Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Сайты, меню, вход, новости
Каталог заданий.
Первообразная
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
На рисунке изображён график функции y = F(x) — одной из первообразных функции f(x), определённой на интервале (−3; 5). Найдите количество решений уравнения f(x) = 0 на отрезке [−2; 4].
Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 2.
2
На рисунке изображён график некоторой функции
(два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(2), где F(x) — одна из первообразных функции f(x).
Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2014. Вариант 1.
3
На рисунке изображён график функции y = f(x). Функция
— одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.
4
На рисунке изображён график некоторой функции y = f(x). Функция
— одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
Пройти тестирование по этим заданиям
Определенный интеграл. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Задание 7
В этой статье мы будем учиться решать задачи на нахождение площади криволинейной трапеции.
Как всегда, начнем с теории. Как вы помните, неопределенный интеграл от функции — это множество всех первообразных
:
∫
В неопределенном интеграле не заданы границы интегрирования, и в результате нахождения неопределенного интеграла от функции мы получаем множество первообразных, отличающихся друг от друга на постоянную величину С.
Если заданы границы интегрирования, то мы получаем определенный интеграл:
Здесь число — нижний предел интегрирования, число
— верхний предел интегрирования. Определенный интеграл — это ЧИСЛО, значение которого вычисляется по формуле Ньютона — Лейбница:
.
— это значение первообразной функции
в точке
, и, соответственно,
— это значение первообразной функции
в точке
.
Для нас с точки зрения решения задач важное значение имеет геометрический смысл определенного интеграла.
Рассмотрим фигуру, изображенную на рисунке:
Зеленая фигура, ограниченая сверху графиком функции , слева прямой
, справа прямой
, и снизу осью ОХ называется криволинейной трапецией.
Геометрический смысл определенного интеграла:
Определенный интеграл — это число, равное площади криволинейной трапеции — фигуры, ограниченой сверху графиком положительной на отрезке
функции
, слева прямой
, справа прямой
, и снизу осью ОХ.
Решим задачу из Открытого банка заданий для подготовки к ЕГЭ по математике.
Прототип Задания 7 (№ 323080)
На рисунке изображён график некоторой функции . Функция
— одна из первообразных функции
. Найдите площадь закрашенной фигуры.
Закрашенная фигура представляет собой криволинейную трапецию, ограниченную сверху графиком функции , слева прямой
, справа прямой
, и снизу осью ОХ.
Площадь этой криволинейной трапеции вычисляется по формуле:
, где
— первообразная функции
.
По условию задачи , поэтому, чтобы найти площадь фигуры, нам нужно найти значение первообразной в точке -8, в точке -10, и затем из первого вычесть второе.
Замечу, что в этих задачах очень часто возникают ошибки именно в вычислениях, поэтому советую аккуратно и подробно их записывать, и ничего не считать «в уме».
=
=
Ответ: 4
Посмотрите небольшую видеолекцию, в которой решены все типы задач на первообразную:
И.В. Фельдман, репетитор по математике.
Лучшие репетиторы для сдачи ЕГЭ
Задания по теме «Первообразная функции»
Открытый банк заданий по теме первообразная функции. Задания B7 из ЕГЭ по математике (профильный уровень)
Геометрические фигуры на плоскости: вычисление величин с использованием углов
Геометрические фигуры в пространстве: нахождение длины, площади, объема
Задание №1164
Тип задания: 7
Тема:
Первообразная функции
Условие
На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(9)-F(5), где F(x) — одна из первообразных функции f(x).
Показать решение
Решение
По формуле Ньютона-Лейбница разность F(9)-F(5), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=9 и x=5. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 4 и 3 и высотой 3.
Её площадь равна frac{4+3}{2}cdot 3=10,5.
Ответ
10,5
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1158
Тип задания: 7
Тема:
Первообразная функции
Условие
На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-3; 4].
Показать решение
Решение
Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 4], в которых производная функции F(x) равна нулю. Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 7 (четыре точки минимума и три точки максимума).
Ответ
7
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1155
Тип задания: 7
Тема:
Первообразная функции
Условие
На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(5)-F(0), где F(x) — одна из первообразных функции f(x).
Показать решение
Решение
По формуле Ньютона-Лейбница разность F(5)-F(0), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=5 и x=0. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 5 и 3 и высотой 3.
Её площадь равна frac{5+3}{2}cdot 3=12.
Ответ
12
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1149
Тип задания: 7
Тема:
Первообразная функции
Условие
На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 4). Пользуясь рисунком, определите количество решений уравнения f (x)=0 на отрезке (-3; 3].
Показать решение
Решение
Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 3], в которых производная функции F(x) равна нулю.
Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 5 (две точки минимума и три точки максимума).
Ответ
5
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1146
Тип задания: 7
Тема:
Первообразная функции
Условие
На рисунке изображен график некоторой функции y=f(x). Функция F(x)=-x^3+4,5x^2-7 — одна из первообразных функции f(x).
Найдите площадь заштрихованной фигуры.
Показать решение
Решение
Заштрихованная фигура является криволинейной трапецией, ограниченной сверху графиком функции y=f(x), прямыми y=0, x=1 и x=3. По формуле Ньютона-Лейбница её площадь S равна разности F(3)-F(1), где F(x) — указанная в условии первообразная функции f(x). Поэтому S= F(3)-F(1)= -3^3 +(4,5)cdot 3^2 -7-(-1^3 +(4,5)cdot 1^2 -7)= 6,5-(-3,5)= 10.
Ответ
10
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №907
Тип задания: 7
Тема:
Первообразная функции
Условие
На рисунке изображён график некоторой функции y=f(x). Функция F(x)=x^3+6x^2+13x-5 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.
