Координаты вектора
Вектор – отрезок, имеющий длину и указывающий направление.
На самом деле, понимать, что такое вектор для решения задач методом координат необязательно. Можно просто использовать это понятие, как необходимый инструмент для решения задач по стереометрии. Любое ребро или отрезок на нашей фигуре мы будем называть вектором.
Для того, чтобы определить координаты вектора, нужно из координат конечной точки вычесть координаты начальной точки. Пусть у нас есть две точки (Рис. 4) :
$$ т.А(x_A,y_A,z_A); $$
$$ т.B(x_B,y_B,z_B); $$
Тогда координаты вектора (vec{AB}) можно определить по формуле:
$$ vec{AB}={x_B-x_A,y_B-y_A,z_B-z_A}. $$
Скрещивающиеся прямые
И так, мы научились находить координаты точек, и при помощи них определять координаты векторов. Теперь познакомимся с формулой нахождения косинуса угла между скрещивающимися прямыми (векторами). Пусть даны два вектора:
$$ a={x_a,y_a,z_a};$$
$$ b={x_b,y_b,z_b}; $$
тогда угол (alpha) между ними находится по формуле:
$$ cos{alpha}=frac{x_a*x_b+y_a*y_b+z_a*z_b}{sqrt{{x_a}^2+{y_a}^2+{z_a}^2}*sqrt{{x_b}^2+{y_b}^2+{z_b}^2}}. $$
Уравнение плоскости
В задачах №14 (С2) ЕГЭ по профильной математике часто требуется найти угол между прямой и плоскостью и расстояние между скрещивающимися прямыми. Но для этого вы должны уметь выводить уравнение плоскости. В общем виде уравнение плоскости задается формулой:
$$ A*x+B*y+C*z+D=0,$$
где (A,B,C,D) – какие-то числа.
Если найти (A,B,C,D), то мы мы найдем уравнений плоскости. Плоскость однозначно задается тремя точками в пространстве, значит нужно найти координаты трех точек, лежащий в данной плоскости, а потом подставить их в общее уравнение плоскости.
Например, пусть даны три точки:
$$ K(x_K,y_K,z_K);,L(x_L,y_L,z_L);,P(x_P,y_P,z_P). $$
Подставим координаты точек в общее уравнение плоскости:
$$begin{cases} A*x_K+B*y_K+C*z_K+D=0,\ A*x_L+B*y_L+C*z_L+D=0, \ A*x_P+B*y_P+C*z_P+D=0.end{cases}$$
Получилась система из трех уравнений, но неизвестных 4: (A,B,C,D). Если наша плоскость не проходит через начало координат, то мы можем (D) приравнять (1), если же проходит, то (D=0). Объяснение этому простое: вы можете поделить каждое ваше уравнения на (D), от этого уравнение не изменится, но вместо (D) будет стоять (1), а остальные коэффициенты будут в (D) раз меньше.
Теперь у нас есть три уравнения и три неизвестные – можем решить систему:
Пример 3
Найти уравнение плоскости, проходящей через точки
$$ K(1;2;3);,P(0;1;0);,L(1;1;1). $$
Подставим координаты точек в уравнение плоскости (D=1):
$$begin{cases} A*1+B*2+C*3+1=0,\ A*0+B*1+C*0+1=0, \ A*1+B*1+C*1+1=0.end{cases}$$
$$begin{cases} A+2*B+3*C+1=0,\ B+1=0, \ A+B+C+1=0.end{cases}$$
$$begin{cases} A-2+3*C+1=0,\ B=-1, \ A=-C.end{cases}$$
$$begin{cases} A=-0.5,\ B=-1, \ C=0.5.end{cases}$$
Получаем искомое уравнение плоскости:
$$ -0.5x-y+0.5z+1=0.$$
Расстояние от точки до плоскости
Зная координаты некоторой точки (M(x_M;y_M;z_M)), легко найти расстояние до плоскости (Ax+By+Cz+D=0:)
$$ rho=frac{|A*x_M+B*y_M+C*z_M+D|}{sqrt{A^2+B^2+C^2}}. $$
Пример 4
Найдите расстояние от т. (H (1;2;0)) до плоскости, заданной уравнением
$$ 2*x+3*y-sqrt{2}*z+4=0.$$
Из уравнения плоскости сразу находим коэффициенты:
$$ A=2,,B=3,,C=-sqrt{2},,D=4.$$
Подставим их в формулу для нахождения расстояния от точки до плоскости.
$$ rho=frac{|2*1+3*2-sqrt{2}*0+4|}{sqrt{2^2+3^2+{-sqrt{2}}^2}}. $$
$$ rho=frac{12}{sqrt{16}}=3.$$
Расстояние между скрещивающимися прямыми
Расстояние между скрещивающимися прямыми – это расстояние от любой точки одной из прямых до параллельной ей плоскости, проходящей через вторую прямую.
Таким образом, если требуется найти расстояние между скрещивающимися прямыми, то нужно через одну из них провести плоскость параллельно второй прямой. Затем найти уравнение этой плоскости и по формуле расстояния от точки до плоскости найти расстояние между скрещивающимися прямыми. Точку на прямой можно выбрать произвольно (у которой легче всего найти координаты).
Пример 5
Рассмотрим задачу из досрочного ЕГЭ по математике 2018 года.
Дана правильная треугольная призма (ABCFDE), ребра которой равны 2. Точка (G) — середина ребра (CE).
- Докажите, что прямые (AD) и (BG) перпендикулярны.
- Найдите расстояние между прямыми (AD) и (BG).
Решение:
Решим задачу полностью методом координат.
Нарисуем рисунок и выберем декартову систему координат. (Рис 5).
Всего: 117 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
В правильной четырехугольной призме ABCDA1B1C1D1 сторона основания равна а боковое ребро равно 2. Точка M — середина ребра AA1. Найдите расстояние от точки M до плоскости DA1C1.
Источник: А. Ларин: Тренировочный вариант № 106.
Раздел: Стереометрия
Источник: А. Ларин: Тренировочный вариант № 5.
В правильной треугольной пирамиде SABC с вершиной S на сторонах AB и AC выбраны точки M и K соответственно так, что треугольник AMK подобен треугольнику ABC с коэффициентом подобия На прямой MK выбрана точка E так, что ME : EK = 7 : 9. Найти расстояние от точки E до плоскости BSC, если сторона основания пирамиды равна 6, а высота пирамиды равна
Источник: А. Ларин: Тренировочный вариант № 16.
В правильной треугольной пирамиде отношение бокового ребра к высоте пирамиды равно 2. Найдите отношение радиуса вписанного в пирамиду шара к стороне основания пирамиды.
Источник: А. Ларин: Тренировочный вариант № 28.
В кубе ABCDA1B1C1D1 точка O1 — центр квадрата ABCD, точка O2 — центр квадрата CC1D1D.
а) Докажите, что прямые A1O1 и B1O2 скрещиваются.
б) Найдите расстояние между прямыми A1O1 и B1O2 , если ребро куба равно 1.
Источник: А. Ларин. Тренировочный вариант № 294.
В прямоугольном параллелепипеде ABCDA1B1C1D1 через середину M диагонали AC1 проведена плоскость α перпендикулярно этой диагонали, AB = 5, BC = 3 и AA1 = 4.
а) Докажите, что плоскость α содержит точку D1.
б) Найдите отношение, в котором плоскость делит ребро A1B1.
Источник: А. Ларин: Тренировочный вариант № 7.
В равнобокой описанной трапеции ABCD, где угол B тупой, а BC и AD — основания, проведены: 1) биссектриса угла B; 2) высота из вершины С; 3) прямая, параллельная AB и проходящая через середину отрезка CD.
а) Докажите, что все они пересекаются в одной точке.
б) Найдите расстояние между центрами вписанной и описанной окружностей трапеции ABCD, если известно, что BC = 8, AD = 18.
Источник: А. Ларин: Тренировочный вариант № 130.
Источник: А. Ларин: Тренировочный вариант № 2.
Источник: А. Ларин: Тренировочный вариант № 4*.
Источник: А. Ларин: Тренировочный вариант № 1.
Источник: А. Ларин: Тренировочный вариант № 9.
В правильной треугольной пирамиде SABC с основанием ABC известны ребра и SC = 17. Найдите угол, образованный плоскостью основания и прямой AM, где M — точка пересечения медиан грани SBC.
Источник: А. Ларин: Тренировочный вариант № 105.
В прямоугольный треугольник ABC вписана окружность ω, касающаяся гипотенузы AB в точке M. Точка О — центр описанной около треугольника ABC окружности. Касательная к окружности ω, проведенная из точки О, пересекает сторону АС в точке P.
а) Докажите, что площадь треугольника ABC равна произведению длин отрезков AM и BM.
б) Найдите площадь четырехугольника BCPO, если известно, что AM = 12, BM = 5.
Источник: А. Ларин: Тренировочный вариант № 155.
В правильной треугольной призме АВСА′B′C′ сторона основания АВ равна 6, а боковое ребро АА′ равно 3. На ребре АВ отмечена точка К так, что АК = 1. Точки М и L — середины рёбер А′С′ и В′С′ соответственно. Плоскость γ параллельна прямой АС и содержит точки К и L.
а) Докажите, что прямая ВМ перпендикулярна плоскости γ.
б) Найдите расстояние от точки С до плоскости γ.
Источник: Задания 14 (С2) ЕГЭ 2016, ЕГЭ — 2016 по математике. Основная волна 06.06.2016. Вариант 410. Запад
В основании прямой призмы лежит прямоугольный треугольник ABC с гипотенузой AB, причем
Через точку
перпендикулярно
проведена плоскость α.
а) Докажите, что сечением призмы плоскостью α является прямоугольный треугольник.
б) Найдите объем большей части призмы, на которые ее делит плоскость α, если известно, что
Источник: А. Ларин: Тренировочный вариант № 199.
В треугольной пирамиде ABCD ребра AB и CD взаимно перпендикулярны,
угол между ребром DC и гранью ABC равен
а) Докажите, что середина ребра AB равноудалена от плоскости ACD и плоскости BCD.
б) Найдите угол между ребром AB и гранью ACD.
Источник: А. Ларин: Тренировочный вариант № 254.
Источник: А. Ларин: Тренировочный вариант № 17.
Ребро куба ABCDA1B1C1D1 равно 4. Точка N — середина СВ, а точка M лежит на ребре AA1, причем AM : MA1 = 3 : 1. Определите расстояние между прямыми MN и BC1.
Источник: А. Ларин: Тренировочный вариант № 110.
Окружность радиуса касается сторон AC и BC треугольника ABC в точках K и P и пересекает строну AB в точках M и N (точка N между точками B и M). Известно, что MP и AC параллельны,
а) Найдите угол BCA.
б) Найдите площадь треугольника BKN.
Источник: А. Ларин. Тренировочный вариант № 275.
Всего: 117 1–20 | 21–40 | 41–60 | 61–80 …
Главная » ЕГЭ » ЕГЭ. Математика. Решение задач по стереометрии методом координат.
Книга содержит необходимый материал для самостоятельной подготовки к единому государственному экзамену по раз-делу «Стереометрия». В пособии рассматриваются основные типы предлагаемых на ЕГЭ стереометрических задач повышенного уровня сложности с развёрнутым ответом. В книге приведены способы решения следующих видов стереометрических задач методом координат: Третье издание дополнено задачами для самостоятельного решения. Ко всем задачам даны ответы. Пособие предназначено выпускникам общеобразовательных учреждений, учителям и методистам.
- Рубрика: ЕГЭ / ЕГЭ по математике
- Автор: неизвестно
- Год: 2018
- Язык учебника: Русский
- Формат: PDF
- Страниц: 64
Пример решения задачи →
Содержание:
1.Уравнение прямой и плоскости
2. Векторы и их координаты
3. Метод координат
Метод координат… Что же это такое и зачем он нужен? Можно ли без него обойтись при сдаче ЕГЭ. Можно, безусловно! Все задачи №14 профильного ЕГЭ по математике решаются и без привязки фигур к системе координат. Но… координатный метод может значительно упростить решение самых сложных вопросов, таких, как определение расстояний и углов между прямыми и плоскостями в пространстве, так как там все эти расчеты сводятся, практически, к одной формуле.
Чтож, будем разбираться!
Уравнения прямой и плоскости
Вспомните, как вас знакомили с системой координат и объясняли, что положение каждой точки в системе координат можно определять координатами х и у. Это точки M(xm; ym) и N(xn; yn)
Как известно, прямую можно провести через две точки, и при том, только одну. Задача по определению уравнения прямой на плоскости, проходящей через две точки, координаты которых известны, решалась очень просто. В этом случае в уравнение прямой y=kx+b подставляли сначала координаты точки М, затем – точки N.
Получали систему двух линейных уравнений относительно неизвестных коэффициентов k и b, которые находили при решении этой системы.
Но уравнение прямой на плоскости можно задать и по-другому:
Ax + By + C = 0, (A² + B² ≠ 0)
И суть от этого не изменится, изменятся только коэффициенты. Условие в скобках означает, что А и В не могут быть равны нулю одновременно.
Стереометрия рассматривает фигуры в пространстве, где каждая точка описывается уже тремя координатами – (x, y, z).
Уравнение прямой в пространстве задается через направляющий вектор. Но это уже не входит в рамки программы средней школы, поэтому просто принимаем к сведению.
Если известны две точки пространства M( xm ; ym ; zm ) и N( xn ; yn ; zn ) , то уравнения прямой, проходящей через данные точки, выражаются формулами:
Но вот что мы с вами можем, так это воспользоваться вектором этой прямой, который будет определяться расстоянием между точками в пространстве. И об этом подробно поговорим в следующем разделе — векторы и координаты
Привязка фигур к системе координат позволяет не только определять координаты точек, но и записать уравнение плоскости. Как известно, на трех точках можно построить плоскость, притом, только одну. Соответственно, можно и записать плоскость уравнением. Выглядит это уравнение следующим образом:
Ax + By + Cz + D = 0
Очень похоже на вторую запись уравнения прямой на плоскости. Значит, и коэффициенты А, В, С и D мы будем находить также, как и коэффициенты для прямой на плоскости, по точкам.
Это действие сродни тому, что вы производили, определяя уравнение прямой, проходящей через две точки, заданные координатами.
Прямую можно провести через две точки, и мы составляли два уравнения для двух точек.
Плоскость можно провести через три точки, значит, и уравнений будет три!
Но уравнений три, а неизвестных – четыре! Ну, и что! Мы же можем разделить все уравнения на D, при этом они не изменятся, будут равнозначны первоначальным! Так и будем поступать! Тогда вместо D будет единица, а все остальные коэффициенты будут делиться на D, назовем их также, А, В, С. И это уже вполне решаемая система!
Здесь значения всех x, y и z известны, это координаты точек, принадлежащих данной плоскости.
Итак, точку описать можем, прямую описать можем, плоскость – можем. Осталось вспомнить сами векторы и их координаты, они нам тоже пригодятся при решении задач.
Векторы и их координаты
Вектор – это математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой.
Мы можем «привязать» вектор к системе координат, т.е. мы можем его определять в пространстве координатами его проекций на координатные плоскости.
Если даны две точки в пространстве А(xa; ya; za) и B(xb; yb; zb), то дан и вектор
, где ах, ау и аz – координаты вектора. Осталось определить значения ах, ау и аz. Определяем:
ах = xb – xa
ау = yb – ya
аz = zb – zа
Теперь, зная длины проекций вектора, мы можем легко найти длину вектора, которая, как видно из чертежа, есть не что иное, как диагональ параллелепипеда, сторонами которого являются координаты этого вектора. Его длина, модуль вектора, будет равна:
А что есть длина вектора, как не расстояние между двумя точками: началом и концом вектора? То есть выведенная формула определяет расстояние между двумя точками в декартовой системе координат.
Метод координат
Пример решения задач→