Егэ математика профиль 2021 реальные задания

05.06.2021

Сборник реальных заданий с основной волны ЕГЭ 2021 по математике профильного уровня. Напомним, что базовую математику в 2021 году отменили.

Дата обновления: 21.07.21

Страница будет обновляться. СОХРАНИТЕ В ЗАКЛАДКИ!

  • Реальные задания ЕГЭ 2021 по всем предметам

Сначала идут задания с Дальнего востока. Это горячие задания, которые появлялись сразу после проведения ЕГЭ 2021.

Потом ниже уже идут PDF сборники целиком. Листайте до конца!

Реальные задания с Дальнего востока

Первая часть

Задание 1. Кто-то там получает 60.000 зп, из них вычитается 13% налогов, сколько будет конечная зп

ПРОТОТИП:

Налог на доходы составляет 13% от заработной платы. Заработная плата Ивана Кузьмича равна 13000 рублей. Какую сумму он получит после вычета налога на доходы? Ответ дайте в рублях.

ОБРАТНАЯ ЗАДАЧА:

Налог на доходы составляет 13% от заработной платы. После удержания налога на доходы Мария Константиновна получила 7830 рублей. Сколько рублей составляет заработная плата Марии Константиновны?

Задание 4. Завод делает детали (кол-во), шанс того, что деталь будет плохой (%) . Какова вероятность, что деталь будет /хорошей/

Задание 5. 9^(x-1)=81

Задание 6. Острые углы прямоугольного треугольника равны 24° и 66°. Найдите угол между высотой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.

Задание 7. Найти количество точек минимума / максимума

Задание 8. В цилиндре конус, у них одинаковое высота и основание общее, S цилиндра 9,найти S конуса

ПРОТОТИП:

Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности цилиндра равна 27√2. Найдите площадь боковой поверхности конуса.

Смотрите ниже, как решать подобное задание

Задание 9. 9sin128/cos64*cos26

Смотрите ниже, как решать подобное задание

Задание 11. Про трубы. Первая труба пропускает на 5 литров воды в минуту больше, чем вторая. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 704 литра она заполняет на 10 минут медленнее, чем первая труба заполняет резервуар объёмом 864 литра?

РЕШЕНИЕ ПОХОЖЕЙ ЗАДАЧИ НИЖЕ

Задание 12. Натуральный логарифм

Вторая часть

Задание 13. Были именно ЭТИ задачи

Вариант 1

Вариант 2

Задание 14.

Дана треугольная пирамида ????. Точка ? – середина ??, точка ? – середина ??. Плоскость ?, параллельная плоскости основания,
проходит через точку ? и пересекает ребра ?? и ?? в точках ? и ? соответственно.

  • Докажите, что ?? пересекает ?? в середине.
  • Найдите угол между плоскостью основания и плоскостью ???

Задание 15.

Вариант 1

Вариант 2

Вариант 3

Задание 16.

Дан параллелограмм ???? с острым углом ?. На продолжении стороны ?? за точку ? взята точка ? такая, что ?? = ??, а на продолжении стороны ?? за точку ? взята точка ? такая, что ?? = ??.

  • Докажите, что ?? = ??.
  • Найдите ??, если ?? = 7, sin, ??? = 7/25 .

Задание 17. В июле 2025 года планируется взять кредит на 8 лет. Условия его возврата таковы:

  • в январе 2026, 2027, 2028 и 2029 долг возрастает на 15% по сравнению с концом предыдущего года;
  • в январе 2030, 2031, 2032 и 2033 долг возрастает на 11%;
  • долг должен быть на одну и ту же величину меньше долга на июль предыдущего года;
  • к июлю 2033 года долг должен быть погашен.

Какую сумму планируется взять в кредит, если общая сумма выплат составит 650 тыс. рублей?

Решение

Задание 18. Три модуля

Задание 19. ПРОТОТИП: Дано трёхзначное натуральное число (число не может начинаться с нуля) А, сумма цифр равна S.

  • а) Может ли произведение A*S быть равным 1106?
  • б) Может ли произведение A*S быть равным 1105?

Решение №1

Решение №2

Полный сборник всех заданий из второй части реального ЕГЭ по математике 2021

Посмотрите видеоразбор к каждому из заданий из второй части реального ЕГЭ. Пошагово разбираем все ошибки, способы решения и правильные ответы.

Сами задания из видео расположены ниже.

Смотреть в PDF:

Или прямо сейчас: cкачать в pdf файле.

Сборник заданий №2

Смотреть в PDF:

Или прямо сейчас: cкачать в pdf файле.

Сборник заданий №3

Смотреть в PDF:

Или прямо сейчас: cкачать в pdf файле.

Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2021 из различных источников.