Показать решение
Решение
Заштрихованная фигура является криволинейной трапецией, ограниченной графиком функции y=f(x) и прямыми y=0, x=-4 и x=-1. По формуле Ньютона-Лейбница её площадь S равна разности F(-1)-F(-4), где F(x) — указанная в условии первообразная функции f(x).
Поэтому S= F(-1)-F(-4)= (-1)^3+6(-1)^2+13(-1)-5-((-4)^3+6(-4)^2+13(-4)-5)= -13-(-25)=12.
Ответ
12
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №307
Тип задания: 7
Тема:
Первообразная функции
Условие
На рисунке изображен график некоторой функции y=f(x). Функция F(x)=x^3+18x^2+221x-frac12 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.
Показать решение
Решение
По формуле Ньютона-Лейбница S=F(-1)-F(-5).
F(-1)= (-1)^3+18cdot(-1)^2+221cdot(-1)-frac12= -204-frac12.
F(-5)= (-5)^3+18cdot(-5)^2+221cdot(-5)-frac12= -125+450-1105-frac12= -780-frac12.
F(-1)-F(-5)= -204-frac12-left (-780-frac12right)= 576.
Ответ
576
Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №306
Тип задания: 7
Тема:
Первообразная функции
Условие
На рисунке изображен график некоторой функции y=f(x).Пользуясь рисунком, вычислите F(9)-F(3), где F(x) — одна из первообразных функции f(x).
Показать решение
Решение
F(9)-F(3)=S, где S — площадь фигуры, ограниченной графиком функции y=f(x), прямыми y=0 и x=3,:x=9. Рассмотрим рисунок ниже.
Данная фигура — трапеция с основаниями 6 и 1 и высотой 2. Ее площадь равна frac{6+1}{2}cdot2=7.
Ответ
7
Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №104
Тип задания: 7
Тема:
Первообразная функции
Условие
На координатной плоскости изображен график функции y=f(x). Одна из первообразных этой функции имеет вид: F(x)=-frac13x^3-frac52x^2-4x+2. Найдите площадь заштрихованной фигуры.
Показать решение
Решение
На рисунке видно, что заштрихованная фигура ограничена по оси абсцисс точками −4, −1, а по оси ординат графиком функции: f(x). Значит площадь фигуры мы можем найти с помощью разности значений первообразных в точках −4 и −1, по формуле определенного интеграла:
intlimits_{-4}^{-1}f(x)dx=F(-1)-F(-4)
Подставим значение первообразной из условия и получим площадь фигуры:
F(-1)-F(-4)=
=frac13-frac52+4+2-frac{64}{3}+frac{80}{2}-16-2=
=-frac{63}{3}+frac{75}{2}-12=-21+37,5-12=4,5
Ответ
4,5
Задание №103
Тип задания: 7
Тема:
Первообразная функции
Условие
Первообразная y=F(x) некоторой функции y=f(x) определена на интервале (−16; −2). Определите сколько решений имеет уравнение f(x) = 0 на отрезке [−10; −5].
Показать решение
Решение
Формула первообразной имеет следующий вид:
f(x) = F'(x)
По условию задачи нужно найти точки, в которых функция f(x) равна нулю. Принимая во внимание формулу первообразной, это значит, что, нужно найти точки, в которых F'(x) = 0, то есть те точки, в которых производная от первообразной равна нулю.
Мы знаем, что производная равна нулю в точках локального экстремума, т.е. функция имеет решения в тех точках, в которых возрастание F(x) сменяется убыванием и наоборот.
На отрезке [−10; −5] видно что это точки: −9; −7; −6. Значит уравнение f(x) = 0 имеет 3 решения.
Ответ
3
Лучшие репетиторы для сдачи ЕГЭ
Сложно со сдачей ЕГЭ?
Звоните, и подберем для вас репетитора: 78007750928
Определенный интеграл. Площадь криволинейной трапеции
- Теорема о площади криволинейной трапеции
- Формула Ньютона-Лейбница
- Геометрический смысл теоремы Лагранжа о среднем
- Площадь плоской фигуры, ограниченной двумя кривыми
- Примеры
п.1. Теорема о площади криволинейной трапеции
Фигуру, ограниченную прямыми (x=a, x=b), осью абсцисс (y=0) и графиком функции (y=f(x)) называют криволинейной трапецией.
Теорема
Площадь криволинейной трапеции, образованной графиком функции (y=f(x)) на интервале [a;b], равна (F(b)-F(a)), где (F(x)) — первообразная функции (f(x)) на [a;b].
Доказательство:
Выберем на интервале (xin [a;b]). Площадь соответствующей криволинейной трапеции (S(x)) является функцией от (x). Дадим переменной (x) приращение (triangle x).
Площадь криволинейной трапеции на интервале (left[a;x+triangle xright]) равна сумме
(S(x+triangle x)=S(x)+S(triangle x)). Откуда приращение площади: $$ triangle S=S(triangle x)=S(x+triangle x)-S(x) $$ По теореме о среднем (см. ниже в этом параграфе) между (x) и (x+triangle x) всегда найдется такое (t), что приращение площади равно произведению: $$ triangle S=f(t)cdot (x+triangle x-x)=f(t)cdot triangle x $$ Если (triangle xrightarrow 0), то (trightarrow x), и в пределе получаем: begin{gather*} S'(x)=lim_{triangle xrightarrow 0}frac{triangle S}{triangle x}=lim_{triangle xrightarrow 0} frac{f(t)cdot triangle x}{triangle x}=lim_{triangle xrightarrow 0}f(t)=f(x) end{gather*} Т.е. (S(x)) является первообразной для (f(x)) на [a;b]. В общем виде: $$ S(x)=F(x)+C $$ Найдем C. В точке a: $$ S(a)=0=F(a)+CRightarrow C=-F(a) $$ Тогда вся площадь: $$ S=S(b)=F(b)+C=F(b)-F(a) $$ Что и требовалось доказать.
п.2. Формула Ньютона-Лейбница
Площадь криволинейной трапеции, образованной графиком функции (y=f(x)) на интервале [a;b] записывают в виде определенного интеграла: $$ S=int_{a}^{b}f(x)dx $$ По формуле Ньютона-Лейбница определенный интеграл равен: $$ int_{a}^{b}f(x)dx=F(x)|_a^b=F(a)-F(b) $$
Например:
Найдем площадь фигуры, ограниченной осью абсцисс и графиком функции $$ y=3-2x-x^2 $$
Построим график (см. §28 справочника для 8 класса). Это парабола. (alt 0) – ветки вниз. Координаты вершины: begin{gather*} x_0=-frac{b}{2a}=-frac{-2}{2cdot (-1)}=-1,\ y_0=3+2-1=4 end{gather*} Точки пересечения с осью OX: begin{gather*} 3-2x-x^2=0Rightarrow x^2+2x-3=0\ (x+3)(x-1)=0Rightarrow left[ begin{array}{l} x=-3,\ x=1 end{array} right. end{gather*} Точка пересечения с осью OY: $$ x=0, y=3 $$ |
Необходимо найти площадь заштрихованной фигуры.
Функция: (f(x)=3-2x-x^2)
Пределы интегрирования: (a=-3, b=1) begin{gather*} S=int_{-3}^{1}(3-2x-x^2)dx=left(3x-2cdotfrac{x^2}{2}-frac{x^3}{3}right)|_{1}^{-3}=left(3x-x^2-frac{x^3}{3}right)|_{1}^{-3}=\ =left(3-cdot 1-1^2-frac{1^3}{3}right)-left(3cdot(-3)-(-3)^2-frac{(-3)^3}{3}right)=2-frac13+9=10frac23 end{gather*} Ответ: (10frac23)
п.3. Геометрический смысл теоремы Лагранжа о среднем
Теорема Лагранжа о среднем
Если функция (F(x)) непрерывна на отрезке [a;b] и дифференцируема на интервале (a;b), то существует такая точка (muin(a;b)), что $$ F(b)-F(a)=F'(mu)(a-b) $$ Пусть (F'(x)=f(x)), т.е. функция (F(x)) является первообразной для (f(x)). Тогда: $$ F(b)-F(a)=int_{a}^{b}f(x)dx=f(mu)(b-a) $$
Геометрический смысл теоремы Лагранжа о среднем в интегральной форме заключается в том, что площадь криволинейной трапеции равна площади прямоугольника с основанием (d=b-a) и высотой (h=f(mu)), где (aleqmuleq b).
Теорема о среднем используется при доказательстве многих формул, связанных с использованием определенных интегралов (центра тяжести тела, площади поверхности и т.д.).
п.4. Площадь плоской фигуры, ограниченной двумя кривыми
Площадь плоской фигуры, ограниченной прямыми (x=a, x=b, alt b) и кривыми (y=f(x), y=g(x)), причем (f(x)geq g(x)) для любого (xin [a;b]), равна: $$ S=int_{a}^{b}(f(x)-g(x))dx $$
Например:
Найдем площадь фигуры, ограниченной двумя параболами (y=x^2) и (y=4x-x^2).
Найдем точки пересечения парабол: $$ x^2=4x-x^2Rightarrow 2x^2-4x=0Rightarrow 2x(x-2)=0Rightarrow left[ begin{array}{l} x=0\ x=2 end{array} right. $$ Строим графики.
Необходимо найти площадь заштрихованной фигуры.
Функция сверху: (f(x)=4x-x^2)
Функция снизу: (g(x)=x^2)
Пределы интегрирования: (a=0, b=2) begin{gather*} S=int_{0}^{2}left((4x-x^2)-x^2right)dx=int_{0}^{2}(4x-2x^2)dx=left(4cdotfrac{x^2}{2}-2cdotfrac{x^3}{3}right)|_0^2=\ =left(2x^2-frac23 x^3right)|_0^2=2cdot 2^2-frac23cdot 2^3-0=8-frac{16}{3}=frac83=2frac23 end{gather*} Ответ: (2frac23)
п.5. Примеры
Пример 1. Найдите определенный интеграл:
a) (int_{-2}^{3}x^2dx) $$ int_{-2}^{3}x^2dx=frac{x^3}{3}|_{-2}^{3}=frac{3^3}{3}-frac{(-2)^3}{3}=9-frac83=frac{19}{3}=6frac13 $$
б) (int_{0}^{fracpi 3}sinxdx) $$ int_{0}^{fracpi 3}sinxdx=(-cosx)|_{0}^{fracpi 3}=-cosfracpi 3+cos0=-frac12+1=frac12 $$
в) (int_{1}^{2}left(e^x+frac 1xright)dx) $$ int_{1}^{2}left(e^x+frac 1xright)dx=(e^x+ln|x|)|_{1}^{2}=e^2+ln 2-e^1-underbrace{ln 1}_{=0}=e(e-1)+ln 2 $$
г) (int_{2}^{3}(2x-1)^2 dx) begin{gather*} int_{2}^{3}(2x-1)^2 dx=frac12cdotfrac{(2x-3)^3}{3}|_{2}^{3}=frac16((2cdot 3-1)^3)-(2cdot 2-1)^3)=frac{5^3-3^3}{6}=\ =frac{125-27}{6}=frac{98}{6}=frac{49}{3}=16frac13 end{gather*}
д) (int_{1}^{3}frac{dx}{3x-2}) begin{gather*} int_{1}^{3}frac{dx}{3x-2}=frac13cdot ln|3x-2| |_{1}^{3}=frac13left(ln 7-underbrace{ln 1}_{=0}right)=frac{ln 7}{3} end{gather*}
e) (int_{-1}^{4}frac{dx}{sqrt{3x+4}}) begin{gather*} int_{-1}^{4}frac{dx}{sqrt{3x+4}}=frac13cdotfrac{(3x+4)^{-frac12+1}}{-frac12+1}|_{-1}^{4}=frac23sqrt{3x+4}|_{-1}^{4}=\ =frac23left(sqrt{3cdot 4+4}-sqrt{3cdot(-1)+4}right)=frac23(4-1)=2 end{gather*}
Пример 2. Найдите площадь фигуры под кривой на заданном интервале:
a) (f(x)=x^3+3, xinleft[-1;1right]) $$ S=int_{-1}^{1}(x^3+3)dx=left(frac{x^4}{4}+3xright)|_{-1}^{1}=frac14+3-left(frac14-3right)=6 $$
б) (f(x)=sin2x, xinleft[0;fracpi 2right]) $$ S=int_{0}^{fracpi 2}sin2xdx=-frac12cos2x|_{0}^{fracpi 2}=-frac12left(cosleft(2cdotfracpi 2right)-cos0right)=-frac12(-1-1)=1 $$
в) (f(x)=frac4x+3, xinleft[2;6right])
(f(x)=frac4x+3) — гипербола с асимптотами (x=0, y=3)
Площадь под кривой: begin{gather*} S=int_{2}^{6}left(frac4x+3right)dx=(4cdot ln|x|+3x)|_{2}^{6}=(4ln 6+18)-(4ln 2+6)=\ =4(ln 6-ln 2)+12=4lnfrac62+12=4ln 3+12=4(ln 3+3) end{gather*}
г) (f(x)=frac{1}{sqrt{x}}, xinleft[1;4right]) $$ S=int_{1}^{4}frac{dx}{sqrt{x}}=frac{x^{-frac12+1}}{-frac12+1}|_{1}^{4}=2sqrt{x}|_{1}^{4}=2(sqrt{4}-sqrt{1})=2 $$
Пример 3. Найдите площадь фигуры, ограниченной линиями:
a) (y=x-2, y=x^2-4x+2)
Найдем точки пересечения прямой и параболы: $$ x-2=x^2-4x+2Rightarrow x^2-5x+4=0Rightarrow (x-1)(x-4)=0Rightarrow left[ begin{array}{l} x=1,\ x=4 end{array} right. $$
Функция сверху: (f(x)=x-2)
Функция снизу: (g(x)=x^2-4x+2)
Пределы интегрирования: (a=1, b=4) begin{gather*} S=int_{1}^{4}left((x-2)-(x^2-4x+2)right)dx=int_{1}^{4}(-x^2+5x-4)dx=\ =left(-frac{x^3}{3}+frac{5x^2}{2}-4xright)|_{1}^{4}=left(-frac{64}{3}+5cdotfrac{16}{2}-4cdot 4right)-left(-frac13+frac52-4right)=\ =-frac{63}{3}+24+1,5=4,5 end{gather*} Ответ: 4,5
б) (y=e^{frac x2}, y=frac1x, x=2, x=3)
Функция сверху: (f(x)=e^{x/2})
Функция снизу: (g(x)=frac1x)
Пределы интегрирования: (a=2, b=3) begin{gather*} S=int_{2}^{3}left(e^{x/2}-frac1xright)dx=(2e^{x/2}-ln|x|)|_{2}^{3}=left(2e^{frac32}-ln 3right)-(2e-ln 2)=\ =2e^{frac32}-2e-ln 3+ln 2=2e(sqrt{e}-1)+lnfrac23 end{gather*} Ответ: (2e(sqrt{e}-1)+lnfrac23)
в*) (y=3-x^2, y=1+|x|)
Найдем точки пересечения ломаной и параболы: begin{gather*} 3-x^2=1+|x|Rightarrow x^2+|x|-2=0Rightarrow left[ begin{array}{l} begin{cases} xgeq 0\ x^2+x-2=0 end{cases} \ begin{cases} xlt 0\ x^2-x-2=0 end{cases} end{array} right. Rightarrow left[ begin{array}{l} begin{cases} xgeq 0\ (x+2)(x-1)=0 end{cases} \ begin{cases} xlt 0\ (x-2)(x+1)=0 end{cases} end{array} right. Rightarrow \ left[ begin{array}{l} begin{cases} xgeq 0\ left[ begin{array}{l} x=-2\ x=1 end{array} right. end{cases} \ begin{cases} xlt 0\ left[ begin{array}{l} x=2\ x=-1 end{array} right. end{cases} end{array} right. Rightarrow left[ begin{array}{l} x=1\ x=-1 end{array} right. end{gather*}
Функция сверху: (f(x)=3-x^2)
Функция снизу: (g(x)=1+|x|)
Пределы интегрирования: (a=-1, b=1)
Чтобы не раскрывать модуль под интегралом, заметим, что площади на интервалах [-1;0] и [0;1] равны, т.к. обе функции четные и симметричные относительно оси OY. Поэтому можно рассматривать только положительные (xinleft[0;1right]), найти для них интеграл (площадь) и умножить на 2: begin{gather*} S=2int_{0}^{1}left((3-x^2)-(1+x)right)dx=2int_{0}^{1}(-x^2-x+2)dx=2left(-frac{x^3}{3}-frac{x^2}{2}+2xright)|_{0}^{1}=\ =2left(-frac13-frac12+2right)-0=frac73=2frac13 end{gather*} Ответ: (2frac13)
г*) (y=3sinx, y=cosx, x=-frac{5pi}{4}, x=fracpi 4)
На отрезке (left[-frac{5pi}{4};-frac{3pi}{4}right]) синус над косинусом, далее на (left[-frac{3pi}{4};frac{pi}{4}right]) — косинус над синусом.
Площадь фигуры, закрашенной голубым, в два раза больше площади фигуры, закрашенной сиреневым. Поэтому общая площадь будет равна трем площадям, закрашенным сиреневым: begin{gather*} S=3int_{-frac{5pi}{4}}^{-frac{3pi}{4}}(sinx-cosx)dx=3(-cosx-sinx)|_{-frac{5pi}{4}}^{-frac{3pi}{4}}=-3(cosx+sinx)|_{-frac{5pi}{4}}^{-frac{3pi}{4}} end{gather*} Прибавим полный период, он одинаков для обеих функций:
(-frac{3pi}{4}+2pi=frac{5pi}{4}; -frac{5pi}{4}+2pi=frac{3pi}{4}) begin{gather*} -3(cosx+sinx)|_{-frac{5pi}{4}}^{-frac{3pi}{4}}=-3left(cosleft(frac{5pi}{4}right)+sinleft(frac{5pi}{4}right)-cosleft(frac{3pi}{4}right)-sinleft(frac{3pi}{4}right)right)=\ =-3left(-frac{sqrt{2}}{2}-frac{sqrt{2}}{2}+frac{sqrt{2}}{2}-frac{sqrt{2}}{2}right)=3sqrt{2} end{gather*} Ответ: (3sqrt{2})
Пример 4*. Пусть (S(k)) — это площадь фигуры, образованной параболой (y=x^2+2x-3) и прямой (y=kx+1). Найдите (S(-1)) и вычислите наименьшее значение (S(k)).
1) Найдем (S(-1)).
(k=-1, y=-x+1 )
Точки пересечения прямой и параболы: begin{gather*} -x+1=x^2+2x-3\ x^2+3x-4=0\ (x+4)(x-1)=0Rightarrow left[ begin{array}{l} x=-4,\ x=1 end{array} right. end{gather*} Функция сверху: (y=-x+1) Функция снизу: (y=x^2+2x-3) Пределы интегрирования: (a=-4, b=1) |
begin{gather*} S(-1)=int_{-4}^{1}left((-x+1)-(x^2+2x-3)right)dx=int_{-4}^{1}(-x-3x+4)dx=\ =left(-frac{x^3}{3}-frac{3x^2}{2}+4xright)|_{-4}^{1}=left(-frac13-frac32+4right)-left(frac{64}{3}-24-16right)=-21frac23+42frac12=20frac56 end{gather*}
2) Решаем в общем виде.
Все прямые (y=kx+1) проходят через точку (0;1) и при образовании фигуры находятся над параболой.
Точки пересечения прямой и параболы: begin{gather*} kx+1=x^2+2x-3Rightarrow x^2+(2-k)x-4=0\ D=(2-k)^2-4cdot (-4)=(k-2)^2+16gt 0 end{gather*} Дискриминант (Dgt 0) при всех (k). Точки пересечения (пределы интегрирования): $$ x_{1,2}=frac{-(2-k)pmsqrt{D}}{2}=frac{k-2pmsqrt{D}}{2} $$ Разность корней: $$ x_2-x_1=sqrt{D}=sqrt{(k-2)^2+16} $$ Минимальное значение разности корней будет при (k=2).
Площадь: begin{gather*} S(k)=int_{x_1}^{x_2}left((kx+1)-(x^2+2x-3)right)dx=int_{x_1}^{x_2}(-x^2+(k-2)x+4)dx=\ =left(-frac{x^3}{3}+frac{(k-2)x^2}{2}+4xright)|_{x_1}^{x_2}=-frac13(x_2^3-x_1^3)+frac{k-2}{2}(x_2^2-x_1^2)+4(x_2-x_1) end{gather*}
begin{gather*} S(k)_{min}=S(2)\ x_{1,2}=pm 2\ S(2)=-frac13cdot(2^3+2^3)+0+4sqrt{16}=\ =-frac{16}{3}+16=frac{32}{3}=10frac23 end{gather*} |
Ответ: 1) (S(-1)=20frac56); 2) (S(k)_{min}=S(2)=10frac23)
Пример 5*. Фигура ограничена линиями (y=(x+3)^2, y=0, x=0). Под каким углом к оси OX надо провести прямые через точку (0;9), чтобы они разбивали фигуру на три равновеликие части?
Площадь криволинейной трапеции AOB: begin{gather*} S_0=int_{-3}^{0}(x+3)^2dx=frac{(x+3)^3}{3}|_{-3}^{0}=\ =9-0=9 end{gather*} Площадь каждой части: (S_i=frac13 S_0=3) Точки (C(x_1; 0)) и (D(x_2; 0)) c (-3lt x_1lt x_2lt 0) такие, что прямые AC и AD отсекают по 1/3 от фигуры. Площадь прямоугольного треугольника (triangle AOD): begin{gather*} S_3=frac12|x_2|cdot 9=3Rightarrow |x_2|=frac69=frac23Rightarrow\ x_2=-frac23 end{gather*} Площадь прямоугольного треугольника (triangle AOC): begin{gather*} S_2+S_3=frac12|x_1|cdot 9=6Rightarrow |x_1|=frac{12}{9}=frac43Rightarrow\ x_1=-frac43 end{gather*} |
Находим углы соответствующих прямых.
Для (x_1: tgalpha=frac{9}{|x_1|}=frac{9}{4/3}=frac{27}{4}, alpha=arctgfrac{27}{4})
Для (x_x: tgbeta=frac{9}{|x_2|}=frac{9}{2/3}=frac{27}{2}, beta=arctgfrac{27}{2})
Ответ: (arctgfrac{27}{4}) и (arctgfrac{27}{2})
Алгебра 10-11 класс. Площадь криволинейной трапеции
Скачать файл в формате pdf.
Алгебра 10-11 класс. Площадь криволинейной трапеции
Задача 1. На рисунке изображён график некоторой функции (y = fleft( x right)) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите (Fleft( 5 right) — Fleft( 3 right)), где (Fleft( x right))— одна из первообразных функции (fleft( x right)).
Ответ
ОТВЕТ: 3. |
|
Задача 2. На рисунке изображён график некоторой функции (y = fleft( x right)) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите (Fleft( 6 right) — Fleft( 2 right)), где (Fleft( x right))— одна из первообразных функции (fleft( x right)).
Ответ
ОТВЕТ: 9. |
|
Задача 3. На рисунке изображен график некоторой функции (y = fleft( x right)). Пользуясь рисунком, вычислите определенный интеграл (intlimits_1^5 {fleft( x right)} ,dx)
Ответ
ОТВЕТ: 12. |
|
Задача 4. На рисунке изображен график некоторой функции (y = fleft( x right)). Пользуясь рисунком, вычислите определенный интеграл (intlimits_2^5 {fleft( x right)} ,dx)
Ответ
ОТВЕТ: 8. |
|
Задача 5. На рисунке изображён график некоторой функции (y = fleft( x right)). Функция (Fleft( x right) = frac{2}{3}{x^3} + 20{x^2} + 201x — frac{6}{{13}}) — одна из первообразных функции (fleft( x right)). Найдите площадь закрашенной фигуры.
Ответ
ОТВЕТ: 9. |
|
Задача 6. На рисунке изображён график некоторой функции (y = fleft( x right)). Функция (Fleft( x right) = — frac{1}{{12}}{x^3} — frac{3}{2}{x^2} — frac{{27}}{4}x — frac{3}{4}) — одна из первообразных функции (fleft( x right)). Найдите площадь закрашенной фигуры.
Ответ
ОТВЕТ: 9. |
|
Задача 7. Вычислите площадь фигуры ограниченной линиями (y = {x^3},,,y = 0,,,x = 2)
Ответ
ОТВЕТ: 4. |
|
Задача 8. Вычислите площадь фигуры ограниченной линиями (y = {x^3} + 2,,,y = 0,,,x = 2,,,x = 3)
Ответ
ОТВЕТ: 18,25. |
|
Задача 9. Вычислите площадь фигуры ограниченной линиями (y = — {x^2} + 9x — 18,,,y = 0)
Ответ
ОТВЕТ: 4,5. |
|
Задача 10. Вычислите площадь фигуры ограниченной линиями (y = — {x^2} + 9,,,y = 0)
Ответ
ОТВЕТ: 36. |
Задача 11. Вычислите площадь фигуры ограниченной линиями (y = frac{1}{{{x^2}}},,,y = 0,,,x = — 4,,,x = — 2)
Ответ
ОТВЕТ: 0,25. |
Задача 12. Вычислите площадь фигуры ограниченной линиями (y = — sqrt x ,,,y = 0,,,x = 9,,,x = 36)
Ответ
ОТВЕТ: 126. |
Задача 13. Вычислите площадь фигуры ограниченной линиями (y = sin 2x,,,y = 0,,,x = 0,,,x = frac{pi }{2})
Ответ
ОТВЕТ: 1. |
Задача 14. Вычислите площадь фигуры ограниченной линиями (y = frac{1}{{{{cos }^2}x}} + frac{2}{pi },,,,y = 0,,,,x = 0,,,,x = frac{pi }{4})
Ответ
ОТВЕТ: 1,5. |
Задача 15. Вычислите площадь фигуры ограниченной линиями (y = sqrt x ,,,y = — 2x,,,x = 9)
Ответ
ОТВЕТ: 99. |
Задача 16. Вычислите площадь фигуры ограниченной линиями (y = — sqrt x ,,,y = {x^2},,,x = 9)
Ответ
ОТВЕТ: 261. |
Задача 17. Вычислите площадь фигуры ограниченной линиями (y = {e^{2x}},,,y = 0,,,,x = ln 2,,,,x = ln 6)
Ответ
ОТВЕТ: 16. |
Задача 18. Вычислите площадь фигуры ограниченной линиями (y = frac{1}{x},,,y = 0,,,,x = e,,,,x = {e^3})
Ответ
ОТВЕТ: 2. |
Задача 19. Вычислите площадь фигуры ограниченной линиями (y = — {x^2} + 2x + 3,,,y = 3 — x)
Ответ
ОТВЕТ: 4,5. |
Задача 20. Вычислите площадь фигуры ограниченной линиями (y = 1 — {x^2},,,y = — x — 1)
Ответ
ОТВЕТ: 4,5. |
Задача 21. Вычислите площадь фигуры ограниченной линиями (y = — {x^2} + 2,,,y = {x^2} — 2x — 2)
Ответ
ОТВЕТ: 9. |
Задача 22. Вычислите площадь фигуры ограниченной линиями (y = {x^2} — 4x + 3,,,y = — {x^2} + 6x — 5)
Ответ
ОТВЕТ: 9. |
Задача 23. Найдите площадь фигуры, ограниченной графиком функции (y = {x^3}) и касательной, проведенной к ней в точке (left( { — 1;, — 1} right))
Ответ
ОТВЕТ: 6,75. |
Задача 24. Найдите площадь фигуры, ограниченной графиком функции (y = {x^3} — 3x) и касательной, проведенной к ней в точке (left( { — 1;,2} right))
Ответ
ОТВЕТ: 6,75. |
Задача 25. Вычислите (frac{1}{pi }intlimits_0^4 {sqrt {4x — {x^2}} dx} ), используя геометрический смысл определенного интеграла
Ответ
ОТВЕТ: 2. |
Задача 26. Вычислите (frac{1}{pi }intlimits_{ — 1}^0 {sqrt { — 2x — {x^2}} dx} ), используя геометрический смысл определенного интеграла
Ответ
ОТВЕТ: 0,25. |
Задача 27. Вычислите (intlimits_0^3 {left| {,x — 2,} right|dx} ), используя геометрический смысл определенного интеграла
Ответ
ОТВЕТ: 2,5. |
Задача 28. Вычислите (intlimits_0^4 {left| {,left| {,x — 2,} right| — 1,} right|dx} ), используя геометрический смысл определенного интеграла
Ответ
ОТВЕТ: 2. |
Алгебра и начала математического анализа, 11 класс
Урок №23.Площадь криволинейной трапеции. Интеграл и его свойства.
Перечень вопросов, рассматриваемых в теме
1) Нахождение определенного интеграла
2) Нахождение площади криволинейной трапеции с помощью формулы Ньютона – Лейбница
3) Решение задач, с помощью формулы Ньютона – Лейбница
Формула Ньютона – Лейбница
Основная литература:
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Дополнительная литература:
ОрловаЕ. А., СеврюковП. Ф., СидельниковВ. И., СмоляковА.Н.Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.
Теоретический материал для самостоятельного изучения
Криволинейной трапецией называется фигура, ограниченная графиком непрерывной и не меняющей на отрезке [а;b] знака функции f(х), прямыми х=а, x=b и отрезком [а;b].
Отрезок [a;b] называют основанием этой криволинейной трапеции
формула Ньютона – Лейбница
Если в задаче требуется вычислить площадь криволинейной трапеции, то ответ всегда будет положительный. Если требуется, используя чертеж, вычислить интеграл, то его значение может быть любым(зависит от расположения криволинейной трапеции).
Примеры и разбор решения заданий тренировочного модуля
№1.Найти площадь криволинейной трапеции, изображенной на рисунке
Решение
Для вычисления площади криволинейной трапеции воспользуемся формулой Ньютона – Лейбница.
Ответ:
№2. Вычислить определенный интеграл:
Решение: Воспользуемся формулой Ньютона-Лейбница.
Сначала находим первообразную функцию F(x) . Далее подставляем значение верхнего предела в первообразную функцию: F(b) .
Затем подставляем значение нижнего предела в первообразную функцию: F(а).
Рассчитываем разность F(b) — F(а), это и будет ответ.
№3. Найти площадь криволинейной трапеции (х-1)2, ограниченной линиями х=2 и х=1, осью 0х
Решение:
Воспользуемся формулой Ньютона-Лейбница.
Сначала находим первообразную функцию F(x). Далее подставляем значение верхнего предела в первообразную функцию: F(b) .
Затем подставляем значение нижнего предела в первообразную функцию: F(а).
Рассчитываем разность F(b) — F(а), это и будет ответ.
Задания по теме «Площадь криволинейной трапеции»
Учитель математики
высшей квалификационной категории
МОУ Левобережной СОШ г.Тутаева
Борисова Елена Леонидовна
Пример 1
Найти площадь плоской фигуры, ограниченной линиями , .
Решение: Сначала нужно выполнить чертеж. Вообще говоря, при построении
чертежа в задачах на площадь нас больше всего интересуют точки
пересечения линий. Найдем точки пересечения параболы и прямой
. Это можно сделать двумя способами. Первый способ – аналитический.
Решаем уравнение:
Значит, нижний предел интегрирования , верхний предел интегрирования
.
Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы
интегрирования выясняются как бы «сами собой». Возвращаемся к нашей
задаче: рациональнее сначала построить прямую и только потом параболу.
Выполним чертеж:
А теперь рабочая формула: Если на отрезке некоторая непрерывная
функция больше либо равна некоторой непрерывной функции , то
площадь фигуры, ограниченной графиками данных функций и прямыми ,
, можно найти по формуле:
В рассматриваемом примере очевидно, что на отрезке парабола
располагается выше прямой, а поэтому из необходимо вычесть
Завершение решения может выглядеть так:
Искомая фигура ограничена параболой сверху и прямой
снизу.
На отрезке , по соответствующей формуле:
Ответ:
Пример 2
Вычислить площадь фигуры, ограниченной линиями , , ,
.
Решение: Сначала выполним чертеж:
Фигура, площадь которой нам нужно найти, заштрихована синим цветом
(внимательно смотрите на условие – чем ограничена фигура!). Но на практике
по невнимательности нередко возникает «глюк», что нужно найти площадь
фигуры, которая заштрихована зеленым цветом!
Этот пример еще полезен и тем, что в нём площадь фигуры считается с
помощью двух определенных интегралов. Действительно:
1) На отрезке над осью расположен график прямой ;
2) На отрезке над осью расположен график гиперболы .
Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:
Ответ:
Пример 3
Вычислить площадь фигуры, ограниченной
линиями: у = 4х – х
2
, у = 5, х = 3.
Решение:
х
0
= 2, у
0
= 4
S
ф
= S
ОАВД
– S
ОСД
S
прям.
=
S
ОСД
= F(3) – F(0), где F(x) первообразная для
функции f(х) = 4х – х
2
F(х)= ; S
ОСД
=
S
ф
= 15 – 9 = 6.
Ответ: 6.
Пример 4
Вычислить площадь фигуры, ограниченной линиями ,
Решение:
Представим уравнения в «школьном» виде , и выполним
поточечный чертеж:
Из чертежа видно, что верхний предел у нас «хороший»: .
Но чему равен нижний предел?! Понятно, что это не целое число, но какое?
Может быть ? Но где гарантия, что чертеж выполнен с идеальной
точностью, вполне может оказаться что . Или корень. А если мы вообще
неправильно построили график?
В таких случаях приходиться тратить дополнительное время и уточнять
пределы интегрирования аналитически.
Найдем точки пересечения прямой и параболы .
Для этого решаем уравнение:
,
Действительно, .
Дальнейшее решение тривиально, главное, не запутаться в подстановках и
знаках, вычисления здесь не самые простые.
На отрезке , по соответствующей формуле:
Ответ:
Пример 5
Вычислить S фигуры, ограниченной линиями у = (х + 2)
2
, х = 0, у = 0.
Решение:
АОВ – криволинейный треугольник или криволинейная трапеция. (рис 10.)
S = F(0) – F(-2) =
F(x) = x
2
+4x+4; F(x) =
S =
Ответ:
Пример 6
Найти S фигуры, ограниченной параболой у = х
2
+ 1 и прямой у = х + 3.
Решение:
Построим в одной системе координат графики данных функций.
1) у = х
2
+ 1, х
0
= 0, у
0
= 0.
2) у = х + 3
3) х
2
+ 1 = х + 3
х
1
= 1, х
2
=2.
S
ф
= S
1АВСД
– S
2АВmСД
S
тр.АВСД
=
S
АВmСД
= F(2) – F(-1), F(x) = , S = 6
S
ф
= S
1
– S
2
= 4,5.
II способ.
S
АВСД
= F(2) – F(-1), F(x) = .
Ответ: S
ф
= 4,5.
Пример 7:
Найдите 3 четверти площади фигуры,
ограниченной параболой, заданной уравнением
у = – х
2
+4х—3 и осью абсцисс.
Решение:
1) х
В
=2, у
В
=1
2) – х
2
+4х—3=0 х
1
=3, х
2
=1
Функция неотрицательна на [1;3]
F(x) = S
ф
= F(3) – F(1) =
3) Умножим S
ф
на . S
иск.
=
Ответ: 1
Пример 8
Найти S фигуры, ограниченной линиями f
1
(x) = x
2
; f
2
(x) = 2x – x
2
.
Решение:
1) Схематично изобразим данную фигуру (рис.
12)
f
2
(x) = – x
2
+ 2x
х
0
= , у
0
= 1
2) Найдем абсциссы точек пересечения этих линий
х
2
= 2x – x
2
2x
2
– 2х = 0
х = 0, х = 1
3) Найдем площадь фигуры
F
2
(x) = x
2
–
S
2
= F(1) – F(0) =
F
1
(x) = ; S
1
= .
4) S
ф
= S
2
– S
1
= .
Ответ: S
ф
= .
Пример 9
Вычислить S фигуры, ограниченной линиями:
у=х
3
+1, у=0, х=0, х=2.
Решение:
F(x) =
S = F(2) – F(0) = 16/4 + 2 – 0/4 + 0 = 6
Ответ: 6.
Пример 10
Вычислить площадь фигуры, ограниченной линиями , , и осью
Это пример для самостоятельного решения. Полное решение и ответ в конце
урока.
Что делать, если криволинейная трапеция расположена под осью ?
Решение:
Выполним чертеж:
На отрезке график функции расположен над осью , поэтому:
Ответ:
Примечание: В задачах на нахождение площадей преподаватели часто
требуют записывать ответ не только точно, но и, в том числе,
приближенно.
Пример 11 : Найти площадь фигуры, ограниченной линиями ,
.Решение:
Выполним чертеж:
На отрезке , по соответствующей формуле:
Ответ:
Пример 12:
Найти площадь фигуры, ограниченной линиями , .
Решение:
Выполним чертеж.
На отрезке , по соответствующей формуле:
Ответ:
Используемые ресурсы:
1. https://infourok.ru/samostoyatelnaya-rabota-po-teme-neopredelenniy-
integral-klass-761699.html
2. http://festival.1september.ru/articles/566339/
3. http://school-collection.edu.ru/catalog/rubr/8a790bee-ba9d-4b2b-9c3a—
6e370cc2df5b/113019/?
4. ЕГЭ: 4000 задач с ответами по математике. Все задания «Закрытый сегмент».
Базовый и профильный уровни /И.В.Ященко, И.Р.Высоцкий, А.В.Забелин и др.;
под редакцией И.В.Ященко. – М.: Издательство «Экзамен», 2016. – 640 с. (Серия
«Банк заданий ЕГЭ»)
5. Математика. ЕГЭ – 2013: экспресс – курс для подготовки к экзамену/ Дмитрий
Гущин. – М, : Издательский дом «Учительская газета», 2013. – 256 с.
(Библиотечка «Учительской газеты». Готовимся к ЕГЭ с лучшими учителями
России