Егэ параметр прошлых лет


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Задачи с параметром из ЕГЭ прошлых лет


Задание
1

#6329

Уровень задания: Равен ЕГЭ

Найдите все значения параметра (a), при каждом из которых система [begin{cases} (x-2a-2)^2+(y-a)^2=1\
y^2=x^2end{cases}]

имеет ровно четыре решения.

(ЕГЭ 2018, основная волна)

Второе уравнение системы можно переписать в виде (y=pm x). Следовательно, рассмотрим два случая: когда (y=x) и когда (y=-x). Тогда количество решений системы будет равно сумме количества решений в первом и во втором случаях.

1) (y=x). Подставим в первое уравнение и получим: [2x^2-2(3a+2)x+(2a+2)^2+a^2-1=0quad(1)] (заметим, что в случае (y=-x) мы поступим так же и тоже получим квадратное уравнение)
Чтобы исходная система имела 4 различных решения, нужно, чтобы в каждом из двух случаев получилось по 2 решения.
Квадратное уравнение имеет два корня, когда его (D>0). Найдем дискриминант уравнения (1):
(D=-4(a^2+4a+2)).
Дискриминант больше нуля: (a^2+4a+2<0), откуда (ain (-2-sqrt2;
-2+sqrt2))
.

2) (y=-x). Получаем квадратное уравнение: [2x^2-2(a+2)x+(2a+2)^2+a^2-1=0quad (2)] Дискриминант больше нуля: (D=-4(9a^2+12a+2)>0), откуда (ain
left(frac{-2-sqrt2}3; frac{-2+sqrt2}3right))
.

Необходимо проверить, не совпадают ли решения в первом случае с решениями во втором случае.

Пусть (x_0) – общее решение уравнений (1) и (2), тогда [2x_0^2-2(3a+2)x_0+(2a+2)^2+a^2-1=2x_0^2-2(a+2)x_0+(2a+2)^2+a^2-1] Отсюда получаем, что либо (x_0=0), либо (a=0).
Если (a=0), то уравнения (1) и (2) получаются одинаковыми, следовательно, имеют одинаковые корни. Этот случай нам не подходит.
Если (x_0=0) – их общий корень, то тогда (2x_0^2-2(3a+2)x_0+(2a+2)^2+a^2-1=0), откуда ((2a+2)^2+a^2-1=0), откуда (a=-1) или (a=-0,6). Тогда вся исходная система будет иметь 3 различных решения, что нам не подходит.

Учитывая все это, в ответ пойдут:

[ainleft(dfrac{-2-sqrt2}3; -1right)cupleft(-1;
-0,6right)cupleft(-0,6; -2+sqrt2right)]

Ответ:

(ainleft(frac{-2-sqrt2}3; -1right)cupleft(-1;
-0,6right)cupleft(-0,6; -2+sqrt2right))


Задание
2

#4032

Уровень задания: Равен ЕГЭ

Найдите все значения (a), при каждом из которых система [begin{cases}
(a-1)x^2+2ax+a+4leqslant 0\
ax^2+2(a+1)x+a+1geqslant 0 end{cases}]

имеет единственное решение.

(ЕГЭ 2018, СтатГрад, 19 апреля 2018)

Перепишем систему в виде: [begin{cases}
ax^2+2ax+aleqslant x^2-4\
ax^2+2ax+ageqslant -2x-1
end{cases}]
Рассмотрим три функции: (y=ax^2+2ax+a=a(x+1)^2), (g=x^2-4), (h=-2x-1). Из системы следует, что (yleqslant g), но (ygeqslant
h)
. Следовательно, чтобы система имела решения, график (y) должен находиться в области, которая задается условиями: “выше” графика (h), но “ниже” графика (g):

(будем называть “левую” область областью I, “правую” область – областью II)
Заметим, что при каждом фиксированном (ane 0) графиком (y) является парабола, вершина которой находится в точке ((-1;0)), а ветви обращены либо вверх, либо вниз. Если (a=0), то уравнение выглядит как (y=0) и графиком является прямая, совпадающая с осью абсцисс.
Заметим, что для того, чтобы исходная система имела единственное решение, нужно, чтобы график (y) имел ровно одну общую точку с областью I или с областью II (это значит, что график (y) должен иметь единственную общую точку с границей одной из этих областей).

Рассмотрим по отдельности несколько случаев.

1) (a>0). Тогда ветви параболы (y) обращены вверх. Чтобы у исходной системы было единственное решение, нужно, чтобы парабола (y) касалась границы области I или границы области II, то есть касалась параболы (g), причем абсцисса точки касания должна быть (leqslant
-3)
или (geqslant 2) (то есть парабола (y) должна коснуться границы одной из областей, которая находится выше оси абсцисс, раз парабола (y) лежит выше оси абсцисс).

(y’=2a(x+1)), (g’=2x). Условия касания графиков (y) и (g) в точке с абсциссой (x_0leqslant -3) или (x_0geqslant 2): [begin{cases}
2a(x_0+1)=2x_0\
a(x_0+1)^2=x_0^2-4 \
left[begin{gathered}begin{aligned} &x_0leqslant -3\
&x_0geqslant 2 end{aligned}end{gathered}right. end{cases}
quadLeftrightarrowquad
begin{cases}
left[begin{gathered}begin{aligned} &x_0leqslant -3\
&x_0geqslant 2 end{aligned}end{gathered}right.\[1ex]
a=dfrac{x_0}{x_0+1}\[1ex]
x_0^2+5x_0+4=0 end{cases}]
Из данной системы (x_0=-4), (a=frac43).
Получили первое значение параметра (a).

2) (a=0). Тогда (y=0) и видно, что прямая имеет бесконечное множество общих точек с областью II. Следовательно, это значение параметра нам не подходит.

3) (a<0). Тогда ветви параболы (y) обращены вниз. Чтобы у исходной системы было единственное решение, нужно, чтобы парабола (y) имела одну общую точку с границей области II, лежащей ниже оси абсцисс. Следовательно, она должна проходить через точку (B), причем, если парабола (y) будет иметь еще одну общую точку с прямой (h), то эта общая точка должна быть “выше” точки (B) (то есть абсцисса второй точки должна быть (<1)).

Найдем (a), при которых парабола (y) проходит через точку (B): [-3=a(1+1)^2quadRightarrowquad a=-dfrac34] Убеждаемся, что при этом значении параметра вторая точка пересечения параболы (y=-frac34(x+1)^2) с прямой (h=-2x-1) – это точка с координатами (left(-frac13; -frac13right)).
Таким образом, получили еще одно значение параметра.

Так как мы рассмотрели все возможные случаи для (a), то итоговый ответ: [ain left{-dfrac34; dfrac43right}]

Ответ:

(left{-frac34; frac43right})


Задание
3

#4013

Уровень задания: Равен ЕГЭ

Найдите все значения параметра (a), при каждом из которых система уравнений [begin{cases}
2x^2+2y^2=5xy\
(x-a)^2+(y-a)^2=5a^4 end{cases}]

имеет ровно два решения.

(ЕГЭ 2018, СтатГрад, 26 января 2018)

1) Рассмотрим первое уравнение системы как квадратное относительно (x): [2x^2-(5y)x+2y^2=0] Дискриминант равен (D=9y^2), следовательно, [x_{1,2}=dfrac{5ypm 3y}4quadRightarrow quad x_1=2y, quad x_2=dfrac12y] Тогда уравнение можно переписать в виде [(x-2y)cdot (2x-y)=0] Следовательно, всю систему можно переписать в виде [begin{cases}
left[begin{gathered}begin{aligned} &y=2x\[1ex]
&y=0,5xend{aligned}end{gathered}right.\[1ex]
(x-a)^2+(y-a)^2=5a^4end{cases}]
Совокупность задает две прямые, второе уравнение системы задает окружность с центром в ((a;a)) и радиусом (R=sqrt5a^2). Чтобы исходное уравнение имело два решения, нужно, чтобы окружность пересекала график совокупности ровно в двух точках. Вот чертеж, когда, например, (a=1):

Заметим, что так как координаты центра окружности равны, то центр окружности “бегает” по прямой (y=x).

2) Так как у прямой (y=kx) тангенс угла наклона этой прямой к положительному направлению оси (Ox) равен (k), то тангенс угла наклона прямой (y=0,5x) равен (0,5) (назовем его (mathrm{tg},alpha)), прямой (y=2x) – равен (2) (назовем его (mathrm{tg},beta)). Заметим, что (mathrm{tg},alphacdot
mathrm{tg},beta=1)
, следовательно, (mathrm{tg},alpha=mathrm{ctg},beta=mathrm{tg},(90^circ-beta)). Следовательно, (alpha=90^circ-beta), откуда (alpha+beta=90^circ). Это значит, что угол между (y=2x) и положительным направлением (Oy) равен углу между (y=0,5x) и положительным направлением (Ox):

А так как прямая (y=x) является биссектрисой I координатного угла (то есть углы между ней и положительными направлениями (Ox) и (Oy) равны по (45^circ)), то углы между (y=x) и прямыми (y=2x) и (y=0,5x) равны.
Все это нам нужно было для того, чтобы сказать, что прямые (y=2x) и (y=0,5x) симметричны друг другу относительно (y=x), следовательно, если окружность касается одной из них, то она обязательно касается и второй прямой.
Заметим, что если (a=0), то окружность вырождается в точку ((0;0)) и имеет лишь одну точку пересечения с обеими прямыми. То есть этот случай нам не подходит.
Таким образом, для того, чтобы окружность имела 2 точки пересечения с прямыми, нужно, чтобы она касалась этих прямых:

Видим, что случай, когда окружность располагается в третьей четверти, симметричен (относительно начала координат) случаю, когда она располагается в первой четверти. То есть в первой четверти (a>0), а в третьей (a<0) (но такие же по модулю).
Поэтому рассмотрим только первую четверть.

Заметим, что (OQ=sqrt{(a-0)^2+(a-0)^2}=sqrt2a), (QK=R=sqrt5a^2). Тогда [OK=sqrt{2a^2-5a^4}] Тогда [mathrm{tg},angle
QOK=dfrac{sqrt5a^2}{sqrt{2a^2-5a^4}}]
Но, с другой стороны, [mathrm{tg},angle QOK=mathrm{tg},(45^circ-alpha)=dfrac{mathrm{tg},
45^circ-mathrm{tg},alpha}{1+mathrm{tg},45^circcdot
mathrm{tg},alpha}]
следовательно, [dfrac{1-0,5}{1+1cdot 0,5}=dfrac{sqrt5a^2}{sqrt{2a^2-5a^4}}
quadLeftrightarrowquad a=pm dfrac15]
Таким образом, мы уже сразу получили и положительное, и отрицательное значение для (a). Следовательно, ответ: [ain {-0,2;0,2}]

Ответ:

({-0,2;0,2})


Задание
4

#3278

Уровень задания: Равен ЕГЭ

Найдите все значения (a), для каждого из которых уравнение [25^x-(a+6)cdot 5^x=(5+3|a|)cdot 5^x-(a+6)(3|a|+5)]

имеет единственное решение.

(ЕГЭ 2017, официальный пробный 21.04.2017)

Сделаем замену (t=5^x, t>0) и перенесем все слагаемые в одну часть: [t^2-bigg((a+6)+(5+3|a|)bigg)cdot t+(a+6)(3|a|+5)=0] Получили квадратное уравнение, корнями которого по теореме Виета являются (t_1=a+6) и (t_2=5+3|a|). Для того, чтобы исходное уравнение имело один корень, достаточно, чтобы полученное уравнение с (t) тоже имело один (положительный!) корень.
Заметим сразу, что (t_2) при всех (a) будет положительным. Таким образом, получаем два случая:

1) (t_1=t_2): [a+6=5+3|a| quadLeftrightarrowquad 3|a|=a+1 quadLeftrightarrowquad
begin{cases}
left[begin{gathered}begin{aligned} & 3a=a+1\
&3a=-a-1 end{aligned} end{gathered} right. \
a+1geqslant 0 end{cases}quadLeftrightarrowquad
left[begin{gathered}begin{aligned} & a=dfrac12\[2ex]
&a=-dfrac14 end{aligned} end{gathered} right.]

2) Так как (t_2) всегда положителен, то (t_1) должен быть (leqslant
0)
: [a+6leqslant 0 quadLeftrightarrowquad aleqslant -6.]

Ответ:

((-infty;-6]cupleft{-frac14;frac12right})


Задание
5

#3252

Уровень задания: Равен ЕГЭ

Найдите все значения параметра (a), при каждом из которых уравнение [sqrt{x^2-a^2}=sqrt{3x^2-(3a+1)x+a}]

имеет ровно один корень на отрезке ([0;1]).

(ЕГЭ 2017, резервный день)

Уравнение можно переписать в виде: [sqrt{(x-a)(x+a)}=sqrt{(3x-1)(x-a)}] Таким образом, заметим, что (x=a) является корнем уравнения при любых (a), так как уравнение принимает вид (0=0). Для того, чтобы этот корень принадлежат отрезку ([0;1]), нужно, чтобы (0leqslant
aleqslant 1)
.
Второй корень уравнения находится из (x+a=3x-1), то есть (x=frac{a+1}2). Для того, чтобы это число было корнем уравнения, нужно, чтобы оно удовлетворяло ОДЗ уравнения, то есть: [left(dfrac{a+1}2-aright)cdot
left(dfrac{a+1}2+aright)geqslant 0quadRightarrowquad
-dfrac13leqslant aleqslant 1]
Для того, чтобы этот корень принадлежал отрезку ([0;1]), нужно, чтобы [0leqslant dfrac{a+1}2leqslant 1
quadRightarrowquad -1leqslant aleqslant 1]
Таким образом, чтобы корень (x=frac{a+1}2) существовал и принадлежал отрезку ([0;1]), нужно, чтобы (-frac13leqslant aleqslant 1).
Заметим, что тогда при (0leqslant aleqslant 1) оба корня (x=a) и (x=frac{a+1}2) принадлежат отрезку ([0;1]) (то есть уравнение имеет два корня на этом отрезке), кроме случая, когда они совпадают: [a=dfrac{a+1}2quadRightarrowquad a=1] Таким образом, нам подходят (ain left[-frac13; 0right)) и (a=1).

Ответ:

(ain left[-frac13;0right)cup{1})


Задание
6

#3238

Уровень задания: Равен ЕГЭ

Найдите все значения параметра (a), при каждом из которых уравнение [xsqrt{x-a}=sqrt{6x^2-(6x+3a)x+3a}]

имеет единственный корень на отрезке ([0;1].)

(ЕГЭ 2017, резервный день)

Уравнение равносильно: [xsqrt{x-a}=sqrt{3a(1-x)}] ОДЗ уравнения: [begin{cases} xgeqslant 0\ x-ageqslant 0\3a(1-x)
geqslant 0end{cases}]
На ОДЗ уравнение перепишется в виде: [x^3-a(x^2-3x+3)=0]

1) Пусть (a<0). Тогда ОДЗ уравнения: (xgeqslant 1). Следовательно, для того, чтобы уравнение имело единственный корень на отрезке ([0;1]), этот корень должен быть равен (1). Проверим: [1^3-a(1^2-3cdot 1+3)=0 quadRightarrowquad a=1.] Не подходит под (a<0). Следовательно, эти значения (a) не подходят.

2) Пусть (a=0). Тогда ОДЗ уравнения: (xgeqslant 0). Уравнение перепишется в виде: [x^3=0 quadRightarrowquad x=0] Полученный корень подходит под ОДЗ и входит в отрезок ([0;1]). Следовательно, (a=0) – подходит.

3) Пусть (a>0). Тогда ОДЗ: (xgeqslant a) и (xleqslant 1). Следовательно, если (a>1), то ОДЗ – пустое множество. Таким образом, (0<aleqslant 1) и при этих (a) ОДЗ: (aleqslant xleqslant
1)
. Следовательно, если корень подойдет по ОДЗ, то он попадет и в отрезок ([0;1]).
Рассмотрим функцию (y=x^3-a(x^2-3x+3)). Исследуем ее.
Производная равна (y’=3x^2-2ax+3a). Определим, какого знака может быть производная. Для этого найдем дискриминант уравнения (3x^2-2ax+3a=0): (D=4a(a-9)). Следовательно, при (ain (0;1]) дискриминант (D<0). Значит, выражение (3x^2-2ax+3a) положительно при всех (x). Следовательно, при (ain (0;1]) производная (y’>0). Следовательно, (y) возрастает. Таким образом, по свойству возрастающей функции уравнение (y(x)=0) может иметь не более одного корня.

Следовательно, для того, чтобы корень уравнения (точка пересечения графика (y) с осью абсцисс) находился на отрезке ([a;1]), нужно, чтобы [begin{cases} y(1)geqslant 0\
y(a)leqslant 0 end{cases}quadRightarrowquad ain [0;1]]
Учитывая, что изначально в рассматриваемом случае (ain (0;1]), то ответ (ain (0;1]).

Итоговый ответ, полученный объединением ответов во всех трех случаях: [ain [0;1]]

Ответ:

([0;1])


Задание
7

#3267

Уровень задания: Равен ЕГЭ

Найдите все значения (a), при каждом из которых уравнение [sqrt{1-4x}cdot ln(9x^2-a^2)=sqrt{1-4x}cdot ln (3x+a)]

имеет ровно один корень.

(ЕГЭ 2017, основная волна)

Данное уравнение можно переписать как [begin{cases}
sqrt{1-4x}cdot ln dfrac{(3x-a)(3x+a)}{3x+a}=0\[2ex]
3x+a>0end{cases} quadLeftrightarrowquad
begin{cases}
sqrt{1-4x}cdot ln (3x-a)=0\
3x+a>0end{cases}]
Система имеет два корня:
1) (x_1=frac14), если он удовлетворяет (3x+a>0) и (3x-a>0): [begin{cases}
dfrac34+a>0\[1ex]
dfrac34-a>0end{cases} quadLeftrightarrowquad
-dfrac34<a<dfrac34]

2) (x_2=frac{a+1}3), если он удовлетворяет (3x+a>0) и (1-4xgeqslant 0): [begin{cases}
a+1+a>0\[1ex]
1-dfrac43a-dfrac43geqslant 0end{cases}quadLeftrightarrowquad
-dfrac12<aleqslant -dfrac14]

Рассмотрим случаи, когда данная система имеет ровно один корень. Пусть (x_1ne x_2), то есть (ane -frac14).
1. Пусть (x_1=frac14) – единственное решение системы.
(x_1) будет корнем, если (-frac34<a<frac34), (x_2) не будет корнем, если (ain
left(-infty;-frac12right]cupleft(-frac14;+inftyright))
. Пересекая эти значения, а также учитывая, что (ane -frac14), получаем: [ain left(-dfrac34;-dfrac12right]cupleft(-dfrac14;dfrac34right)] 2. Пусть (x_2=frac{a+1}3) – единственное решение системы.
(x_1) не будет корнем, если (ain
left(-infty;-frac34right]cupleft[frac34;+inftyright))
, (x_2) будет корнем, если (-frac12<aleqslant -frac14). Пересекая эти значения, а также учитывая, что (ane -frac14), получаем: [ain varnothing]

Пусть (x_1=x_2). Тогда (a=-frac14). Заметим, что при этом значении что (x_1), что (x_2) являются решением, следовательно, оно нам подходит.
Итоговый ответ: [ain left(-dfrac34;-dfrac12right]cupleft[-dfrac14;dfrac34right)]

Ответ:

(ain
left(-dfrac34;-dfrac12right]cupleft[-dfrac14;dfrac34right)
)

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Найдите все значения параметра k, при каждом из которых уравнение  дробь: числитель: 1 плюс левая круглая скобка 2 минус 2k правая круглая скобка синус t, знаменатель: косинус t минус синус t конец дроби = 2k имеет хотя бы одно решение на интервале  левая круглая скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая круглая скобка .


2

Найдите все значения k, при каждом из которых уравнение

 дробь: числитель: 6k минус левая круглая скобка 2 минус 3k правая круглая скобка косинус t, знаменатель: синус t минус косинус t конец дроби =2

имеет хотя бы одно решение на отрезке  левая квадратная скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая квадратная скобка .

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 4. (Часть C).


3

Определите, при каких значениях параметра a уравнение

|x минус 2|=a логарифм по основанию 2 |x минус 2|

имеет ровно два решения.

Источник: РЕШУ ЕГЭ — Предэкзаменационная работа 2014 по математике.


4

Найдите все значения параметра a, при каждом из которых уравнение

|x минус a в квадрате плюс a плюс 2| плюс |x минус a в квадрате плюс 3a минус 1|=2a минус 3

имеет корни, но ни один из них не принадлежит интервалу (4; 19).


5

Найдите все значения параметра a, при каждом из которых уравнение

|x минус a в квадрате плюс 4a минус 2| плюс |x минус a в квадрате плюс 2a плюс 3|=2a минус 5

имеет хотя бы один корень на отрезке [5; 23].

Пройти тестирование по этим заданиям

22 февраля 2018

В закладки

Обсудить

Жалоба

Задачи с параметрами в ЕГЭ разных лет

ЕГЭ 2018. Досрочная волна

ЕГЭ 2017 (2 июня)

ЕГЭ 2017 (досрочная волна)

ЕГЭ 2016 (основная волна)

ЕГЭ 2015 (досрочная волна)

Демоверсии 2015-2018

Автор материала — Анна Малкова

Какими были задачи с параметрами на ЕГЭ-2022? На этой странице — обзор всех типов задач №17, предложенных на ЕГЭ по математике в этом году, с полным решением и оформлением.

Напомним, что «параметры» — одна из дорогостоящих задач ЕГЭ. Она оценивается в 4 первичных балла.

Основной темой задач с параметрами на ЕГЭ этого года были модули.

Если вы не помните, что такое модуль числа, — вам сюда.

Способы решения — разные. В одних задачах удобнее графический способ, в других — аналитический.

Мы начнем с тех задач, которые решаются графическим способом. В первых трех, которые мы здесь разбираем, нам встретится уравнение окружности.

Почитать о нем подробно можно здесь.

1. При каких значениях параметра a уравнение left|x^2+a^2-6x-4aright|=2x+2a имеет ровно 4 решения?

Решение:

Вспомним, как решать уравнения вида left|Aright|=B.

left|Aright|=BLeftrightarrow left{ begin{array}{c}Bge 0 \left[ begin{array}{c}A=B \A=-B end{array}right. end{array}.right.

Поэтому исходное уравнение равносильно системе:

left{ begin{array}{c}2x+2age 0 \left[ begin{array}{c}x^2+a^2-6x-4a=2x+2a \x^2+a^2-6x-4a=-2x-2a end{array}right. end{array}.right.

Получим:

left{ begin{array}{c}x+age 0 \left[ begin{array}{c}x^2-8x+a^2-6a=0 \x^2-4x+a^2-2a=0 end{array}right. end{array}right.Leftrightarrow left{ begin{array}{c}x+age 0 \left[ begin{array}{c}x^2-8x+16+a^2-6a+9=25 \x^2-4x+4+a^2-2a+1=5 end{array}right. end{array}right.Leftrightarrow

Leftrightarrow left{ begin{array}{c}age -x \left[ begin{array}{c}{left(x-4right)}^2+{left(a-3right)}^2=25 \{left(x-2right)}^2+{left(a-1right)}^2=5 end{array}right. end{array}.right.

Изобразим решения системы в координатах left(x;aright).

Уравнение {left(x-4right)}^2+{left(a-3right)}^2=25 задает окружность omega _1 с центром Pleft(4;3right) и радиусом 5; уравнение {left(x-2right)}^2+{left(a-1right)}^2=5 задает окружность omega _2 с центром Qleft(2;1right) и радиусом sqrt{5}; при этом должно выполняться условие age -x.

Заметим, что обе окружности проходят через точки O(0;0) и M(1;-1).

Найдем, при каких значениях параметра a исходное уравнение имеет ровно 4 решения.

При a=-1 прямая a=-1 проходит через точку M, общую для двух окружностей; уравнение имеет ровно 3 решения.

Если прямая a=a_0 проходит через точку A (нижнюю точку окружности omega _2), уравнение также имеет 3 решения.

При этом a=1-sqrt{5}, поскольку разность ординат точек Q и A равна sqrt{5}, то есть радиусу окружности omega _2.

При 1-sqrt{5}textless atextless -1 уравнение имеет 4 решения.

Если ale 1-sqrt{5}, решений меньше 4.

Если a=0, уравнение имеет ровно 3 решения, т.к. точка O(0; 0) общая для обеих окружностей.

Если прямая a=a_0 проходит через B — верхнюю точку окружности omega _2, уравнение имеет ровно 3 решения.

В этом случае a=1+sqrt{5}.

При 0textless atextless 1+sqrt{5} уравнение имеет ровно 4 решения.

Если atextgreater 1+sqrt{5,} решений меньше, чем 4.

Объединив случаи, получим ответ.

Ответ: ain left(1-sqrt{5};-1right)cup left(0;1+sqrt{5}right).

2. При каких значениях параметра a уравнение x^2-x-7a+a^2=left|7x-aright| имеет ровно 2 решения?

Решение:

Раскроем модуль по определению.

x^2-x-7a+a^2=left|7x-aright|  Leftrightarrow

Leftrightarrow   left[ begin{array}{c}left{ begin{array}{c}7x-age 0 \{ x}^2-x-7a+a^2-7x+a=0 end{array}right. \left{ begin{array}{c}7x-atextless 0 \{ x}^2-x-7a+a^2+7x-a=0 end{array}right. end{array}right.    Leftrightarrow   left[ begin{array}{c}left{ begin{array}{c}ale 7x \{ x}^2-8x+a^2-6a=0 end{array}right. \left{ begin{array}{c}atextgreater 7x \{ x}^2+6x+a^2-8a=0 end{array}right. end{array}right.  Leftrightarrow
Leftrightarrow    left[ begin{array}{c}left{ begin{array}{c}ale 7x \{ x}^2-8x+16+a^2-6a+9=25 end{array}right. \left{ begin{array}{c}atextgreater 7x \{ x}^2+6x+9+a^2-8a+16=25 end{array}right. end{array}right.   Leftrightarrow  left[ begin{array}{c}left{ begin{array}{c}ale 7x \{ (x-4)}^2+({a-3)}^2=25      (1) end{array}right. \left{ begin{array}{c}atextgreater 7x \{ (x+3)}^2+{(a-4)}^2=25     (2) end{array}right. end{array}right.

Уравнение (1) задает окружность с центром в точке Р (4; 3) и радиусом 5,

уравнение (2) задает окружность с центром в точке Q(-3; 4) и радиусом 5.

Изобразим график совокупности двух систем в системе координат (x;a).

При ale 7x получаем часть окружности (1), лежащую ниже прямой a = 7x;

при atextgreater 7x получаем часть окружности (2), лежащую выше прямой a = 7x.

Исходное уравнение имеет ровно два различных решения, если прямая {a = a}_{0 } пересекает график совокупности двух систем ровно два раза.

Прямая a = a{}_{0 }, проходящая через точку С, пересекает график совокупности двух систем один раз.

Найдем координаты С — самой нижней точки и Е — самой верхней точки правой окружности.

Для этих точек x = 4. Найдем координату a:

{ (4-4)}^2+({a-3)}^2=25;    ({a-3)}^2=25;    a=-2 или a=8,

Координаты точек С (4; -2) и Е (4; 8).

Найдем координаты D — самой нижней точки и F — самой верхней точки левой окружности

Для этих точек x = — 3, найдем координату a.

{ (-3 +3)}^2+({a-4)}^2=25;    ({a-4)}^2=25;   a=-1 или a=9,

Координаты точек: D (-3; -1), F(-3; 9).

Точки А и В, в которых пересекаются две окружности, лежат на прямой

a = 7x (так как при a = 7x выражение под модулем равно нулю).

Подставив a = 7x в уравнение окружности (1) { (x-4)}^2+({a-3)}^2=25, получим:

{ x}^2-8x+{left(7xright)}^2-6cdot 7x=0;

{50 x}^2-50x=0;

50x(x-1)=0, x = 0 или x = 1.

Получили точки В (0; 0) и А (1; 7).

Прямая a = a{}_{0 } пересекает график совокупности двух систем ровно два раза в следующих случаях:

1) если прямая a = a{}_{0 } проходит выше точки С, но ниже точки D:

-2textless atextless -1;

2) если прямая a = a{}_{0 } проходит выше точки В, но ниже точки А:

0 textless atextless 7;

3) если прямая a = a{}_{0 } проходит выше точки Е, но ниже точки F:

8 textless atextless 9.

Если atextless -2 или atextgreater 9, то решений нет.

Если a = -2 или a = 9, уравнение имеет ровно одно решение.

Если a = -1 или a = 8, ровно три решения.

Если -1textless atextless 0 или 7textless atextless 8, ровно четыре решения. Эти случаи нам не подходят.

Ответ: a in (-2;-1)cup (0;7)cup (8;9).

3. При каких значениях параметра a уравнение

left|x^2+a^2-7x+5aright|=x-a

имеет ровно 2 корня?

Решение:

left|Aright|=BLeftrightarrow left{ begin{array}{c}Bge 0 \left[ begin{array}{c}A=B \A=-B end{array}right. end{array}.right.

Раскрыв модуль, получим:

left{ begin{array}{c}left[ begin{array}{c}x^2+a^2-7x+5a=x-a \x^2+a^2-7x+5a=a-x end{array}right. \x-age 0 end{array}right.Leftrightarrow left{ begin{array}{c}left[ begin{array}{c}x^2-8x+a^2+6a=0 \x^2-6x+a^2+4a=0 end{array}right. \x-age 0 end{array}right.Leftrightarrow
Leftrightarrow left{ begin{array}{c}left[ begin{array}{c}x^2-8x+16+a^2+6a+9=25 \x^2-6x+9+a^2+4a+4=13 end{array}right. \x-age 0 end{array}Leftrightarrow left{ begin{array}{c}left[ begin{array}{c}{left(x-4right)}^2+{left(a+3right)}^2=25 \{left(x-3right)}^2+{left(a+2right)}^2=13 end{array}right. \x-age 0 end{array}.right.right.

Решим систему графически в координатах left(x;aright)

Прямая a=x — это биссектриса первого и третьего координатных углов.

Неравенство ale x задает полуплоскость, расположенную ниже прямой a=x.

Уравнение {left(x-3right)}^2+{left(a+2right)}^2=13 задает окружность omega 1 с центром в точке Pleft(3;-2right) и радиусом R=sqrt{13}.

Уравнение {left(x-4right)}^2+{left(a+3right)}^2=25 задает окружность omega 2 с центром в точке Qleft(4;-3right) и радиусом R=5.

Заметим, что обе окружности проходят через точки О(0; 0) и М(1; 1). В этом легко убедиться, подставив координаты этих точек в уравнения окружностей.

Исходное уравнение имеет ровно 2 корня, если прямая a = a_0 пересекает совокупность двух окружностей ровно в двух точках, лежащих не выше прямой a = x.

Это происходит в следующих случаях:

1) Прямая a = a_0 проходит выше точки А и ниже точки В на рисунке, где А — нижняя точка окружности omega 2, В — нижняя точка окружности omega 1.

2) Прямая a = a_0 проходит выше точки С и ниже точки D на рисунке, где D — верхняя точка окружности omega 2, С — верхняя точка окружности omega 1.

3) Прямая a = a_0 проходит выше точки О(0; 0) и ниже точки М(1;1).

Найдем координаты точек А, В, С, D.

Aleft(4;-8right);  Dleft(4;2right);  Bleft(3;-left(2+sqrt{13}right)right);  Cleft(3;sqrt{13}-2right).

Получим, что ain left(-8;-2-sqrt{13}right)cup left(0;1right)cup left(sqrt{13}-2;2right).

Ответ: ain left(-8;-2-sqrt{13}right)cup left(0;1right)cup left(sqrt{13}-2;2right).

Заметим, что в каждом из уравнений присутствовало выражение a^2+ x^2 — как в уравнении окружности. Именно поэтому становилось понятно, что их можно решить графически в координатах x; a.

Теперь — следующий тип задач. Здесь окружностей уже не будет. Зато будет разложение на множители.

4. При каких значениях параметра a уравнение a^2-ax-2x^2-6a+3x+9left|xright|=0

имеет ровно 4 решения?

Решение:

Раскроем модуль. Уравнение равносильно совокупности двух систем:
left[ begin{array}{c}left{ begin{array}{c}xtextless 0 \a^2-ax-2x^2-6a-6x=0 end{array}right. \left{ begin{array}{c}xge 0 \a^2-ax-2x^2-6a+12x=0 end{array}right. end{array}.right.

Упростим по очереди каждую из них.

1) Случай xtextless 0:

a^2-ax-2x^2-6a-6x=0;

2x^2+left(a+6right)x+6a-a^2=0.

Найдем дискриминант и корни этого квадратного уравнения.

D={left(a+6right)}^2-8left(6a-a^2right)=a^2+12a+36-48a+8a^2=

9a^2-36a+36=9left(a^2-4a+4right)=9{left(a-2right)}^2ge 0;

displaystyle x=frac{-a-6pm 3left(a-2right)}{4};

displaystyle x_1=frac{2a-12}{4}=frac{a}{2}-3;

x_2=-a.

2) Случай xge 0:

a^2-ax-2x^2-6a+12x=0;

2x^2+left(a-12right)x+6a-a^2=0.

В этом случае также найдем дискриминант и корни квадратного уравнения.

D={left(a-12right)}^2-8left(6a-a^2right)=a^2-24a+144-48a+8a^2=

9a^2-72a+144=9left(a^2-8a+16right)=9{left(a-4right)}^2;

displaystyle x=frac{12-apm 3left(a-4right)}{4};  x_1=frac{12-a+3a-12}{4}=frac{a}{2};

displaystyle x_2=frac{12-a-3a+12}{4}=frac{-4a+24}{4}=6-a.

Получим:

displaystyle left{ begin{array}{c}x textless 0 \left[ begin{array}{c}x=frac{a}{2}-3 \x=-a end{array}right. end{array}right. или displaystyle left{ begin{array}{c}xge 0 \left[ begin{array}{c}x=frac{a}{2} \x=6-a end{array}right. end{array}right..

Решим совокупность двух систем графически в координатах left(a;xright).

Если ale 0, уравнение имеет меньше 4 решений.

Если age 6, также меньше 4 решений.

Если прямая a=a_0 проходит через точку A или точку B, уравнение имеет ровно 3 решения.

В точке A пересекаются прямые displaystyle x=frac{a}{2} и x=6-a, значит, для этой точки
displaystyle frac{a}{2}=6-a, a=12-2a, a=4 .
В точке B пересекаются прямые displaystyle x=frac{a}{2}-3 и x=-a , то для точки B:
displaystyle frac{a}{2}-3=-a ; a-6=-2a;  a=2.
Уравнение имеет ровно 4 решения, если 0 textless a textless 2 или 2 textless a textless 4 или 4 textless a textless 6 .

Ответ: ain (0; 2)cup (2; 4) cup (4; 6).

Следующие две задачи мы решим (для разнообразия) аналитическим способом.

5. При каких значениях параметра a уравнение a^2-4ax-5x^2-6a-12x+18left|xright|=0

имеет меньше 4 решений?

Решение:

Уравнение равносильно совокупности:

left[ begin{array}{c}left{ begin{array}{c}xge 0 \a^2-4ax-5x^2-6a+6x=0 end{array}right. \left{ begin{array}{c}xtextless 0 \a^2-4ax-5x^2-6a-30x=0 end{array}right. end{array}.right.

Рассмотрим каждый случай отдельно

1) xge 0;

a^2-4ax-5x^2-6a+6x=0Leftrightarrow 5x^2+left(4a-6right)x+6a-a^2=0  (1)

2) xtextless 0

a^2-4ax-5x^2-6a-30x=0Leftrightarrow 5x^2+left(4a+30right)x+6a-a^2=0  (2)

Каждое из уравнений — квадратное и не может иметь больше 2 корней.

Если уравнение (1) имеет 2 неотрицательных корня, а уравнение (2) имеет 2 отрицательных корня, исходное уравнение имеет ровно 4 решения. Найдем, при каких значениях a это происходит, а затем исключим эти значения. Получим случай, когда исходное уравнение имеет менее 4 корней.

Исходное уравнение имеет ровно 4 решения, если уравнение 5x^2+left(4a-6right)x+6a-a^2=0 имеет два неотрицательных корня, а уравнение 5x^2+left(4a+30right)x+6a-a^2-a^2=0 имеет два отрицательных корня.

1 уравнение:

5x^2+left(4a-6right)x+6a-a^2=0.

По теореме Виета, displaystyle x_1+x_2=-frac{b}{a};

displaystyle x_1x_2=frac{c}{a} для уравнения ax^2+bx+c=0.

.

При этом Dtextgreater 0.

displaystyle left{begin{matrix}4a-6 textless 0 \ a^2 -6aleq 0\(4a-6)^2-20(6a-a^2)textgreater 0end{matrix}right. Leftrightarrow left{begin{matrix}a textless frac{3}{2} \ a(a-6)leq 0\ 16a^2-48a+36-120a+20a^2textgreater 0end{matrix}right. Leftrightarrow left{begin{matrix}a textless frac{3}{2} \ 0leq aleq 6 \ 36a^2-168a+36 textgreater 0end{matrix}right. Leftrightarrow left{begin{matrix}a textless frac{3}{2} \ 0 leq a leq 6\ 3a^2 -14a+3 textgreater 0.end{matrix}right.

3a^2-14a+3=0.

D=196-4cdot 9=160.

sqrt{D}=4sqrt{10}.

displaystyle a=frac{14pm 4sqrt{10}}{6}=frac{7 pm 2sqrt{10}}{3}.

displaystyleleft{ begin{array}{c} a textless frac{3}{2} \0le ale 6 \{ 3a}^2-14a+3 textgreater 0 end{array}right. Leftrightarrow left{ begin{array}{c}0le a textless frac{3}{2} \left(a-frac{7+2sqrt{10}}{3}right)left(a-frac{7-2sqrt{10}}{3}right) textgreater 0end{array}.right.

Оценим displaystyle frac{7-2sqrt{10}}{3} и displaystyle frac{7+2sqrt{10}}{3}.

Сравним 7vee 2sqrt{10};7textgreater 2sqrt{10}, т.к. 49textgreater 40;

displaystyle frac{7-2sqrt{10}}{3}textgreater 0, также displaystyle frac{7-2sqrt{10}}{3}textless frac{7-2cdot 3}{3};0textless frac{7-2sqrt{10}}{3}textless frac{1}{3}.

displaystyle frac{7+2cdot 3}{3}textless frac{7+2sqrt{10}}{3}textless frac{7+2cdot 4}{3};4textless frac{7+2sqrt{10}}{3}textless 5.

Получим: displaystyle 0leq a textless frac{7-2sqrt{10}}{3}.

2 уравнение: 5x^2+left(4a+30right)x+6a-a^2=0;

left{ begin{array}{c}x_1textless 0 \x_2textless 0 end{array}right.Leftrightarrow left{ begin{array}{c}x_1+x_2textless 0 \x_1x_2textgreater 0 end{array}right.Leftrightarrow left{ begin{array}{c}-left(4a+30right)textless 0 \6a-a^2textgreater 0 end{array}right.Leftrightarrow left{ begin{array}{c}2a+15textgreater 0 \aleft(a-6right)textless 0 end{array}.right.

При этом Dtextgreater 0, т.е. {left(4a+30right)}^2-20left(6a-a^2right)textgreater 0.

16a^2+240a+900-20left(6a-a^2right)textgreater 0;

4a^2+60a+225-30a+5a^2textgreater 0;

9a^2+30a+225textgreater 0;

3a^2+10a+75textgreater 0 — верно при всех a.

Получим:

left{ begin{array}{c}2a+15textgreater 0 \aleft(a-6right)textless 0; end{array}Leftrightarrow 0textless atextless 6.right.

Исходное уравнение имеет ровно 4 решения, если выполняется система условий:

displaystyle left{ begin{array}{c}0 leq atextless frac{7-2sqrt{10}}{3} \0textless atextless 6 end{array}right.Leftrightarrow 0textless atextless frac{7-2sqrt{10}}{3}. При всех остальных значениях a — меньше четырёх решений. Значит, подходят значения displaystyle ain left(-infty ;0right]cup [ frac{7-2sqrt{10}}{3};+infty ).

Ответ: displaystyle ain left(-infty ;0right]cup [frac{7-2sqrt{10}}{3};+infty).

6. Найдите все положительные значения a, при каждом из которых уравнение
a^2-2ax-3x^2-4a-4x+8left|xright|=0
имеет ровно 4 корня.

Решение:

Раскроем модуль по определению.

a^2-2ax-3x^2-4a-4x+8left|xright|=0Leftrightarrow

Leftrightarrow left[ begin{array}{c}left{ begin{array}{c}a^2-2ax-3x^2-4a-4x+8x=0 \xge 0 end{array}right. \left{ begin{array}{c}xtextless 0 \a^2-2ax-3x^2-4a-4x-8x=0 end{array}right. end{array}right.Leftrightarrow left[ begin{array}{c}left{ begin{array}{c}a^2-2ax-3x^2-4a+4x=0 \xge 0 end{array}right. \left{ begin{array}{c}xtextless 0 \a^2-2ax-3x^2-4a-12x=0 end{array}right. end{array}right. .

Мы получили совокупность двух систем. Чтобы исходное уравнение имело ровно 4 корня, нужно, чтобы каждая система имела ровно два решения. Решим каждую из систем отдельно.

1) Первая система:

left{ begin{array}{c}a^2-2ax-3x^2-4a+4x=0 \xge 0 end{array}right.Leftrightarrow left{ begin{array}{c}xge 0 \3x^2+2left(a-2right)x+4a-a^2=0 end{array}right. .

Чтобы квадратное уравнение имело два неотрицательных корня, необходимо и достаточно выполнения условий:

left{ begin{array}{c}Dtextgreater 0 \x_1+x_2textgreater 0 \x_1cdot x_2textgreater 0 end{array}right. .

Другой способ: можно рассмотреть квадратичную функцию

y=3x^2+2left(a-2right)x+4a-a^2 и воспользоваться условиями:    left{ begin{array}{c}Dtextgreater 0 \x_B textless 0 \fleft(0right)ge 0 end{array}right..

Найдем дискриминант соответствующего квадратного уравнения.

4{left(a-2right)}^2-4cdot 3cdot left(4a-a^2right)textgreater 0;

a^2-4a+4-12a+3a^2textgreater 0;

4a^2-16a+4textgreater 0;

a^2-4a+1textgreater 0; при этом a-2 textless 0;

4a-a^2ge 0.

Получим:

left{ begin{array}{c}a^2-4a+1textgreater 0 \a textless 2 \0le ale 4 end{array}.right.

Корни уравнения a^2-4a+1=0;

a=2pm sqrt{3}.

Отсюда 0le atextless 2 - sqrt{3}.

2) Вторая система:

left{ begin{array}{c}xtextless 0 \a^2-2ax-3x^2-4a-12x=0 end{array}Leftrightarrow left{ begin{array}{c}xtextless 0 \3x^2+2left(a+6right)x+4a-a^2=0 end{array}right.right. .

Чтобы система имела ровно 2 решения, для квадратичной функции

y=3x^2+2left(a+6right)x+4a-a^2

необходимо и достаточно выполнения условий:

left{ begin{array}{c}x_Btextless 0 \Dtextgreater 0 \fleft(0right)textgreater 0 end{array}.right.

Dtextgreater 0;

4{left(a+6right)}^2-4cdot 3cdot left(4a-a^2right)textgreater 0;

a^2+12a+36-12a+3a^2textgreater 0;

4a^2+36textgreater 0 — верно для всех a.

left{ begin{array}{c}a+6textgreater 0 \4a-a^2textgreater 0 end{array}.right.

Решение второй системы: 0textless atextless 4.

Исходное уравнение имеет ровно 4 различных решения, если

left{ begin{array}{c}0le atextless 2 - sqrt{3} \0textless atextless 4 end{array}right.Leftrightarrow 0textless atextless 2 - sqrt{3}.

Ответ: ain left(0;2 - sqrt{3}right).

Как всему этому научиться? Если вы решили освоить тему «Параметры» — не нужно начинать со сложных задач. Вначале — подготовительная работа. Элементарные функции и их графики, базовые элементы для решения задач с параметрами. Кроме того, надо отлично знать методы алгебры: разложение выражений на множители, выделение полных квадратов, решение уравнений и неравенств всех типов и многое другое.

Изучить все это можно на Онлайн-курсе подготовки к ЕГЭ по математике. На нем мы решаем и такие задачи, и более сложные. Изучаем не менее 11 методов решения задач с параметрами. Выпускники Онлайн-курса отлично справились с «параметрами» на ЕГЭ-2022.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Задачи с параметрами на ЕГЭ-2022: модули, окружности, квадратные уравнения» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

Skip to content

Всё варианты 17 задания математика ЕГЭ Профиль 2022

Всё варианты 17 задания математика ЕГЭ Профиль 2022admin2022-08-03T22:55:27+03:00

Скачать задания в формате pdf.

Задания 13 ЕГЭ по математике профильного уровня 2022 год (параметры)

1) (28.03.2022 досрочная волна) Найдите все значения параметра a, при каждом из которых система уравнений

[ left{ {begin{array}{*{20}{c}} {frac{{x,{y^2} — 2,x,y — 4y + 8}}{{sqrt {4 — y} }} = 0,} \ {y = a,x,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,} end{array}} right. ]

имеет ровно три различных решения.

ОТВЕТ: (left( {0;1} right) cup left( {1;4} right).)


2) (28.03.2022 досрочная волна) Найдите все значения параметра a, при каждом из которых система уравнений

[ left{ {begin{array}{*{20}{c}} {frac{{x,{y^2} — 3,x,y — 3y + 9}}{{sqrt {x + 3} }} = 0,} \ {y = a,x,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,} end{array}} right. ]

имеет ровно два различных решения.

ОТВЕТ: (left( {0;frac{1}{3}} right] cup left{ 3 right}.)


3) (28.03.2022 досрочная волна) Найдите все значения параметра a, при каждом из которых система уравнений

[ left{ {begin{array}{*{20}{c}} {left( {x,{y^2} — 3,x,y — 3y + 9} right)sqrt {x — 3} = 0,} \ {y = a,x,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,} end{array}} right. ]

имеет ровно три различных решения.

ОТВЕТ: (left( {0;frac{1}{3}} right).)


4) (02.06.2022 основная волна) Найдите все значения параметра a, при каждом из которых уравнение

({x^2} + {a^2} + x — 7a = left| {,7x + a,} right|)

имеет более двух различных решений.

ОТВЕТ: (left[ { — 1;,0} right] cup left[ {,7;,8} right].)


5) (02.06.2022 основная волна) Найдите все значения параметра a, при каждом из которых уравнение

({x^2} + {a^2} — 2x — 6a = left| {,6x — 2a,} right|)

имеет два различных решения.

ОТВЕТ: (left( {2 — 2sqrt 5 ;4 — 2sqrt 5 } right) cup left( {0;,6} right) cup left( {2 + 2sqrt 5 ;4 + 2sqrt 5 } right).)


6) (02.06.2022 основная волна) Найдите все значения параметра a, при каждом из которых уравнение

(left| {{x^2} + {a^2} — 6x — 4a} right| = 2x + 2a)

имеет два различных решения.

ОТВЕТ: (left( { — 2;1 — sqrt 5 } right) cup left( { — 1;,0} right) cup left( {1 + sqrt 5 ;8} right).)

7) (02.06.2022 основная волна) Найдите все значения параметра a, при каждом из которых уравнение

(left| {{x^2} + {a^2} — 6x — 4a} right| = 2x + 2a)

имеет четыре различных решения.

ОТВЕТ: (left( {1 — sqrt 5 ;, — 1} right) cup left( {0;1 + sqrt 5 } right).)


8) (02.06.2022 основная волна) Найдите все значения параметра a, при каждом из которых уравнение

({a^2} + 2,a,x — 3{x^2} — 4a — 4x + 8left| x right| = 0)

имеет четыре различных решения.

ОТВЕТ: (left( {0;1} right) cup left( {1;,3} right) cup left( {3;4} right).)


9) (02.06.2022 основная волна) Найдите все значения параметра a, при каждом из которых уравнение

({a^2} — 9{x^2} + 18left| x right| — 9 = 0)

имеет два различных решения.

ОТВЕТ: (left( { — infty ; — 3} right) cup left{ 0 right} cup left( {3;infty } right).)


10) (27.06.2022 резервная волна) Найдите все значения параметра a, при каждом из которых уравнение

(sqrt {15{x^2} + 6ax + 9}  = {x^2} + ax + 3)

имеет ровно три различных решения.

ОТВЕТ: (left[ { — 4;, — 3} right) cup left( { — 3;3} right) cup left( {3;,4} right].)


11) (27.06.2022 резервная волна) Найдите все значения параметра a, при каждом из которых уравнение

(sqrt {{x^4} — 4{x^2} + {a^2}}  = {x^2} + 2x — a)

имеет ровно три различных решения.

ОТВЕТ: (left( { — infty ; — 4} right) cup left( { — 4;0} right).)


12) (27.06.2022 резервная волна) Найдите все значения параметра a, при каждом из которых уравнение

(sqrt x  + sqrt {2a — x}  = a)

имеет ровно два различных решения.

ОТВЕТ: (left[ {2;,4} right).)

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Егэ оценивается по 100 бальной шкале
  • Егэ оценивается в 100 баллов
  • Егэ охотник на ветер
  • Егэ офф сайт
  • Егэ оформление второй части математика профиль

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии