Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Найти все значения параметра a, при каждом из которых неравенство выполняется для всех x.
Источник: А. Ларин: Тренировочный вариант № 40.
2
Найти все значения параметра p, при каждом из которых множество решений неравенства не содержит ни одного решения неравенства
Источник: А. Ларин: Тренировочный вариант № 50.
3
Найти все значения параметра а, при которых неравенство выполняется для всех х, таких, что
Источник: А. Ларин: Тренировочный вариант № 54.
4
Найдите все значения х, удовлетворяющие неравенству хотя бы при одном значении а, принадлежащем отрезку [-2; 1].
Источник: А. Ларин: Тренировочный вариант № 57.
5
Найти все значения параметра p, для которых неравенство выполняется хотя бы для одного числа x такого, что | x | < 0,01.
Источник: А. Ларин: Тренировочный вариант № 64.
Пройти тестирование по этим заданиям
Напомню, что два неравенства называются равносильными, если их решения совпадают. При решении неравенств нужно понимать, какие преобразования будут равносильными, и какие нет:
- Перенос какого-либо члена неравенства из одной части в другую, при этом знак этого члена меняется на противоположный.
- Умножение или деление всего неравенства (левой и правой частей) на одно и то же положительное число.
- Умножение или деление всего неравенства на отрицательное число, при условии, что вы меняете знак неравенства.
Разберем несколько примеров простейших неравенств с параметром. Рассуждения здесь примерно такие же, что и при анализе уравнений. Как аналитически исследовать квадратные уравнения, можно познакомиться здесь.
Пример 1
Решить неравенство ((a-2)x>a^2-4) для любого значения параметра (a).
Решение:
Первый случай: Если (a=2), получим неравенство (0*x>0), которое не имеет решений.
Внимание! Важно помнить, что если вы делите неравенство на отрицательное число, то знак неравенства меняется на противоположный. Поэтому, нужно рассмотреть еще два случая.
Второй случай: Если (a > 2 ⇔ x > frac{a^2-4}{a-2} ⇔ x > a+2;)
Третий случай: Если (a < 2 ⇔ x < frac{a^2-4}{a-2} ⇔ x < a+2;)
Ответ:
При (a=2) решений нет;
при (a > 2) $$ x > a+2;$$ при (a < 2) $$x < a+2.$$
Пример 2
Решить неравенство (ax^2-4x-4>0) при всех значениях параметра (a).
Решение:
Первый случай: Если (a=0) , неравенство примет вид (-4x-4>0 ⇔ x<-1);
Второй случай: Если (a≠0), то неравенство будет квадратным.
Для того чтобы решить квадратное неравенство, посчитаем дискриминант:
$$ D=16+16a=16(1+a).$$
Тогда решением системы будет пересечение решений каждого из неравенств.
Ответ: (a∈(-∞; frac{1-2sqrt{58}}{7})∪(frac{1+2sqrt{58}}{7};+∞) )
Пример 3
Найти все значения параметра (a), при которых неравенство (1+log_2 (x^2+x+1) ≥ log_2 (ax^2+a)) имеет решение.
Решение:
Проведем равносильные преобразования, при ОДЗ:
$$ begin{cases} ax^2+a>0, \x^2+x+1>0. end{cases} $$
$$ begin{cases} a>0, \x∈R. end{cases} $$
Выполним преобразования, используя свойства логарифма:
$$ log_2 (2)+log_2 (x^2+x+1) ≥ log_2 (ax^2+a),$$
$$ log_2 (2x^2+2x+2)≥log_2 (ax^2+a),$$
$$ 2x^2+2x+2≥ax^2+a,$$
$$(2-a)x^2+2x-a+2≥0.$$
С учетом ОДЗ получаем систему:
$$ begin{cases} (2-a) x^2+2x-a+2≥0, \a>0. end{cases} $$
Первый случай: при (a=2).
Неравенство примет вид:
$$2x≥0,$$
$$x≥0.$$
Второй случай: при (a≠2).
Первое неравенство системы квадратное и оно не будет иметь решений при выполнении следующих условий:
$$ begin{cases} 2-a<0, \D<0; end{cases} $$
$$ begin{cases} a>2, \4-4(4+a^2-4a)<0; end{cases} $$
$$ begin{cases} a>2, \-4a^2+16a-12<0; end{cases} $$
$$ begin{cases} a>2, \-(a-1)(a-3)<0. end{cases} $$
Из последнего выражения следует, что (a>3).
Таким образом, получаем, что при (a≤3) исходное неравенство имеет решения. С учетом ОДЗ запишем ответ.
Ответ: (0;3].
Задание 17 Профильного ЕГЭ по математике — это уравнение, система уравнений или неравенство с параметром. Или несколькими параметрами.
Конечно, за один день научиться решать такие задачи невозможно. И все-таки мы немного расскажем о том, как научиться решать задачи с параметрами. С чего начать. И какие вообще есть методы решения задач с параметрами.
Начнем с хорошей новости. Задача 17 (с параметром) оценивается в целых 4 первичных балла ЕГЭ, которые отлично пересчитываются в тестовые.
Если вы полны решимости получить на ЕГЭ заветные 4 первичных балла за задачу 17 (с параметром), не стоит начинать с реальных экзаменационных задач. Ведь мы хотим получить результат, а не разочарование! Поэтому сначала необходимо повторить следующие темы:
1. Элементарные функции и их графики. Парабола, синус, логарифм, арктангенс и все остальные — всех их надо знать «в лицо».
2. Преобразование графиков функций.
3. Построение графиков функций.
4. Базовые элементы для решения задач с параметрами. Да, мы будем рисовать не только привычные функции. Но еще и окружности, ромбики, полуплоскости и всевозможные их комбинации.
5. Что такое параметр. Простые задачи с параметрами.
Только после этого можно переходить к самому простому и наглядному способу решения задач с параметрами — графическому.
Читайте статью, смотрите видеокурс. И помните, что графический метод — хороший, но не единственный.
Потому что, кроме него, есть и другие:
— Квадратные уравнения и неравенства с параметрами.
— Задачи с параметрами. Условия касания.
— Метод оценки в задачах с параметрами.
— Использование четности функций в задачах с параметрами.
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 1, задача 17.
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 5, задача 17.
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 11, задача 17.
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 26, задача 17.
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 36, задача 17.
И не думайте, что это все возможные методы решения задач с параметрами. Их намного больше! Мы дали ссылки на те, которые встречаются чаще всего в задачах ЕГЭ.
Несколько мудрых советов о том, как и зачем решать задачи с параметрами.
1. Чтобы на ЕГЭ уверенно справиться с заданием 17, нужно решить не менее 50 задач с параметрами.
2. Настанет момент, когда вы увидите, что задача с параметром похожи на конструктор, где вы собираете решение из знакомых элементов.
3. Два самых главных секрета решения задач с параметрами. Готовы узнать? Вот они:
— Если в задаче с параметром можно сделать замену переменной — сделайте замену.
— Если задачу с параметром можно решить графически — решите графически.
4. Сколько бы вы ни занимались задачами с параметрами, каким бы отличником ни стали — всегда найдется задача, над которой вы задумаетесь. Вот такая, например:
Задача 1. При каких значениях a системы и
равносильны?
Две системы уравнений с двумя переменными называются равносильными, если они имеют одни и те же решения, или обе системы не имеют решений.
1) При — системы равносильны, так как обе не имеют решений.
2) При — второе уравнение имеет решение
которое является решением первой системы.
3) При
Система уравнений
Уравнение задает окружность с центром в начале координат и радиусом
Решениями системы:
являются две точки, в которых прямая пересекает окружность, заданную уравнением
А вот уравнение задает семейство параллельных прямых
Мы хотим, чтобы две системы были равносильны, то есть чтобы окружность, заданная уравнением , пересекала только одну из этого семейства прямых, а именно прямую
, и не имела общих точек с другими прямыми из этого семейства.
Меняя параметр а, мы можем менять радиус окружности. Мы хотим, чтобы окружность радиуса не имела общих точек с прямыми, параллельными прямой
, то есть лежала ниже прямой, проходящей через точку А на рисунке, и выше прямой, проходящей через точку В.
Когда же происходит касание в точках A и B?
В случае касания радиус окружности Мы легко находим это из прямоугольного треугольника СОА, где О — начало координат.
Значит, в случае касания , а если
— касания не происходит.
Объединяя случаи, получим, что системы равносильны, если
Легко? Если справились — вот еще одна интересная задача:
Задача 2. При каких значениях параметра a найдется такое значение параметра , что система уравнений
имеет ровно три различных решения?
Вот решение этой задачи.
Лучше всего осваивать эту непростую тему на нашем Онлайн-курсе подготовки к ЕГЭ на 100 баллов. Или на интенсивах ЕГЭ-Студии в Москве. Удачи, друзья!
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 17. Задача с параметрами u0026#8212; профильный ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
09.03.2023
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Исследование уравнений/неравенств при всех значениях параметра
Параметр (a) – это число, которое может принимать любые значения из (mathbb{R}).
Исследовать уравнение/неравенство при всех значениях параметра – это значит указать, при каких значениях параметра какое именно решение имеет данное уравнение/неравенство.
Примеры:
1) уравнение (ax=2) при всех (ane 0) имеет единственное решение (x=dfrac 2a), а при (a=0) не имеет решений (т.к. тогда уравнение принимает вид (0=2)).
2) уравнение (ax=0) при всех (ane 0) имеет единственное решение (x=0), а при (a=0) имеет бесконечно много решений, т.е. (xin
mathbb{R}) (т.к. тогда уравнение принимает вид (0=0)).
Заметим, что
I) обе части уравнения нельзя делить на выражение, содержащее параметр ((f(a))), если это выражение может быть равно нулю. Но можно рассмотреть два случая:
первый, когда (f(a)ne0), и в этом случае можно разделить обе части равенства на (f(a));
второй случай, когда (f(a)=0), и этом случае мы можем по отдельности проверить каждое значение (a) (см. пример 1, 2).
II) обе части неравенства нельзя делить на выражение, содержащее параметр, если неизвестен знак этого выражения. Но можно рассмотреть три случая:
первый, когда (f(a)>0), и в этом случае можно делить обе части неравенства на (f(a));
второй, когда (f(a)<0), и в этом случае при делении обеих частей неравенства на (f(a)) мы обязаны поменять знак неравенства на противоположный;
третий, когда (f(a)=0), и в этом случае мы можем по отдельности проверить каждое значение (a).
Пример:
3) неравенство (ax>3) при (a>0) имеет решение (x>dfrac3a), при (a<0) имеет решение (x<dfrac3a), а при (a=0) не имеет решений, т.к. принимает вид (0>3).
Задание
1
#1220
Уровень задания: Легче ЕГЭ
Решите уравнение (ax+3=0) при всех значениях параметра (a).
Уравнение можно переписать в виде (ax=-3). Рассмотрим два случая:
1) (a=0). В этом случае левая часть равна (0), а правая – нет, следовательно, уравнение не имеет корней.
2) (ane 0). Тогда (x=-dfrac{3}{a}).
Ответ:
(a=0 Rightarrow xin varnothing; \
ane 0 Rightarrow
x=-dfrac{3}{a}).
Задание
2
#1221
Уровень задания: Легче ЕГЭ
Решите уравнение (ax+a^2=0) при всех значениях параметра (a).
Уравнение можно переписать в виде (ax=-a^2). Рассмотрим два случая:
1) (a=0). В этом случае левая и правая части равны (0), следовательно, уравнение верно при любых значениях переменной (x).
2) (ane 0). Тогда (x=-a).
Ответ:
(a=0 Rightarrow xin mathbb{R}; \
ane 0 Rightarrow x=-a).
Задание
3
#1222
Уровень задания: Легче ЕГЭ
Решите неравенство (2ax+5cosdfrac{pi}{3}geqslant 0) при всех значениях параметра (a).
Неравенство можно переписать в виде (axgeqslant -dfrac{5}{4}). Рассмотрим три случая:
1) (a=0). Тогда неравенство принимает вид (0geqslant
-dfrac{5}{4}), что верно при любых значениях переменной (x).
2) (a>0). Тогда при делении на (a) обеих частей неравенства знак неравенства не изменится, следовательно, (xgeqslant
-dfrac{5}{4a}).
3) (a<0). Тогда при делении на (a) обеих частей неравенства знак неравенства изменится, следовательно, (xleqslant -dfrac{5}{4a}).
Ответ:
(a=0 Rightarrow xin mathbb{R}; \
a>0 Rightarrow xgeqslant -dfrac{5}{4a}; \
a<0 Rightarrow xleqslant -dfrac{5}{4a}).
Задание
4
#1223
Уровень задания: Легче ЕГЭ
Решите неравенство (a(x^2-6) geqslant (2-3a^2)x) при всех значениях параметра (a).
Преобразуем неравенство к виду: (ax^2+(3a^2-2)x-6a geqslant 0). Рассмотрим два случая:
1) (a=0). В этом случае неравенство становится линейным и принимает вид: (-2x geqslant 0 Rightarrow xleqslant 0).
2) (ane 0). Тогда неравенство является квадратичным. Найдем дискриминант:
(D=9a^4-12a^2+4+24a^2=(3a^2+2)^2).
Т.к. (a^2 geqslant 0 Rightarrow D>0) при любых значениях параметра.
Следовательно, уравнение (ax^2+(3a^2-2)x-6a = 0) всегда имеет два корня (x_1=-3a, x_2=dfrac{2}{a}). Таким образом, неравенство примет вид:
[(ax-2)(x+3a) geqslant 0]
Если (a>0), то (x_1<x_2) и ветви параболы (y=(ax-2)(x+3a)) направлены вверх, значит, решением являются (xin (-infty; -3a]cup
big[dfrac{2}{a}; +infty)).
Если (a<0), то (x_1>x_2) и ветви параболы (y=(ax-2)(x+3a)) направлены вниз, значит, решением являются (xin big[dfrac{2}{a};
-3a]).
Ответ:
(a=0 Rightarrow xleqslant 0; \
a>0 Rightarrow xin (-infty; -3a]cup big[dfrac{2}{a}; +infty);
\
a<0 Rightarrow xin big[dfrac{2}{a}; -3abig]).
Задание
5
#1851
Уровень задания: Легче ЕГЭ
При каких (a) множество решений неравенства ((a^2-3a+2)x
-a+2geqslant 0) содержит полуинтервал ([2;3)) ?
Преобразуем неравенство: ((a-1)(a-2)x geqslant a-2). Получили линейное неравенство. Рассмотрим случаи:
1) (a=2). Тогда неравенство примет вид (0 geqslant 0), что верно при любых значениях (x), следовательно, множество решений содержит полуинтервал ([2;3)).
2) (a=1). Тогда неравенство примет вид (0 geqslant -1), что верно при любых значениях (x), следовательно, множество решений содержит полуинтервал ([2;3)).
3) ((a-1)(a-2)>0 Leftrightarrow ain (-infty;1)cup (2;+infty)). Тогда:
(xgeqslant dfrac{1}{a-1}). Для того, чтобы множество решений содержало полуинтервал ([2;3)), необходимо, чтобы
(dfrac{1}{a-1} leqslant 2 Leftrightarrow dfrac{3-2a}{a-1}
leqslant 0
Rightarrow ain (-infty; 1)cup [1,5; +infty)).
Учитывая условие (ain (-infty;1)cup (2;+infty)), получаем (ain
(-infty;1)cup (2;+infty)).
4) ((a-1)(a-2)<0 Leftrightarrow ain (1;2)). Тогда:
(xleqslant dfrac{1}{a-1} Rightarrow dfrac{1}{a-1} geqslant 3).
Действуя аналогично случаю 3), получаем (ain (1;
dfrac{4}{3}big]).
Ответ:
(ain (-infty;dfrac{4}{3}big]cup [2;+infty)).
Задание
6
#1361
Уровень задания: Легче ЕГЭ
Определить количество корней уравнения (ax^2+(3a+1)x+2=0) при всех значениях параметра (a).
Рассмотрим два случая:
1) (a=0). Тогда уравнение является линейным: (x+2=0 Rightarrow
x=-2). То есть уравнение имеет один корень.
2) (ane 0). Тогда уравнение является квадратным. Найдем дискриминант: (D=9a^2-2a+1).
Рассмотрим уравнение (9a^2-2a+1=0): (D’=4-36<0), следовательно, уравнение (9a^2-2a+1=0) не имеет корней. Значит, выражение ((9a^2-2a+1)) принимает значения строго одного знака: либо всегда положительно, либо отрицательно. В данном случае оно положительно при любых (a) (в этом можно убедиться, подставив вместо (a) любое число).
Таким образом, (D=9a^2-2a+1>0) при всех (ane 0). Значит, уравнение (ax^2+(3a+1)x+2=0) всегда имеет два корня: (x_{1,2}=dfrac{-3a-1pm
sqrt D}{2a})
Ответ:
(a=0Rightarrow) один корень
(ane 0 Rightarrow) два корня.
Задание
7
#1363
Уровень задания: Легче ЕГЭ
Решить уравнение (sqrt{x+2a}cdot (3-ax-x)=0) при всех значениях параметра (a).
Данное уравнение равносильно системе:
[begin{cases}
xgeqslant -2a\
left[ begin{gathered} begin{aligned}
&x=-2a \
&3-(a+1)x=0 qquad (*)
end{aligned} end{gathered} right.
end{cases}]
Рассмотрим два случая:
1) (a+1=0 Rightarrow a=-1). В этом случае уравнение ((*)) равносильно (3=0), то есть не имеет решений.
Тогда вся система равносильна (
begin{cases}
xgeqslant 2\
x=2
end{cases} Leftrightarrow x=2)
2) (a+1ne 0 Rightarrow ane -1). В этом случае система равносильна: [begin{cases}
xgeqslant -2a\
left[ begin{gathered} begin{aligned}
&x_1=-2a \
&x_2=dfrac3{a+1}
end{aligned} end{gathered} right.
end{cases}]
Данная система будет иметь одно решение, если (x_2leqslant -2a), и два решения, если (x_2>-2a):
2.1) (dfrac3{a+1}leqslant -2a Rightarrow a<-1 Rightarrow ) имеем один корень (x=-2a).
2.2) (dfrac3{a+1}>-2a Rightarrow a>-1 Rightarrow ) имеем два корня (x_1=-2a, x_2=dfrac3{a+1}).
Ответ:
(ain(-infty;-1) Rightarrow x=-2a\
a=-1 Rightarrow x=2\
ain(-1;+infty) Rightarrow xin{-2a;frac3{a+1}})
Как показывает статистика, нахождение решения задач с параметром многие выпускники считают наиболее трудным при подготовке в ЕГЭ 2019 по математике. С чем это связано? Дело в том, что зачастую задачи с параметром требуют применения исследовательских методов решения, т. е. при вычислении правильного ответа понадобится не просто применять формулы, но и находить те параметрические значения, при которых выполнено определенное условие для корней. При этом сами корни порой искать вовсе не требуется.
Тем не менее справляться с решением заданий с параметрами должны все учащиеся, которые готовятся к сдаче ЕГЭ. Подобные задачи встречаются в аттестационном испытании регулярно.
Образовательный портал «Школково» поможет вам восполнить пробелы в знаниях и научиться быстро находить решение заданий с параметром в ЕГЭ по математике. Наши специалисты подготовили и в доступной форме изложили весь базовый теоретический и практический материал по данной теме. С порталом «Школково» решение задач на подбор параметра будет даваться вам легко и не повлечет никаких затруднений.
Основные моменты
Важно понять, что единого алгоритма решения задач на подбор параметра попросту не существует. Способы нахождения правильного ответа могут быть различными.
Решить математическую задачу с параметром в ЕГЭ — значит, найти, чему равна переменная при определенном значении параметра. Если исходное уравнение и неравенство можно упростить, это необходимо сделать в первую очередь. В некоторых задачах для этого можно использовать стандартные методы решения, как в случае, если бы параметр представлял собой обычное число.
Вы уже успели ознакомиться с теоретическим материалом по данной теме? Для окончательного усвоения информации при подготовке к ЕГЭ по математике рекомендуем попрактиковаться в выполнении заданий с параметром; для каждого упражнения мы представили полный разбор решения и правильный ответ. В соответствующем разделе вы найдете как простые, так и более сложные задачи.
Попрактиковаться в решении упражнений с параметрами, построенных по примеру заданий в ЕГЭ, учащиеся могут в режиме онлайн, находясь в Москве или любом другом городе России.
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Задание 17. Уравнения и неравенства с параметром
Существует ровно три генеральных метода решения задач 17:
- Метод перебора — классический перебор вариантов. Например, когда выражение под модулем больше нуля и когда меньше;
- Графический метод — привлечение чертежа. Во многих задачах 17 достаточно начертить графики функций — и решение становится очевидным;
- Метод следствий — нестандартный и, как правило, самый изощренный. Если в исходном условии удастся подметить что-нибудь полезное, в дальнейшем можно значительно упростить решение всей задачи.
Конечно, одну и ту же задачу зачастую можно решить разными способами. Но далеко не все они оптимальны: выбрав неправильный «путь», можно увязнуть в вычислениях, так и не дойдя до ответа.
Поэтому в данном разделе я рассмотрю все способы, а ваша задача — практиковаться и учиться правильно выбирать.:)
Глава 1. Графический подход § 1. Вебинар по задачам 18: модуль и окружности § 2. Как решать задачу 18: графический подход
§ 3. Задача 18: две окружности и модуль
§ 4. Задача 18: пересечение графиков окружности и модуля
§ 5. Новая задача 18 из пробного ЕГЭ — наглядный пример того, как эффективно работает графическое решение задач с параметром.
Глава 2. Аналитический подход § 1. Задачи 18: Аналитическое решение
§ 2. Окружность и модуль: задачи 18 с двумя параметрами
§ 3. Аналитическое решение задачи 18 с перебором различных вариантов
Глава 3. Нестандартные приемы § 1. Задача 18: метод симметричных корней
§ 2. Как увидеть симметрию корней в задаче 18?
§ 3. Метод мажорант в задаче 18
§ 4. Графическое решение сложных задач 18 с модулем
§ 5. Задание 18: Симметрия корней в системе уравнений
§ 6. Анализ знаков квадратного трёхчлена в сложных задачах 18
§ 7. Применение производной для отыскания точек пересечения графиков
§ 8. Продвинутый метод симметричных корней
§ 9. Новая задача 18 с графическим решением
Параметрические уравнения, неравенства и системы, часть С
Теория к заданию 18 из ЕГЭ по математике (профильной)
Параметрические уравнения
Уравнение, которое кроме неизвестной величины содержит также другую дополнительную величину, которая может принимать различные значения из некоторой области, называется параметрическим. Эта дополнительная величина в уравнении называется параметр. На самом деле с каждым параметрическим уравнением может быть написано множество уравнений.
Способ решения параметрических уравнений
- Находим область определения уравнения.
- Выражаем a как функцию от $х$.
- В системе координат $хОа$ строим график функции, $а=f(х)$ для тех значений $х$, которые входят в область определения данного уравнения.
- Находим точки пересечения прямой, $а=с$, где $с∈(-∞;+∞)$ с графиком функции $а=f(х)$. Если прямая, а=с пересекает график, $а=f(х)$, то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение вида, $а=f(х)$ относительно $х$.
- Записываем ответ.
Общий вид уравнения с одним параметром таков:
При различных значениях, а уравнение $F(x, a) = 0$ может иметь различные множества корней, задача состоит в том, чтобы изучить все случаи, выяснить, что будет при любом значении параметра. При решении уравнений с параметром обычно приходится рассматривать много различных вариантов. Своевременное обнаружение хотя бы части невозможных вариантов имеет большое значение, так как освобождает от лишней работы.
Поэтому при решении уравнения $F(x, a) = 0$ целесообразно под ОДЗ понимать область допустимых значений неизвестного и параметра, то есть множество всех пар чисел ($х, а$), при которых определена (имеет смысл) функция двух переменных $F(x, а)$. Отсюда естественная геометрическая иллюстрация ОДЗ в виде некоторой области плоскости $хОа$.
ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):
1. Выражение, стоящее в знаменателе, не должно равняться нулю.
2. Подкоренное выражение должно быть неотрицательным.
3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.
4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.
Алгебраический способ решения квадратных уравнений с параметром $ax^2+bx+c=0$
Квадратное уравнение $ax^2+bx+c=0, а≠0$ не имеет решений, если $D 0$;
Квадратное уравнение имеет один корень, если $D=0$
Тригонометрические тождества
3. $sin^<2>α+cos^<2>α=1$ (Основное тригонометрическое тождество)
Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса
Неравенства с параметром
Напомню, что два неравенства называются равносильными, если их решения совпадают. При решении неравенств нужно понимать, какие преобразования будут равносильными, и какие нет:
- Перенос какого-либо члена неравенства из одной части в другую, при этом знак этого члена меняется на противоположный.
- Умножение или деление всего неравенства (левой и правой частей) на одно и то же положительное число.
- Умножение или деление всего неравенства на отрицательное число, при условии, что вы меняете знак неравенства.
Разберем несколько примеров простейших неравенств с параметром. Рассуждения здесь примерно такие же, что и при анализе уравнений. Как аналитически исследовать квадратные уравнения, можно познакомиться здесь.
Решить неравенство ((a-2)x>a^2-4) для любого значения параметра (a).
Первый случай: Если (a=2), получим неравенство (0*x>0), которое не имеет решений.
Внимание! Важно помнить, что если вы делите неравенство на отрицательное число, то знак неравенства меняется на противоположный. Поэтому, нужно рассмотреть еще два случая.
Второй случай: Если (a > 2 ⇔ x > frac ⇔ x > a+2;)
Третий случай: Если (a 2) $$ x > a+2;$$ при (a Пример 2
Решить неравенство (ax^2-4x-4>0) при всех значениях параметра (a).
Первый случай: Если (a=0) , неравенство примет вид (-4x-4>0 ⇔ x
Получаем, что дискриминант больше нуля при (a > -1; D 0) ветки параболы направлены вверх, а при (a 0,D > 0)
источники:
http://examer.ru/ege_po_matematike/teoriya/parametricheskie_uravneniya
http://sigma-center.ru/inequality_with_parametr