 Тренировочные варианты ЕГЭ 2021 по математике (профиль)

Реальный вариант (по материалам из открытых источников) скачать
ЕГЭ 100 баллов (с решениями) 
Вариант 1 (ЕГЭ 100БАЛЛОВ) скачать
Вариант 2 скачать
Вариант 3  скачать
Вариант 4  скачать
Вариант 5  скачать 
Вариант 6  скачать 
Вариант 7  скачать 
Вариант 8  скачать 
Вариант 9 скачать 
Вариант 10 скачать
Вариант 11 скачать
Вариант 12 скачать
Вариант 13 скачать
alexlarin.net (без ответов) 
Вариант 331 скачать
Вариант 332 скачать
Вариант 333 скачать
Вариант 334 скачать
Вариант 335 скачать
math100.ru (с ответами) 
Вариант 110 скачать
Вариант 111 скачать
Вариант 112 скачать
Вариант 113 скачать
Вариант 114 скачать
Ягубов РФ
Вариант 11 скачать
Вариант 19 скачать
На основе реального (дальний восток) скачать
На основе реального (Москва) скачать

Связанные страницы:

Тренировочные варианты ЕГЭ 2021 по математике базового уровня

Разбор задания 13 ЕГЭ по математике (профильный уровень)

Решение задания № 14 ЕГЭ по математике

Разбор задания 2 ЕГЭ математика профильный уровень

Решение задачи №19 ЕГЭ по профильной математике

Решение заданий и ответы вариантов Москвы и Дальнего Востока реального ЕГЭ от 7 июня 2021 года по математике (профильный уровень). Основная волна КИМ МСК, ДВ, Дальневосточный, Владивосток, профиль. 

❗Все материалы получены из открытых источников и публикуются после окончания экзамена в ознакомительных целях.

Задание 1.
Ивану Кузьмичу начислена заработная плата 20 000 рублей. Из этой суммы вычитается налог на доходы физических лиц в размере 13%. Сколько рублей он получит после уплаты подоходного налога?

ИЛИ

Задачу №1 правильно решили 24840 человек, что составляет 72% от выпускников города. Сколько всего выпускников в этом городе?

Задание 2.
На диаграмме показана среднемесячная температура воздуха в Санкт-Петербурге за каждый месяц 1999 года. По горизонтали указываются номера месяцев, по вертикали – температура в градусах Цельсия. Определите по диаграмме, сколько месяцев второго полугодия 1999 года средняя температура была ниже 14 °С.

Решение №1681 На диаграмме показана среднемесячная температура воздуха в Санкт-Петербурге за каждый месяц 1999 года. 

Задание 3.
На клетчатой бумаге с размером клетки 1х1 изображена трапеция. Найдите её площадь.

На клетчатой бумаге с размером клетки 1х1 изображена трапеция. Найдите её площадь.

Задание 4.
В среднем из 1000 садовых шлангов, поступивших в продажу, 16 подтекают. Найдите вероятность того, что один случайно выбранный для контроля шланг не подтекает.

ИЛИ

В сборнике билетов по химии всего 60 билетов, в 3 из них встречаются вопрос по теме белки. Найдите вероятность того что в случайно выбранном на экзамене билете школьнику достанется вопрос по теме белки.

Задание 5.
Найдите корень уравненияНайдите корень уравнения 3^(2-x)=81

Задание 6.
Острые углы прямоугольного треугольника равны 24° и 66°. Найдите угол между высотой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.

ИЛИ

Острый угол В прямоугольного треугольника АВС равен 50°. Найдите угол между биссектрисой СD и медианой СМ, проведёнными из вершины прямого угла С. Ответ дайте в градусах.

Острый угол В прямоугольного треугольника АВС равен 50°.

Задание 7.
На рисунке изображен график y = f´(x) – производной функции f(x), определенной на интервале (−9; 6). Найдите количество точек минимума функции f(x), принадлежащих отрезку [−8; 5].

На рисунке изображен график y = f´(x) – производной функции f(x)

Задание 8.
Цилиндр и конус имеют общие основание и высоту. Объём цилиндра равен 162. Найдите объём конуса.

Цилиндр и конус имеют общие основание и высоту.

ИЛИ

Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 188. Найдите объём конуса.

Задание 9.
Найдите значение выражения 

ИЛИ

Найдите значение выражения 

Задание 10.
Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковой сигнал частотой 749 МГц. Приёмник регистрирует частоту сигнала, отражённого от дна океана. Скорость погружения батискафа (в м/с) и частоты связаны соотношением

где с = 1500 м/с – скорость звука в воде, f– частота испускаемого сигнала (в МГц), f – частота отражённого сигнала (в МГц). Найдите частоту отражённого сигнала (в МГц), если батискаф погружается со скоростью 2 м/с.

ИЛИ

К источнику с ЭДС E = 95 В и внутренним сопротивлением r = 0,5 Ом хотят подключить нагрузку с сопротивлением R (в Ом). Напряжение (в В) на этой нагрузке вычисляется по формуле   . При каком значении сопротивления нагрузки напряжение на ней будет равно 90 В? Ответ дайте в омах.

ИЛИ

В розетку электросети подключены приборы, общее сопротивление которых составляет R1 = 90 Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите наименьшее возможное сопротивление R2 этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями R1 Ом и R2 Ом их общее сопротивление дается формулой Rобщ = (Ом), а для нормального функционирования электросети общее сопротивление в ней должно быть не меньше 9 Ом. Ответ выразите в Омах.

ИЛИ

При сближении источника и приёмника звуковых сигналов, движущихся в некоторой среде по прямой навстречу друг другу со скоростями u и v (в м/с) соответственно, частота звукового сигнала f (в Гц), регистрируемого приёмником, вычисляется по формуле: , где f0 = 170 Гц – частота исходного сигнала, c – скорость распространения сигнала в среде (в м/с), а u = 2 м/с и v = 17 м/с – скорости приёмника и источника относительно среды. При какой скорости c (в м/с) распространения сигнала в среде частота сигнала в приёмнике f будет равна 180 Гц? Ответ дайте в м/с.

ИЛИ

В ходе распада радиоактивного изотопа его масса уменьшается по закону   , где m0 начальная масса изотопа, t время, прошедшее от начального момента, Т период полураспада. В начальный момент времени масса изотопа 20 мг. Период его полураспада составляет 10 мин. Найдите, через сколько минут масса изотопа будет равна 5 мг. 

Задание 11.
Первая труба пропускает на 16 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 105 литров она заполняет на 4 минуты дольше, чем вторая труба?

ИЛИ

На изготовление 63 деталей первый рабочий затрачивает на 2 часа меньше, чем второй рабочий на изготовление 72 таких же деталей. Известно, что первый рабочий за час делает на 1 деталь больше, чем второй. Сколько деталей в час делает второй рабочий?

Задание 12.
Найдите точку минимума функции y = 11x – ln(x + 4)11 – 3

Задание 13.
а) Решите уравнение cos x(2cos2 –1) = cos(x + π).
б) Найдите все корни этого уравнения, принадлежащие отрезку [; 2π].

ИЛИ

а) Решите уравнение 2cos3+ cos+ 2√2sin2= 2√2
б) Найдите все корни этого уравнения, принадлежащие отрезку [–4π; ].

ИЛИ

а) Решите уравнение 2sin3x + 4√3cos2x + 3sin= 4√3
б) Найдите все корни этого уравнения, принадлежащие отрезку [π; ].

Задание 15.
Решите неравенство (9х – 3х+1)2 + 8·3х+1 < 8·9x + 20

ИЛИ

Решите неравенство

Задание 16.
Точки A, B, C, D и E лежат на окружности в указанном порядке, причем AE = ED = CD, а прямые AC и BE перпендикулярны. Отрезки AC и BD пересекаются в точке T.

а) Докажите, что прямая BD пересекает отрезок CE в середине DT.
б) Найдите площадь треугольника ABT, если BD = 12, АЕ = 2√3.

Задание 17.
В июле 2025 года планируется взять кредит на 8 лет. Условия его возврата таковы:

– в январе 2026, 2027, 2028, 2029 годов долг возрастает на 15% по сравнению с концом предыдущего года;
– в январе 2030, 2031, 2032, 2033 годов долг возрастает на 11% по сравнению с концом предыдущего года;
– долг в июле каждого года должен быть на одну и ту же величину меньше долга на июль предыдущего года;
– к июлю 2033 года долг должен быть полностью погашен.

Какую сумму планируется взять в кредит, если общая сумма выплат за 8 лет составит 650 тысяч рублей?

Задание 18.
При каких значениях параметра а уравнение |x2 – a2| + 8 = |x + a| + 8|x – a| имеет два положительных корня.

Задание 19.
Дано трехзначное число 𝐴, сумма цифр которого равна 𝑆.

а) Может ли выполняться равенство 𝐴 · 𝑆 = 1105?
б) Может ли выполняться равенство 𝐴 · 𝑆 = 1106?
в) Какое наименьшее значение может принимать выражение 𝐴 · 𝑆, если оно больше 1503?

Источник варианта: беседы vk.com и telegram.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 3.8 / 5. Количество оценок: 4

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Егэ математика профиль 2020 лысенко ответы
  • Егэ математика профиль 202
  • Егэ математика профиль 2019 реальные варианты с решениями ященко
  • Егэ математика профиль 2018 реальный вариант
  • Егэ математика профиль 2017 реальные варианты с решениями

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии