Егэ математика профиль 9 задание график

Каталог заданий.
Параболы


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 10 № 509253

На рисунке изображены графики функций f левая круглая скобка x правая круглая скобка =4x в квадрате минус 25x плюс 41 и g левая круглая скобка x правая круглая скобка =ax в квадрате плюс bx плюс c, которые пересекаются в точках A и B. Найдите абсциссу точки B.

Аналоги к заданию № 509253: 509254 509255 509259 509262 509263 509264 509268 509256 509257 509258 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график

Решение

·

·

Сообщить об ошибке · Помощь


2

Тип 10 № 562060

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: x в квадрате , знаменатель: a конец дроби плюс bx плюс c, где числа a, b и c  — целые. Найдите значение f левая круглая скобка 3,5 правая круглая скобка .

Аналоги к заданию № 562153: 562060 562154 562155 562156 562157 562158 562159 562160 562161 562162 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график

Решение

·

·

Сообщить об ошибке · Помощь


3

Тип 10 № 562061

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: x в квадрате , знаменатель: a конец дроби плюс bx плюс c, где числа a, b и c  — целые. Найдите значение дискриминанта уравнения f левая круглая скобка x правая круглая скобка =0.

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график

Решение

·

·

1 комментарий · Сообщить об ошибке · Помощь


4

Тип 10 № 562153

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: x в квадрате , знаменатель: a конец дроби плюс bx плюс c, где числа a, b и c  — целые. Найдите значение f левая круглая скобка 13 правая круглая скобка .

Аналоги к заданию № 562153: 562060 562154 562155 562156 562157 562158 562159 562160 562161 562162 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график

Решение

·

·

Сообщить об ошибке · Помощь


5

Тип 10 № 562154

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: x в квадрате , знаменатель: a конец дроби плюс bx плюс c, где числа a, b и c  — целые. Найдите значение f левая круглая скобка 10 правая круглая скобка .

Аналоги к заданию № 562153: 562060 562154 562155 562156 562157 562158 562159 562160 562161 562162 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график

Решение

·

·

Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

ЕГЭ по математике профиль

Новые задания №9 ЕГЭ 2022 по профильной математике — графики функций.

Для успешного результата необходимо уметь выполнять действия с функциями.

Задание №9 ЕГЭ 2022 математика профильный уровень Прототипы

Скачать задания Источник
Новые задания 9 ФИПИ
Прототипы задания №9 vk.com/mathegeexam
Скачать задания vk.com/ekaterina_chekmareva
→ Теория
→ Задачи
→ Шпаргалка
vk.com/abel_mat
Линейная функция math100.ru
Парабола
Гипербола
Логарифмическая и показательная функции
Иррациональные функции
Тригонометрические функции

Из кодификатора 2022 года для выполнения 9 задания нужно изучить основные элементарные функции, их свойства и графики:

3.3.1 Линейная функция, её график

3.3.2  Функция, описывающая обратную пропорциональную зависимость, её график

3.3.3 Квадратичная функция, её график

3.3.4 Степенная функция с натуральным показателем, её график

3.3.5 Тригонометрические функции, их графики

3.3.6 Показательная функция, её график

3.3.7 Логарифмическая функция, её график

Уметь выполнять действия с функциями:  определять значение функции по значению аргумента при различных способах задания функции; описывать по графику поведение и свойства функции, находить по графику функции наибольшее и наименьшее значения; строить графики изученных функций:

При отработке данного задания будут полезны книги:

Графики функций ЕГЭ математика профиль

Купить ЕГЭ. Математика. Графики функций, уравнения и неравенства, содержащие переменную под знаком модуля

Купить Задачи с параметрами. Применение свойств функций, преобразование неравенств

Связанные страницы:

Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи в разделе контакты

💡 Если Вы — учитель математики, то Вы можете создавать готовые карточки для учеников с индивидуальными заданиями и с ответами для отработки заданий на графики функций. Данные задачи доступны в Конструкторе бесплатно.

3. На рисунке изображён график функции

y=3x^2+bx+c

. Найдите

f(6)

.

[Ответ: 10]

Смотреть видеоразбор похожего >>

4. На рисунке изображён график функции

y=ax^2+12x+c

. Найдите

f(7)

.

[Ответ: -74]

Смотреть видеоразбор похожего >>

5. На рисунке изображён график функции

y=ax^2+bx+12

. Найдите

f(-7)

.

[Ответ: 19]

Смотреть видеоразбор похожего >>

6. На рисунке изображён график функции

y=ax^2+bx+c

. Найдите

f(1)

.

[Ответ: 49]

Смотреть видеоразбор похожего >>

7. На рисунке изображён график функции

y=ax^2+bx+c

, где числа

a

,

b

и

c

— целые. Найдите

f(-5)

.

[Ответ: -29]

Смотреть видеоразбор похожего >>

8. На рисунке изображён график функции

f(x)=frac{k}{x}+a

. Найдите

f(0.1)

.

[Ответ: -17]

Смотреть видеоразбор похожего >>

9. На рисунке изображён график функции

f(x)=frac{k}{x}+a

. Найдите, при каком значении

x

значение функции равно

-4.4

.

[Ответ: -12.5]

Смотреть видеоразбор похожего >>

10. На рисунке изображён график функции

f(x)=frac{k}{x+a}

. Найдите

f(-3.5)

.

[Ответ: 6]

Смотреть видеоразбор похожего >>

11. На рисунке изображён график функции

f(x)=frac{k}{x+a}

. Найдите значение

x

, при котором

f(x) = 10

.

[Ответ: 0.6]

Смотреть видеоразбор похожего >>

12. На рисунке изображён график функции

f(x)=frac{kx+a}{x+b}

. Найдите

k

.

[Ответ: 1]

Смотреть видеоразбор похожего >>

13. На рисунке изображён график функции

f(x)=frac{kx+a}{x+b}

. Найдите

a

.

[Ответ: 2]

Смотреть видеоразбор похожего >>

14. На рисунке изображён график функции

f(x)=b+log_ax

. Найдите

f(frac{1}{9})

.

[Ответ: 3]

Смотреть видеоразбор похожего >>

15. На рисунке изображён график функции

f(x)=b+log_ax

. Найдите значение

x

, при котором

f(x)=-11

.

[Ответ: 64]

Смотреть видеоразбор похожего >>

16. На рисунке изображён график функции

f(x)=log_a(x+b)

. Найдите

f(26)

.

[Ответ: -2]

Смотреть видеоразбор похожего >>

17. На рисунке изображён график функции

f(x)=log_a(x+b)

. Найдите значение

x

, при котором

f(x)=4

.

[Ответ: 82]

Смотреть видеоразбор похожего >>

18. На рисунке изображён график функции

f(x) = a^x+b

. Найдите

f(-2)

.

[Ответ: 22]

Смотреть видеоразбор похожего >>

19. На рисунке изображён график функции

f(x) = a^x+b

. Найдите значение

x

, при котором

f(x) = 77

.

[Ответ: -4]

Смотреть видеоразбор похожего >>

20. На рисунке изображён график функции

f(x) = a^{x+b}

. Найдите

f(4)

.

[Ответ: 9]

Смотреть видеоразбор похожего >>

21. На рисунке изображён график функции

f(x) = a^{x+b}

. Найдите значение

x

, при котором

f(x) = 64

.

[Ответ: 8]

Смотреть видеоразбор похожего >>

22. На рисунке изображён график функции

f(x) = ksqrt{x}

. Найдите

f(8.41)

.

[Ответ: 8.7]

Смотреть видеоразбор похожего >>

23. На рисунке изображён график функции

f(x) = ksqrt{x}

. Найдите значение

x

, при котором

f(x)=-6.75

.

[Ответ: 7.29]

Смотреть видеоразбор похожего >>

24. На рисунке изображены графики функций

f(x)=-4x+22

и

g(x)=ax^2+bx+c

, которые пересекаются в точках A и B. Найдите абсциссу точки B.

[Ответ: 9]

Смотреть видеоразбор похожего >>

25. На рисунке изображены графики функций

f(x)=-6x-28

и

g(x)=ax^2+bx+c

, которые пересекаются в точках A и B. Найдите ординату точки B.

[Ответ: 38]

Смотреть видеоразбор похожего >>

26. На рисунке изображены графики функций

f(x)=frac{k}{x}

и

g(x)=ax+b

, которые пересекаются в точках A и B. Найдите абсциссу точки B.

[Ответ: 0.2]

Смотреть видеоразбор похожего >>

27. На рисунке изображены графики функций

f(x)=frac{k}{x}

и

g(x)=ax+b

, которые пересекаются в точках A и B. Найдите ординату точки B.

[Ответ: 20]

Смотреть видеоразбор похожего >>

28. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

[Ответ: -2.08]

Смотреть видеоразбор похожего >>

29. На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков.

[Ответ: -2.4]

Смотреть видеоразбор похожего >>

30. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

[Ответ: -11.3]

Смотреть видеоразбор похожего >>

31. На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков.

[Ответ: 6.8]

Смотреть видеоразбор похожего >>

32. На рисунке изображены графики функций

f(x) = 2x^2+16x+30

и

g(x) = ax^2+bx+c

, которые пересекаются в точках A и B. Найдите абсциссу точки B.

[Ответ: -9]

Смотреть видеоразбор похожего >>

33. На рисунке изображены графики функций

f(x) = -2x^2-3x+1

и

g(x) = ax^2+bx+c

, которые пересекаются в точках A и B. Найдите ординату точки B.

[Ответ: -13]

Смотреть видеоразбор похожего >>

34. На рисунке изображены графики функций

f(x)=asqrt{x}

и

g(x)=kx+b

, которые пересекаются в точке A. Найдите абсциссу точки A.

[Ответ: 3.24]

Смотреть видеоразбор похожего >>

35. На рисунке изображены графики функций

f(x)=asqrt{x}

и

g(x)=kx+b

, которые пересекаются в точке A. Найдите ординату точки A.

[Ответ: 9]

Смотреть видеоразбор похожего >>

36. На рисунке изображён график функции

f(x) = asin{x}+b

. Найдите

a

.

[Ответ: 2]

Смотреть видеоразбор похожего >>

37. На рисунке изображён график функции

f(x) = asin{x}+b

. Найдите

b

.

[Ответ: 1,5]

Смотреть видеоразбор похожего >>

38. На рисунке изображён график функции

f(x) = acos{x}+b

. Найдите

a

.

[Ответ: 1,5]

Смотреть видеоразбор похожего >>

39. На рисунке изображён график функции

f(x) = acos{x}+b

. Найдите

b

.

[Ответ: −1]

Смотреть видеоразбор похожего >>

40. На рисунке изображён график функции

f(x) = a;tg{x}+b

. Найдите

a

.

[Ответ: 2]

Смотреть видеоразбор похожего >>

41. На рисунке изображён график функции

f(x) = a;tg{x}+b

. Найдите

b

.

[Ответ: −1,5]

Смотреть видеоразбор похожего >>

Задание
№9 «Графики функции»

ЕГЭ
математика профиль

1) Гиперболы

2) Кусочно-линейная функция

3)Параболы

4) Синусоиды

1) Гиперболы

1. https://math-ege.sdamgia.ru/get_file?id=90473&png=1На рисунке изображён график функции вида f(x)= дробь, числитель — a, знаменатель — x плюс b плюс c, где числа a, b и c — целые.
Найдите 
f(13).

Решение.

1. https://math-ege.sdamgia.ru/get_file?id=90473&png=1На рисунке
изображён график функции вида f(x)= дробь, числитель — a, знаменатель — x плюс b плюс c, где
числа a, b и c — целые. Найдите f(13).

Решение.

График функции имеет горизонтальную асимптоту y=2, значит, c=2.

График функции имеет вертикальную асимптоту x=3, значит, b= минус 3.

По графику f(2)=1, тогда

 дробь, числитель — a, знаменатель — 2 минус 3 плюс 2=1 равносильно a=1.

Таким образом, f(x)= дробь, числитель — 1, знаменатель — x минус 3 плюс 2. Найдём f(13).

f(13)= дробь, числитель — 1, знаменатель — 13 минус 3 плюс 2=2,1.

Асимпто́та, или аси́мптота[1] (от др.-греч. ἀσύμπτωτος — несовпадающая, не касающаяся кривой с бесконечной ветвью) — прямая, обладающая тем свойством, что расстояние от
точки кривой до этой 
прямой стремится к нулю при удалении точки вдоль
ветви в 
бесконечность[2]. Термин впервые появился у Аполлония
Пергского
, хотя
асимптоты 
гиперболы исследовал ещё Архимед[3].

2. https://math-ege.sdamgia.ru/get_file?id=90475&png=1На рисунке изображён график функции вида f(x)= дробь, числитель — a, знаменатель — x плюс b плюс c, где числа a, b и c — целые.
Найдите 
f(9).

2. https://math-ege.sdamgia.ru/get_file?id=90475&png=1На рисунке
изображён график функции вида f(x)= дробь, числитель — a, знаменатель — x плюс b плюс c, где
числа a, b и c — целые. Найдите f(9).

Решение.

График функции имеет горизонтальную асимптоту y= минус 1, значит, c= минус 1.

График функции имеет вертикальную асимптоту x=5, значит, b= минус 5.

По графику f(6)=0, тогда

 дробь, числитель — a, знаменатель — 6 минус 5 минус 1=0 равносильно a=1.

Таким образом, f(x)= дробь, числитель — 1, знаменатель — x минус 5 минус 1. Найдём f(9).

f(9)= дробь, числитель — 1, знаменатель — 9 минус 5 минус 1= минус 0,75.

Ответ: −0,75.

3. https://math-ege.sdamgia.ru/get_file?id=90479&png=1На рисунке изображён график функции вида f(x)= дробь, числитель — a, знаменатель — x плюс b плюс c, где числа a, b и c — целые.
Найдите 
f( минус 13).

3. https://math-ege.sdamgia.ru/get_file?id=90479&png=1На рисунке
изображён график функции вида f(x)= дробь, числитель — a, знаменатель — x плюс b плюс c, где
числа a, b и c — целые. Найдите f( минус 13).

Решение.

График функции имеет горизонтальную асимптоту y=3, значит, c=3.

График функции имеет вертикальную асимптоту x=3, значит, b= минус 3.

По графику f(5)=4, тогда

 дробь, числитель — a, знаменатель — 5 минус 3 плюс 3=4 равносильно a=2.

Таким образом, f(x)= дробь, числитель — 2, знаменатель — x минус 3 плюс 3. Найдём f( минус 13).

f( минус 13)= дробь, числитель — 2, знаменатель — минус 13 минус 3 плюс 3=2,875.

Ответ: 2,875.

2) Кусочно-линейная функция

1. https://math-ege.sdamgia.ru/get_file?id=90444&png=1На рисунке
изображён график функции вида 
f(x)=ax плюс |bx плюс c| плюс d, где
числа a, b, c и d — целые.
Найдите корень уравнения 
ax плюс d=0.

1. https://math-ege.sdamgia.ru/get_file?id=90444&png=1На рисунке
изображён график функции вида f(x)=ax плюс |bx плюс c| плюс d, где числа a, b, c и d —
целые. Найдите корень уравнения ax плюс d=0.

Решение.

https://math-ege.sdamgia.ru/get_file?id=90445&png=1В любом из
случаев раскрытия модуля получаем линейную функцию f(x)=kx плюс l, где угловой коэффициент k=a плюс |b| или k=a минус |b|,  а
свободный член l=d плюс |c| или l=d минус |c|. Очевидно, что a плюс |b| geqslant a минус |b|, значит, большему значению
углового коэффициента соответствует k=a плюс |b|, а
меньшему — k=a минус |b|. Аналогично большему
значению свободного члена соответствует l=d плюс |c|, а
меньшему — l=d минус |c|.

По рисунку определяем, что a плюс |b|=3, a минус |b|= минус 1, d плюс |c|=3, d минус |c|= минус 5. Значит, a=1, d= минус 1.

Решим уравнение ax плюс d=0:

x минус 1=0 равносильно x=1

Ответ: 1.

2. https://math-ege.sdamgia.ru/get_file?id=90444&png=1

На
рисунке изображён график функции вида 
f(x)=ax плюс |bx плюс c| плюс d, где
числа a, b, c и d — целые. Найдите
корень уравнения 
bx плюс c=0.

2. https://math-ege.sdamgia.ru/get_file?id=90444&png=1На рисунке
изображён график функции вида f(x)=ax плюс |bx плюс c| плюс d, где числа a, b, c и d — целые.
Найдите корень уравнения bx плюс c=0.

Решение.

Заметим, что |bx плюс c|=0 в точке излома, т.е.
при x=2. Значит, корнем уравнения bx плюс c=0 является число 2.

3. https://math-ege.sdamgia.ru/get_file?id=90446&png=1На рисунке изображён график функции вида f(x)=ax плюс |bx плюс c| плюс d, где числа a, b, c и d — целые.
Найдите корень уравнения 
ax плюс d=0.

4. https://math-ege.sdamgia.ru/get_file?id=90446&png=1На рисунке изображён график функции вида f(x)=ax плюс |bx плюс c| плюс d, где числа a, b, c и d — целые.
Найдите корень уравнения 
bx плюс c=0.

4. https://math-ege.sdamgia.ru/get_file?id=90446&png=1На рисунке
изображён график функции вида f(x)=ax плюс |bx плюс c| плюс d, где числа a, b, c и d — целые.
Найдите корень уравнения bx плюс c=0.

Решение.

Заметим, что |bx плюс c|=0 в точке излома, т.е.
при x=3. Значит, корнем уравнения bx плюс c=0 является число 3.

3)Параболы

 https://math-ege.sdamgia.ru/get_file?id=83007&png=1На рисунке изображён график функции вида f(x)= дробь, числитель — x в степени 2 , знаменатель — a плюс bx плюс c, где числа ab и c —
целые. Найдите значение 
f(3,5).

Решение.1 способ

По рисунку определяем, что f(x)= минус дробь, числитель — (x минус 6) в степени 2 , знаменатель — 4 плюс 8 = минус дробь, числитель — x в степени 2 , знаменатель — 4 плюс 3x минус 1, значит, a= минус 4, b=3, c= минус 1.

Тогда f(3,5) =f левая круглая скобка дробь, числитель — 7, знаменатель — 2 правая круглая скобка = минус дробь, числитель — 49, знаменатель — 16 плюс дробь, числитель — 21, знаменатель — 2 минус 1=
= минус 3 минус дробь, числитель — 1, знаменатель — 16 плюс 10 плюс дробь, числитель — 1, знаменатель — 2 минус 1=6 плюс дробь, числитель — 7, знаменатель — 16 =6,4375.

Решение.2 способ

Выбрать три точки . Например (0;-1),
(6,8), (2;4). Подставив координаты первой точки, мы найдем с=-1. Далее
подставив две другие координаты и с, решаем систему уравнений и находим а и в.

4) Синусоиды

 https://math-ege.sdamgia.ru/get_file?id=90832&png=1На рисунке
изображён график функции вида f(x)=a косинус (b Пи x плюс c) плюс d, где числа abc и d — целые.
Найдите f левая круглая скобка дробь, числитель — 100, знаменатель — 3 правая круглая скобка .

Решение.

По графику f_max=1, f_min= минус 3, тогда d= дробь, числитель — f_max плюс f_min, знаменатель — 2 = дробь, числитель — 1 минус 3, знаменатель — 2 = минус 1,  и |a|= дробь, числитель — f_max минус f_min, знаменатель — 2 = дробь, числитель — 1 минус ( минус 3), знаменатель — 2 =2.

По графику f(0)=1, тогда, если a= минус 2, то

 минус 2 косинус c минус 1=1 равносильно косинус c= минус 1 — не
имеет целочисленных решений,

если a=2, то

2 косинус c минус 1=1 равносильно косинус c=1 равносильно c=2 Пи k, k принадлежит Z undersetc принадлежит Z mathop равносильно c=0.

Значит, a=2 и c=0.

Найдём наименьший положительный период функции f(x)=2 косинус (b Пи x) минус 1:

2 косинус (b Пи x) минус 1=2 косинус (b Пи x pm 2 Пи ) минус 1=2 косинус левая круглая скобка b Пи левая круглая скобка x pm дробь, числитель — 2, знаменатель — b правая круглая скобка правая круглая скобка минус 1

Наименьший положительный период функции f(x) равен  pm дробь, числитель — 2, знаменатель — b, а по графику наименьший
положительный период равен 2, тогда b= pm 1.

Таким образом, f(x)=2 косинус ( минус Пи x) минус 1=2 косинус ( Пи x) минус 1. Найдём f левая круглая скобка дробь, числитель — 100, знаменатель — 3 правая круглая скобка .

f левая круглая скобка дробь, числитель — 100}3 правая круглая скобка =2 косинус дробь, числитель — {, знаменатель — 1 00 Пи , знаменатель — 3 минус 1=2 косинус дробь, числитель — 4 Пи , знаменатель — 3 минус 1= минус 2.

Ответ: −2.

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Егэ математика профиль 562239
  • Егэ математика профиль 513266
  • Егэ математика профиль 2024
  • Егэ математика профиль 2023 ященко 36 вариантов разбор вариантов 1 вариант
  • Егэ математика профиль 2023 сборники скачать

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии