115; 9920; 9820; в) 9330; 9920; 9820.]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

  • 2.2  Даны числа: 1017; 4455; 5454; 4815; 819; 729; 3825; 6018; 5352. Выпишите те из них, которые:
    а) делятся на 3 и являются чётными
    б) кратны 9, но не кратны 2.
    [Ответ: а) 5454; 6018; 5352; б) 1017; 4455; 4815; 819; 729; 3825.]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

  • 2.5  На четырех карточках записаны цифры 5, 9, 0, 2.
    Какие четырехзначные числа, кратные 5, можно выложить из этих карточек? Выпишите все возможные варианты.
    [Ответ: 2095; 2590; 2905; 2950; 5290; 5920; 9025; 9205; 9250; 9520.]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

  • 2.6  Замените звёздочку в записи числа 474*, чтобы получилось число, кратное:

    а) 2;     б) 3;     в) 5;     г) 9;    д) 10.

    К каждому случаю укажите все возможные решения.
    [Ответ: а) 4740; 4742; 4744; 4746; 4748; б) 4740; 4743; 4746; 4749; в) 4740; 4745; г) 4743; д) 4740.]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

  

Тема 4 (Математика, 6 класс). Основное свойство дроби. Сокращение дробей (14 типов заданий)

  • 4.4  Среди приведенных равенств укажите верные:

    1)

    frac{10}{11} = frac{80}{88}

    2)

    frac{1}{4} = frac{2}{9}

    3)

    frac{4}{5} = frac{36}{45}

    4)

    frac{3}{4} = frac{6}{11}

    5)

    frac{4}{11} = frac{12}{33}

    6)

    frac{3}{5} = frac{24}{43}

    [Ответ: 135]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

  • 4.8  Сократите дробь frac{24}{228}.
    [Ответ: frac{2}{19}]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. Добавьте три задания в карточку (или количество, кратное трём), чтобы ученики смогли рассмотреть все возможные случаи, и чтобы сложность заданий для всех была одинаковой.

    Вы можете добавлять до 9 таких заданий.

  • 4.10  Представьте число 0.544 в виде обыкновенной несократимой дроби.
    [Ответ: frac{68}{125}]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. Добавьте чётное количество заданий в карточку, чтобы ученики смогли рассмотреть все возможные случаи, и чтобы сложность заданий для всех была одинаковой.

  • 4.14  Приведите дроби frac{1}{2} и frac{2}{3} к наименьшему общему знаменателю
    [Ответ: frac{3}{6} и frac{4}{6}]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. Добавьте чётное количество заданий в карточку, чтобы сложность заданий для всех была одинаковой.

  

Тема 5 (Математика, 6 класс). Сложение, вычитание, умножение, деление обыкновенных дробей (20 типов заданий)

    Сложение и вычитание обыкновенных дробей и смешанных чисел

    • 5.2  Вычислите, предварительно сократив дроби: frac{23}{46} + frac{51}{63}
      [Ответ: frac{55}{42}=1 frac{13}{42}]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

      Примечание для учителя. Добавьте чётное количество заданий в карточку, чтобы сложность заданий для всех была одинаковой.

    • 5.3  Выполните действия: frac{27}{28} + frac{1}{3} + frac{3}{4}
      [Ответ: frac{43}{21}=2 frac{1}{21}]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

      Примечание для учителя. Добавьте чётное количество заданий в карточку, чтобы сложность заданий для всех была одинаковой.

    • 5.4  Выполните действия, предварительно сократив дроби: frac{10}{20} + frac{99}{121} + frac{12}{72}
      [Ответ: frac{49}{33}=1 frac{16}{33}]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

      Примечание для учителя. Добавьте чётное количество заданий в карточку, чтобы сложность заданий для всех была одинаковой.

  

Тема 7 (Алгебра, 7 класс). Задачи из ОГЭ/ЕГЭ, решаемые с помощью линейных уравнений (8 типов заданий)

    Задачи на совместную работу

    • 7.1  Вася и Оля выполняют одинаковый тест. Вася отвечает за час на 15 вопросов теста, а Оля — на 25. Они одновременно начали отвечать на вопросы теста, и Вася закончил свой тест позже Оли на 48 минут. Сколько вопросов содержит тест?
      [Ответ: 30]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

    Задачи на движение по воде

    • 7.8  Рыболов в 5:00 на моторной лодке отправился от пристани против течения реки, через некоторое время бросил якорь, 3 часа ловил рыбу и вернулся обратно в 23:00 того же дня. На какое расстояние от пристани он отдалился, если скорость течения реки равна 4 км/ч, а собственная скорость лодки 6 км/ч?
      [Ответ: 25]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

  

Тема 13 (Геометрия, 7 класс). Точка, прямая, отрезок, луч, угол. Смежные углы (3 типа заданий)

  • 13.1  Начертите прямую c и отметьте на ней точки T, O, S и M так, чтобы точка S лежала между точками T и O, а точка M — между точками O и S.
    [Ответ: —]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  • 13.2  Луч TF делит угол STH на два угла. Найдите угол STF,
    если angle STH = 166^{circ}, angle HTF = 24^{circ}.
    [Ответ: 142^{circ}]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  • 13.3  а) Сопоставьте буквенные обозначения углов с их градусными мерами (для выполнения задания пользоваться транспортиром нет необходимости);

    б) выпишите все пары смежных углов на рисунке.

    Углы:
    А) ∠PRC
    Б) ∠ZRP
    В) ∠ZRC
    Г) ∠ZRF
    Д) ∠CRF
    Е) ∠PRF
    Градусные меры:
    1) 90o
    2) 19o
    3) 71o
    4) 109o
    5) 180o

    В таблицу занесите номера градусных мер, соответствующие буквам

    Буквы (углы): А Б В Г Д Е
    Цифры
    от 1 до 5:
               

    [Ответ: а) 543211; б) ∠PRF и ∠CRF, а также ∠PRZ и ∠CRZ]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  

Тема 14 (Геометрия, 7 класс). Признаки равенства треугольников (3 типа заданий)

  • 14.1  На рисунке ниже изображены треугольники NZB и MAX. Известно, что NB=MX, ZB=AX, и ∠ZBN = ∠AXM.

    а) отметьте равенство указанных элементов на рисунке;

    б) докажите, что ΔNZB = ΔMAX.

    [Ответ: 1) NB=MX (по условию),
    2)ZB=AX (по условию),
    3) ∠ZBN = ∠AXM (по условию)
    Значит, ΔNZB = ΔMAX по I признаку.]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  • 14.2  На рисунке ниже изображены треугольники RKN и EHO. Известно, что KN=HO, ∠RKN = ∠EHO, ∠KNR = ∠HOE.

    а) отметьте равенство указанных элементов на рисунке;

    б) докажите, что ΔRKN = ΔEHO.

    [Ответ: 1) KN=HO (по условию),
    2) ∠RKN = ∠EHO (по условию),
    3) ∠KNR = ∠HOE (по условию).

    Значит, ΔRKN = ΔEHO по II признаку.]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  • 14.3  На рисунке ниже изображены треугольники CZF и EHA. Известно, что CZ=EH, ZF=HA, CF=EA.

    а) отметьте равенство указанных элементов на рисунке;

    б) докажите, что ΔCZF = ΔEHA.

    [Ответ: 1) CZ=EH (по условию),
    2) ZF=HA (по условию),
    3) CF=EA (по условию).

    Значит, ΔCZF = ΔEHA по III признаку.]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  

Тема 23 (Алгебра, 8 класс). Решение задач с помощью рациональных уравнений. Задачи из ОГЭ/ЕГЭ (21 тип заданий)

    Задачи из ОГЭ/ЕГЭ на совместную работу

    • 23.1  На изготовление 288 деталей ученик тратит на 8 часов больше, чем мастер на изготовление 800 таких же деталей. Известно, что ученик за час делает на 14 деталей меньше, чем мастер. Сколько деталей в час делает ученик?
      [Ответ: 6]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

      Примечание для учителя. Эти задачи идентичны задачам из следующего номера, но здесь дискриминант квадратного уравнения, составляемого в процессе решения, НЕ выходит за пределы таблицы квадратов чисел от 1 до 100.

    • 23.2  На изготовление 384 деталей ученик тратит на 6 часов больше, чем мастер на изготовление 840 таких же деталей. Известно, что ученик за час делает на 12 деталей меньше, чем мастер. Сколько деталей в час делает ученик?
      [Ответ: 8]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

      Примечание для учителя. Эти задачи идентичны задачам из предыдущего номера, но здесь дискриминант квадратного уравнения, составляемого в процессе решения, ВЫХОДИТ за пределы таблицы квадратов чисел от 1 до 100.

    • 23.3  Двое рабочих, работая вместе, могут выполнить работу за 56 часов. За сколько часов, работая отдельно, выполнит эту работу первый рабочий, если он за 2 часа выполняет такую же часть работы, какую второй – за 14 часов?
      [Ответ: 64]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

    • 23.4  Заказ на 160 деталей первый рабочий выполняет на 6 часов быстрее, чем второй.
      Сколько деталей за час изготавливает первый рабочий, если известно, что он за час изготавливает на 6 деталей больше второго?
      [Ответ: 16]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

    • 23.5  Первая труба пропускает на 8 литров воды в минуту меньше, чем вторая.
      Сколько литров воды в минуту пропускает вторая труба, если резервуар объемом 180 литров она заполняет
      на 8 минут быстрее, чем первая труба?
      [Ответ: 18]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

    • 23.6  Первая труба пропускает на 18 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 135 литров она заполняет на 18 минут дольше, чем вторая труба заполняет резервуар объемом 567 литров?
      [Ответ: 3]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

      Примечание для учителя. Эти задачи идентичны задачам из следующего номера, но здесь дискриминант квадратного уравнения, составляемого в процессе решения, НЕ выходит за пределы таблицы квадратов чисел от 1 до 100.

    • 23.7  Первая труба пропускает на 9 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 96 литров она заполняет на 14 минут дольше, чем вторая труба заполняет резервуар объемом 130 литров?
      [Ответ: 4]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

      Примечание для учителя. Эти задачи идентичны задачам из предыдущего номера, но здесь дискриминант квадратного уравнения, составляемого в процессе решения, ВЫХОДИТ за пределы таблицы квадратов чисел от 1 до 100.

    • 23.8  Плиточники планируют уложить 248 м2 плитки. Если они будут укладывать на 23 м2 в день больше, чем запланировали,
      то закончат работу на 23 дня раньше. Сколько квадратных метров плитки в день планируют укладывать плиточники?
      [Ответ: 8]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

    • 23.9  Два промышленных фильтра, работая одновременно, очищают цистерну воды за 20 минут.
      Определите, за сколько минут второй фильтр очистит цистерну воды, работая отдельно, если известно,
      что он сделает это на 9 минут быстрее, чем первый.
      [Ответ: 36]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

    • 23.10  При двух одновременно работающих принтерах расход бумаги составляет 1 пачку за 12 минут.
      Определите, за сколько минут израсходует пачку бумаги первый принтер, если известно,
      что он сделает это на 32 минуты быстрее, чем второй.
      [Ответ: 16]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

    Задачи из ОГЭ/ЕГЭ на движение по воде

    • 23.12  Катер прошёл от одной пристани до другой, расстояние между которыми по реке равно 54 км,
      сделал стоянку на 2 ч 58 мин и вернулся обратно через 14frac{29}{30} ч после начала поездки.
      Найдите скорость течения реки, если известно, что скорость катера в стоячей воде равна 12 км/ч. Ответ дайте в км/ч.
      [Ответ: 6]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

    • 23.13  Расстояние между пристанями А и В равно 32 км. Из А в В по течению реки отправился плот,
      а через 5 часов вслед за ним отправилась яхта, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А.
      К этому времени плот прошел 44 км.
      Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 4 км/ч. Ответ дайте в км/ч.
      [Ответ: 12]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

    • 23.14  Пристани A и B расположены на реке, скорость течения которой на этом участке равна 6 км/ч.
      Лодка проходит туда и обратно без остановок со средней скоростью 9 км/ч. Найдите собственную скорость лодки.
      [Ответ: 12]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

      Примечание для учителя. Вы можете добавлять в карточку не более 1 такого задания

    Задачи из ОГЭ/ЕГЭ на движение по прямой

    • 23.15  Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь.
      Второй проехал первую половину пути со скоростью 21 км/ч, а вторую половину пути – со скоростью,
      на 14 км/ч большей скорости первого, в результате чего прибыл в пункт B одновременно с первым автомобилем.
      Найдите скорость первого автомобиля. Ответ дайте в км/ч.
      [Ответ: 28]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

      Примечание для учителя. Вы можете добавлять в карточку до 5 таких заданий. Если Вы делаете чередующиеся карточки, настоятельно рекомендуем не добавлять более одной-двух задач этого типа во избежание дублей в карточках!

    • 23.16  Из пункта A в пункт B, расстояние между которыми 170 км, одновременно выехали автомобилист и велосипедист.
      Известно, что за час автомобилист проезжает на 68 км больше, чем велосипедист.
      Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 8 ч позже автомобилиста. Ответ дайте в км/ч.
      [Ответ: 17]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

    • 23.17  Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 126 км.
      На следующий день он отправился обратно в A со скоростью на 5 км/ч больше прежней. По дороге он сделал остановку на 5 ч.
      В результате велосипедист затратил на обратный путь столько же времени, сколько на путь из A в B.
      Найдите скорость велосипедиста на пути из B в A. Ответ дайте в км/ч.
      [Ответ: 14]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

      Примечание для учителя. Если Вы делаете чередующиеся карточки, настоятельно рекомендуем не добавлять более одной-двух задач этого типа во избежание дублей в карточках!

    • 23.18  Два велосипедиста одновременно отправились в 63-километровый пробег.
      Первый ехал со скоростью, на 2 км/ч большей, чем скорость второго, и прибыл к финишу на 2 ч раньше второго.
      Найти скорость велосипедиста, пришедшего к финишу вторым. Ответ дайте в км/ч.
      [Ответ: 7]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

      Примечание для учителя. Если Вы делаете чередующиеся карточки, настоятельно рекомендуем не добавлять более одной-двух задач этого типа во избежание дублей в карточках!

    • 23.19  Из городов A и B навстречу друг другу выехали мотоциклист и велосипедист.
      Мотоциклист приехал в B на 0.5 ч раньше, чем велосипедист приехал в A, а встретились они через 1 ч 52 мин после выезда.
      Сколько часов затратил на путь из B в A велосипедист?
      [Ответ: 4]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

    • 23.20  Товарный поезд каждую минуту проезжает на 200 метров меньше, чем скорый,
      и на путь в 832 км тратит времени на 3 ч больше, чем скорый.
      Найдите скорость товарного поезда. Ответ дайте в км/ч.
      [Ответ: 52]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

      Примечание для учителя. Дискриминант квадратного уравнения, составляемого в процессе решения, может выходить за пределы таблицы квадратов чисел от 1 до 100.

    • 23.21  Два гонщика участвуют в «Безумных гонках». Им предстоит проехать 80 кругов по кольцевой трассе протяжённостью 6 км.
      Оба гонщика стартовали одновременно, а на финиш первый пришёл раньше второго на 48 минут.
      Чему равнялась средняя скорость второго гонщика, если известно, что первый гонщик в первый раз обогнал второго на круг через 12 минут?
      Ответ дайте в км/ч.
      [Ответ: 120]

      [просмотреть похожие]

      [сообщить об ошибке]
      [смотреть видеоразбор]

      Примечание для учителя. Если Вы делаете чередующиеся карточки, настоятельно рекомендуем не добавлять более одной-двух задач этого типа во избежание дублей в карточках!

  

Тема 24 (Геометрия, 8 класс). Четырехугольники (10 типов заданий)

  • 24.1  На рисунке изображён четырехугольник DMTN. Укажите:

    а) вершины четырехугольника;

    б) стороны четырехугольника;

    в) углы четырехугольника

    г) соседние вершины;

    д) противолежащие вершины;

    е) соседние стороны;

    ж) противолежащие стороны;

    з) соседние углы;

    и) противолежащие углы.

    [Ответ: а) D, M, T, N; б) DM, MT, TN, DN;
    в) ∠D, ∠M, ∠T, ∠N ; г) D и M; M и T; T и N; D и N;
    д) D и T; M и N; е) DM и MT; MT и TN; TN и DN; DM и DN;
    ж) DM и TN; MT и DN; з) ∠D и ∠M; ∠M и ∠T; ∠T и ∠N; ∠D и ∠N;
    и) ∠D и ∠T; ∠M и ∠N.]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  • 24.2  Три угла выпуклого четырехугольника равны 28^{circ},
    57^{circ}, 99^{circ}. Чему равен четвертый угол?
    [Ответ: 176o]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  • 24.3  Периметр параллелограмма равен 104 см. Найдите его стороны, если одна из них на 26 см меньше другой.
    [Ответ: 13 см и 39 см]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  • 24.4  Периметр параллелограмма равен 176 см. Найдите его стороны, если одна из них больше другой в 7 раз.
    [Ответ: 11 см и 77 см]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  • 24.5  В прямоугольнике EDFR точка B является
    точкой пересечения диагоналей. ∠FBR = 122°. Найдите ∠DBF и ∠DEF.
    [Ответ: ∠DBF = 58°; ∠DEF = 29°]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  • 24.6  В прямоугольнике XTOP точка F является точкой пересечения диагоналей.
    XPT = 30°, TP = 72 см. Найдите углы и периметр треугольника XFT.
    [Ответ: все углы по 60°; P=108 см]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  • 24.8  Диагонали ромба CMTS пересекаются в точке A. Найдите углы треугольника CAM, если ∠MTS = 52°.
    [Ответ: ∠C = 26°; ∠M = 64°; ∠A = 90°]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  • 24.9  В равнобокой трапеции большее основание равно 99 см, меньшее — 14 см, а периметр трапеции равен 207 см. Найдите боковую сторону.
    [Ответ: 47]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  • 24.10  Длины оснований трапеции отличаются на 49 см. Найдите основания, если боковые стороны равны 78 см и 100 см,
    а периметр составляет 381 см.
    [Ответ: 126 см и 77 см]

    [просмотреть похожие]

    [сообщить об ошибке]
    [✖ видеоразбор отсутствует]

  

Тема 26 (ЕГЭ). Задание 9, функции. Новинка 2022 года (35 типов заданий)

  • 26.7  На рисунке изображён график функции y=ax^2+bx+c, где числа a, b и c — целые. Найдите f(0).

    [Ответ: -29]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.9  На рисунке изображён график функции f(x)=frac{k}{x}+a. Найдите, при каком значении x значение функции равно -2.75.

    [Ответ: -1.6]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.11  На рисунке изображён график функции f(x)=frac{k}{x+a}. Найдите значение x, при котором f(x) = -0.4.

    [Ответ: 11.5]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.15  На рисунке изображён график функции f(x)=b+log_ax. Найдите значение x, при котором f(x)=6.

    [Ответ: 27]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.17  На рисунке изображён график функции f(x)=log_a(x+b). Найдите значение x, при котором f(x)=-4.

    [Ответ: 20]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.19  На рисунке изображён график функции f(x) = a^x+b. Найдите значение x, при котором f(x) = 63.

    [Ответ: 6]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.21  На рисунке изображён график функции f(x) = a^{x+b}. Найдите значение x, при котором f(x) = 125.

    [Ответ: 5]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.23  На рисунке изображён график функции f(x) = ksqrt{x}. Найдите значение x, при котором f(x)=-6.9.

    [Ответ: 5.29]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.24  На рисунке изображены графики функций f(x)=7x-29 и g(x)=ax^2+bx+c, которые пересекаются в точках A и B. Найдите абсциссу точки B.

    [Ответ: -3]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.25  На рисунке изображены графики функций f(x)=-7x-20 и g(x)=ax^2+bx+c, которые пересекаются в точках A и B. Найдите ординату точки B.

    [Ответ: -48]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.26  На рисунке изображены графики функций f(x)=frac{k}{x} и g(x)=ax+b, которые пересекаются в точках A и B. Найдите абсциссу точки B.

    [Ответ: -0.2]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.27  На рисунке изображены графики функций f(x)=frac{k}{x} и g(x)=ax+b, которые пересекаются в точках A и B. Найдите ординату точки B.

    [Ответ: 24]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.28  На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

    [Ответ: 4.6]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.29  На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков.

    [Ответ: 2.25]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.30  На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

    [Ответ: 22.6]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.31  На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков.

    [Ответ: -14.16]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.32  На рисунке изображены графики функций f(x) = 3x^2+31x+80 и g(x) = ax^2+bx+c, которые пересекаются в точках A и B. Найдите абсциссу точки B.

    [Ответ: -8.5]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.33  На рисунке изображены графики функций f(x) = 3x^2+30x+74 и g(x) = ax^2+bx+c, которые пересекаются в точках A и B. Найдите ординату точки B.

    [Ответ: 47]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.34  На рисунке изображены графики функций f(x)=asqrt{x} и g(x)=kx+b, которые пересекаются в точке A. Найдите абсциссу точки A.

    [Ответ: 9]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  • 26.35  На рисунке изображены графики функций f(x)=asqrt{x} и g(x)=kx+b, которые пересекаются в точке A. Найдите ординату точки A.

    [Ответ: -0.6]

    [просмотреть похожие]

    [сообщить об ошибке]
    [смотреть видеоразбор]

    Примечание для учителя. При создании карточек с очень большим количеством изображений могут возникнуть проблемы.
    Узнайте, что это за проблемы и как их избежать — смотрите видеопримечание.

  

Глава I. Параллельность прямых и плоскостей

Здесь Вы можете скачать трехмерные чертежи к задачам из учебника Атанасяна Л.С. «Геометрия 10-11» в формате GeoGebra.
Рекомендуем ознакомиться с инструкцией по работе с готовыми моделями, прежде чем приступать к скачиванию и демонстрации.

§ 1. Параллельность прямых, прямой и плоскости. Задачи 16 — 33

§ 2. Взаимное расположение прямых в пространстве. Угол между двумя прямыми. Задачи 34 — 47

§ 3. Параллельность плоскостей. Задачи 48 — 65

§ 4. Тетраэдр и параллелепипед. Задачи 66 — 87

Дополнительные задачи 88 — 115

Рисунки к Главе I, §4, п. 14 «Построение сечений»

  

Глава II. Перпендикулярность прямых и плоскостей

Здесь Вы можете скачать трехмерные чертежи к задачам из учебника Атанасяна Л.С. «Геометрия 10-11» в формате GeoGebra.
Рекомендуем ознакомиться с инструкцией по работе с готовыми моделями, прежде чем приступать к скачиванию и демонстрации.

§ 1. Перпендикулярность прямой и плоскости. Задачи 116 — 137

§ 2. Перпендикуляр и наклонные. Угол между прямой и плоскостью. Задачи 138 — 165

§ 3. Двугранный угол. Перпендикулярность плоскостей. Задачи 166 — 173

Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2023 из различных источников.

Варианты составлены в соответствии с демоверсией 2023 года 

Тренировочные варианты ЕГЭ 2023 по математике (профиль)

vk.com/pezhirovschool
Вариант 1 решения
Вариант 2 решения
Вариант 3 решения
Вариант 4 решения
Вариант 5 (с ответами)
Вариант 6 (с ответами)
Вариант 7 (с ответами)
Вариант 8 (с ответами)
egemath.ru
вариант 1 скачать
вариант 2 скачать
вариант 3 скачать
вариант 4 скачать
вариант 5 скачать
вариант 6 скачать
вариант 7 скачать
вариант 8 скачать
вариант 9 скачать
вариант 10 скачать
вариант 11 скачать
вариант 12 скачать
вариант 13 скачать
вариант 14 скачать
вариант 15 скачать
вариант 16 скачать
вариант 17 скачать
вариант 18 скачать
вариант 19 скачать
вариант 20 скачать
time4math.ru
вариант 1-2 ответы
вариант 3-4 ответы
вариант 5-6 ответы
вариант 7-8
yagubov.ru
вариант 33 (сентябрь) ege2023-yagubov-prof-var33
вариант 34 (октябрь) ege2023-yagubov-prof-var34
вариант 35 (ноябрь) ege2023-yagubov-prof-var35
вариант 36 (декабрь) ege2023-yagubov-prof-var36
вариант 37 (январь) ege2023-yagubov-prof-var37
вариант 38 (февраль) ege2023-yagubov-prof-var38
math100.ru (с ответами)
variant 179 скачать
variant 180 скачать
variant 181 скачать
variant 182 скачать
variant 183 скачать
variant 184 скачать
variant 185 скачать
variant 186 скачать
variant 187 скачать
variant 188 скачать
variant 189 скачать
variant 190 скачать
variant 191 скачать
variant 192 скачать
variant 193 скачать
variant 194 скачать
variant 195 скачать
variant 196 скачать
variant 197 скачать
variant 198 скачать
variant 199 скачать
variant 200 скачать
variant 201 скачать
variant 202 скачать
variant 203 скачать
variant 204 скачать
variant 205 скачать
alexlarin.net 
Вариант 397 проверить ответы
Вариант 398 проверить ответы
Вариант 399 проверить ответы
Вариант 400 проверить ответы
Вариант 401 проверить ответы
Вариант 402 проверить ответы
Вариант 403 проверить ответы
Вариант 404 проверить ответы
Вариант 405 проверить ответы
Вариант 406 проверить ответы
Вариант 407 проверить ответы
Вариант 408 проверить ответы
Вариант 409 проверить ответы
Вариант 410 проверить ответы
Вариант 411 проверить ответы
Вариант 412 проверить ответы
Вариант 413 проверить ответы
vk.com/ege100ballov
вариант 1 скачать
вариант 2 скачать
вариант 3 скачать
вариант 4 скачать
вариант 5 скачать
вариант 6 скачать
вариант 7 скачать
вариант 8 скачать
вариант 9 скачать
вариант 10 скачать
вариант 11 скачать
vk.com/math.studying
Вариант 1 ответы
vk.com/marsel_tutor
Вариант 1 разбор
Вариант 2 конспект / разбор
Вариант 3 конспект / разбор
Вариант 4 конспект / разбор
Вариант 5 конспект / разбор
Вариант 6 разбор
vk.com/shkolkovo_easy_math
Вариант 1 решение
Вариант 2 решение
Вариант 3 решение
Вариант 5 решение
Вариант 6 решение
vk.com/mathlearn_ru
вариант 1 разбор
vk.com/ekaterina_chekmareva
Вариант 1 ответы
Вариант 2 ответы
Вариант 3 ответы
Вариант 4 ответы
Вариант 5 ответы
Вариант 6 ответы
Вариант 7 ответы
Вариант 8 ответы

Структура варианта КИМ ЕГЭ 2023 по математике профильного уровня

Экзаменационная работа состоит из двух частей и включает в себя 18 заданий, которые различаются по содержанию, сложности и количеству заданий:

– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;

– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).

Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях. Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.

Задания части 1 предназначены для определения математических компетентностей выпускников образовательных организаций, реализующих программы среднего (полного) общего образования на базовом уровне. Задание с кратким ответом (1–11) считается выполненным, если в бланке ответов № 1 зафиксирован верный ответ в виде целого числа или конечной десятичной дроби.

Задания 12–18 с развёрнутым ответом, в числе которых 5 заданий повышенного уровня и 2 задания высокого уровня сложности, предназначены для более точной дифференциации абитуриентов вузов. 

Примеры заданий:

1. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 76 бадминтонистов, среди которых 22 спортсмена из России, в том числе Игорь Чаев. Найдите вероятность того, что в первом туре Игорь Чаев будет играть с каким-либо бадминтонистом из России.

2. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу

3. На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 363. Затем в каждом числе поменяли местами первую и вторую цифры (например, число 17 заменили на число 71).

а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 4 раза больше, чем сумма исходных чисел.

б) Могла ли сумма получившихся чисел быть ровно в 2 раза больше, чем сумма исходных чисел?

в) Найдите наибольшее возможное значение суммы получившихся чисел.

Смотрите также:

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Генератор в переводе с латинского производитель это устройство егэ
  • Генератор билетов на экзамен онлайн
  • Генератор баллов егэ для поступления
  • Генеративные органы растений решу егэ биология
  • Генеративные органы растений егэ презентация

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии