Егэ математика профиль 2 часть уравнения

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Задачи из сборников Ященко, 2021 год

Квадратные уравнения

Показательные уравнения

Логарифмические уравнения

Модуль числа

Уравнения с модулем

Тригонометрический круг

Формулы тригонометрии

Формулы приведения

Простейшие тригонометрические уравнения 1

Простейшие тригонометрические уравнения 2

Тригонометрические уравнения

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть tg x — помним, что он существует, только если {cos xne 0}.

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi}{3}+2pi n , где n — целое, а найти надо корни на отрезке left [frac{5 pi}{2};frac{9 pi}{2} right ]. На указанном промежутке лежит точка 4 pi. От нее и будем отсчитывать. Получим: x=4 pi +frac{pi}{3}=frac{13 pi}{3}.

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

Давайте потренируемся.

а) Решите уравнение 2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

б) Найдите все корни этого уравнения, принадлежащие промежутку left[-3pi right.;left.-frac{3pi }{2}right]

2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

Упростим левую часть по формуле приведения.

2{{cos}^2 x+sqrt{3}{cos x}=0}

Вынесем {cos x} за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-3pi right.;left.-frac{3pi }{2}right].

Видим, что указанному отрезку принадлежат решения -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Ответ: -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi }{3}+2pi n, где n — целое, а найти надо корни на отрезке [frac{5pi }{2};frac{9pi }{2}]. На указанном промежутке лежит точка 4 pi. От нее и отсчитываем.

Получим: x=4pi +frac{pi }{3}=frac{13pi }{3}.

2. а) Решите уравнение {({27}^{{cos x}})}^{{sin x}}=3^{frac{3{cos x}}{2}}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

а) 3^{3{cos x{sin x}}}=3^{frac{3{cos x}}{2}}

Степени равны, их основания равны. Значит, равны и показатели.

3{cos x{sin x}}=frac{3{cos x}}{2}

2{cos x{sin x-{cos x=0}}}

{cos x({sin x-frac{1}{2})=0}}

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Отметим на тригонометрическом круге отрезок left[-pi ;frac{pi }{2}right] и найденные серии решений.

Видим, что указанному отрезку принадлежат точки x=-frac{pi }{2} и x=frac{pi }{2} из серии x=frac{pi }{2}+pi n,nin z.

Точки серии x=frac{5pi }{6}+2pi n,nin z не входят в указанный отрезок.

А из серии x=frac{pi }{6}+2pi n,nin z в указанный отрезок входит точка x=frac{pi }{6}.

Ответ в пункте (б): -frac{pi }{2},frac{pi }{6} , frac{pi }{2}.

3. а) Решите уравнение {cos 2x}+{{sin}^2 x=0,5}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{7pi }{2}right.;left.-2pi right].

а)
{cos 2x}+{{sin}^2 x=0,5}

Применим формулу косинуса двойного угла: boldsymbol{cos2alpha =1-{2sin}^2alpha }

1-2{{sin}^2 x}+{{sin}^2 x}=0,5

{{-sin}^2 x=-0,5}

{{sin}^2 x=0,5}

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке left[-frac{7pi }{2}right.;left.-2pi right] с помощью двойного неравенства.

Сначала серия x=frac{pi }{4}+pi n,nin Z.

-frac{7pi }{2}le frac{pi }{4}+pi nle -2pi

-frac{7}{2}le frac{1}{4}+nle -2

-3,75le nle -2,25

n=-3, x_1=frac{pi }{4}-3pi =-frac{11pi }{4}

Теперь серия x=-frac{pi }{4}+pi n,nin Z

-frac{7pi }{2}le -frac{pi }{4}+pi nle -2pi

-frac{7}{2}le -frac{1}{4}+nle -2

-3,25le nle -1,75

n=-3, x_2=-frac{pi }{4}-3pi =-frac{13pi }{4}

n=-2, x_3=-frac{pi }{4}-2pi =-frac{9pi }{4}

Ответ: -frac{13pi }{4};-frac{11pi }{4};-frac{9pi }{4} .

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии x=-frac{pi }{4}+2pi n,nin Z на отрезке left[-frac{pi }{2}right.;left.20pi right]. Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение left({tg}^2x-3right)sqrt{11{cos x}}=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{5pi }{2};-pi right].

Самое сложное здесь — область допустимых значений (ОДЗ). Условие {11cos x}ge 0 заметно сразу. А условие {cos x}ne 0 появляется, поскольку в уравнении есть {tg x=frac{{sin x}}{{cos x}}}.

ОДЗ:

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси Y.

Ответ в пункте а) x=pm frac{pi }{3}+2pi n, nin z

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-frac{5pi }{2};-pi right].

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

x=frac{pi }{3}-2pi =-frac{5pi }{3} и x=-frac{pi }{3}-2pi =-frac{7pi }{3}.

5. а) Решите уравнение sqrt{{cos x+{sin x}}}({{cos}^2 x-frac{1}{2})=0}

б) Найдите корни, принадлежащие отрезку [-pi ;4pi ].

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых {cos x}=frac{sqrt{2}}{2} или {cos x}=-frac{sqrt{2}}{2}. Заметим, что среди них находятся и углы, для которых tgx=-1.

Числа серии x=-frac{3pi }{4}+2pi n не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие {cos x+{sin x}}ge 0. Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку [-pi ;4pi ] любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

На отрезке left[-pi ;0right] нам подходит корень x =-frac{pi }{4}.

На отрезке left[0;2pi right] нам подходят корни x=frac{pi }{4};frac{3pi }{4};frac{7pi }{4}.

На отрезке left[2pi ;4pi right] — корни x= frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Ответ в пункте б): -frac{pi }{4};frac{3pi }{4};frac{7pi }{4};frac{pi }{4};frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задание №12. Уравнения u0026#8212; профильный ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

60b2cd90-cf85-4bff-87e9-b49187e118a9

ЕГЭ по профильной математике необходимо сдавать тем выпускникам, которые планируют поступить в вуз на специальность, связанную с точными науками. Корректность решения профильной математики может влиять не только на зачисление в университет – от результатов экзамена зависит выдача красного аттестата, добавляющего абитуриентам до 10 дополнительных баллов. Именно поэтому так важны грамотные методы подготовки к ЕГЭ, охватывающие все типы заданий.

Содержание

Структура второй части экзамена по профильной математике

Вторая часть ЕГЭ по профильной математике состоит из 7 заданий. Решения всех задач обязательно должны быть развернутыми, чтобы эксперты смогли отследить ход мыслей экзаменуемого и проверить работу на соответствие всем критериям.

Уровень сложности заданий во второй части ЕГЭ по профильной математике:

  • Задачи 12-16 – повышенный;
  • Задачи 17-18 – высокий.

Максимальный первичный балл за экзамен – 31, 20 из которых составляет вторая часть.

Особенности оценивания заданий, максимальные баллы за верное решение:

  • Задание 12 – два балла;
  • Задача 13 – три балла;
  • Задание 14 – два балла;
  • Задача 15 – два балла;
  • Задание 16 – три балла;
  • Задача 17 – четыре балла;
  • Задание 18 – четыре балла.

1f7bb8f3-3bc3-4c2e-b0cb-9b9d0a8ae7c9

Что нужно знать и уметь решать, чтобы сдать ЕГЭ по профильной математике? Особенности, требования, которые можно обнаружить в документах ФИПИ

  • Решение уравнений и неравенств;
  • Методы работы с математическими моделями;
  • Решение задач с геометрическими фигурами (планиметрия и стереометрия);
  • Методы работы с точками координат;
  • Методы работы с векторами;
  • Решение выражений с вычислениями и преобразованиями;
  • Решение заданий по функциям: степенные функции; показательные функции; логарифмические функции; тригонометрические функции; обратные тригонометрические функции.

Регулярные курсы по подготовке к олимпиадам и ЕГЭ

Поступаем в вуз мечты без проблем!

В части номер два графики функций отсутствуют, но их трижды можно встретить в тесте:

  • Номер 6 – найти количество точек на графике функции;
  • Номер 9 – найти на графике функций определенное значение, учитывая отмеченные точки;
  • Номер 11 – найти наименьшее/наибольшее значение функции на отрезке.

c982dcf9-45cf-4fc8-bb5b-e5f512aa1575

Типы заданий во второй части ЕГЭ по профильной математике

❗️Особенности❗️

Для получения максимальных баллов нужно решить уравнение, а также найти его корни, принадлежащие определенному отрезку.

Какие виды уравнений №12 могут встретиться в ЕГЭ в части номер два:

  • Рациональные уравнения;
  • Иррациональные уравнения;
  • Логарифмические уравнения;
  • Показательные уравнения;
  • Тригонометрические уравнения.

❗️Особенности❗️

Стереометрическая задача включает в себя два пункта, первым из которых всегда идет доказательство. Во второй части вопроса можно обнаружить разные формулировки заданий.  

Что может требоваться в пункте «б»:

  • Расстояние между прямыми и плоскостями;
  • Расстояние от точки до прямой;
  • Расстояние от точки до плоскости;
  • Периметр или площадь сечения многогранников;
  • Объемы многогранников;
  • Углы: угол между плоскостями; угол между прямой и плоскостью; угол между скрещивающимися прямыми.

❗️Особенности❗️

В данном задании нужно найти решение неравенства, а также подробно расписать метод выполнения.

Какие виды неравенств могут встретиться в части номер два:

  • Рациональные неравенства;
  • Неравенства, содержащие радикалы;
  • Показательные неравенства;
  • Логарифмические неравенства;
  • Неравенства с логарифмами по переменному основанию;
  • Неравенства с модулем.

❗️Особенности❗️

Во второй части ЕГЭ по профильной математике встречаются задачи разного рода, например, задачи на оптимальный выбор, вклады, а также кредиты.

❗️Особенности❗️

В основе 16 номера заложена задача по планиметрии, в которой могут попасться многоугольники, окружности, окружности с треугольниками, окружности с четырехугольниками.

Задание состоит из двух подпунктов: в первом нужно расписать доказательство, во втором требуется найти отношение, длину, радиус, площадь, сумму квадратов, расстояние. 

❗️Особенности❗️

№17 в ЕГЭ по профильной математике – задача, в которой нужно найти значение параметра.

Какие типы задач могут встретиться:

  • Уравнения с параметром;
  • Неравенства с параметром;
  • Системы с параметром;
  • Расположение корней квадратного трехчлена;
  • Координаты;
  • Функции, зависящие от параметра.

❗️Особенности❗️

Последная задача во второй части ЕГЭ по профильной математике – одно из самых сложных заданий, с которым школьники справляются реже всего. В №18 3 подпункта, влияющих на итоговые баллы. Чтобы получить максимальные 4 балла, необходимо дать развернутый ответ на каждый вопрос.

Типы задач, которые нужно уметь решать:

  • Числа и их свойства;
  • Числовые наборы на карточках и досках;
  • Последовательности и прогрессии;
  • Сюжетные задачи.

703e444f-0906-4fec-8a35-71170e018192

План подготовки к ЕГЭ по профильной математике

Оптимальное время для подготовки к ЕГЭ по профильной математике – 2 года. Чтобы сдать экзамен на высокие баллы и решить всю часть номер два, потребуется знание целых блоков теории по алгебре и геометрии. Но одной теорией ограничиться нельзя – нужна регулярная практика с помощью решения демоверсий и заданий прошлых лет. И чем меньше времени будет до начала ЕГЭ, тем больше усилий придется приложить, чтобы побороть вторую часть.

Иногда написание экзамена по профильной математике становится вынужденной мерой – вузы в начале учебного года меняют требования к абитуриентам, включая «профиль» в список обязательных предметов для зачисления.

За год возможно освоить алгебру, планиметрию, стереометрию, научиться применять формулы, выучить все свойства и признаки, усвоить алгоритмы решения задач, если готовиться к ЕГЭ под руководством опытных преподавателей.

fd6cb93c-03d5-48e1-b9e9-f17f07162dff

Советы по подготовке к ЕГЭ по профильной математике

Совет №1. При решении заданий всегда обращайтесь к формулам

Формулы значительно облегчают процесс нахождения ответа, убирая лишние действия, требующие длительных сложных расчетов. На ЕГЭ с собой нельзя взять справочник с формулами (можно проносить только два типа канцелярских принадлежностей – черные гелевые ручки и линейку), поэтому придется запоминать все в ходе подготовки.

Что пригодится, чтобы решить весь ЕГЭ, включая часть номер два:

  • Формулы сокращенного умножения;
  • Формулы прогрессии (арифметической, а также геометрической);
  • Свойства степеней;
  • Свойства логарифмов;
  • Формулы для нахождения вероятности;
  • Тригонометрические формулы (двойного угла, суммы и разности аргументов, а также другие тригонометрические сведения);
  • Формулы по геометрии;
  • Производные;
  • Первообразные.

Совет №2. Для исследования функций и геометрических фигур требуются качественные рисунки

Функции и фигуры обязательно должны быть изображены разборчиво и отражать все условия задачи. Рисунки не нужно делать мелкими – большая картинка дает больше пространства для внесения записей. Качественная передача функций, точек и геометрических фигур помогает проецировать информацию в мозг для поиска решений.

Совет №3. Выучите свойства фигур и формулы нахождения площадей, объемов, периметров

Зачастую трудности возникают из-за путаницы в элементах и свойствах фигур, что осложняет решения и подстановку чисел в формулы. В ходе подготовки нужно выучить и понять теорию, которая требуется на практике.

Также запомните 3 пункта – виды углов при параллельных прямых и секущей:

  • Накрест лежащие углы;
  • Соответственные углы;
  • Односторонние углы.

Как поступить в МФТИ?

Стать студентом топового технического вуза – реально!

Совет №4. Разбивайте все задачи на пункты

После прочтения задачи выписывайте все вопросы, на которые требуется дать ответ. Ставьте галочки напротив пунктов по мере выполнения. Такая тактика может очень выручить, предотвратив невнимательность и забывчивость при решении.

Совет №5. Можно (и даже нужно!) решать олимпиадные задачи

Вторая часть ЕГЭ по математике по силам тем ученикам, которые в ходе подготовки решили сотни задач, развивающих логику. Вопросы повышенной сложности в экзамене можно сопоставить с заданиями из олимпиад, поэтому претендентам на высокие баллы нужно обязательно прибегать к сборникам с задачами из математических интеллектуальных соревнований.  

fd6cb93c-03d5-48e1-b9e9-f17f07162dff

Пособия для подготовки к ЕГЭ по профильной математике

  1. А. Р. Рязановский «Математика. Профильный уровень. Тематический тренажер. Теория вероятностей и элементы статистики. ЕГЭ-2023»
  1. С. А. Шестаков «ЕГЭ-2023. Математика. Профильный уровень. 30 типовых вариантов экзаменационных заданий»
  1. В. В. Митрошин «ЕГЭ-2023. Математика. Профильный уровень. Тренировочные варианты»

27f77fef-868e-4746-af5a-ff3f5d564738

Выводы

Часть номер два в ЕГЭ по профильной математике могут решить только те выпускники, которые усердно готовились к экзаменам, используя эффективные подходы к пониманию непростой науки, а также применяя различные методы выполнения задач.  

Поделиться в социальных сетях

Какое задание из второй части вам дается сложнее всего?

Межтекстовые Отзывы

Посмотреть все комментарии

Читайте также

Если вы участвуете в конкурсе от Максима Олеговича
— решайте задачи
в полном тестировании ЭГЭ с бланком ответов.

14. Задачи по стереометрии

1

Дана правильная треугольная пирамида (SABC) с вершиной (S). Проведите плоскость через середину ребра (AC) и точки пересечения медиан граней (ASB) и (CSB). Найдите площадь сечения пирамиды этой плоскостью, если (AB=21, AS=12sqrt2).

Добавить задание в избранное

2

Решите неравенство [dfrac{4^x-2^{x+3}+7}{4^x-5cdot
2^x+4}leqslant dfrac{2^x-9}{2^x-4}+dfrac 1{2^x-6}]

Добавить задание в избранное

16. Задачи по планиметрии

3

Дан тупоугольный треугольник (ABC) с тупым (angle ABC). Продолжения высот этого треугольника пересекаются в точке (H). (angle AHC=60^circ).

а) Докажите, что (angle ABC=120^circ).

б) Найдите (BH), если (AB=6), (BC=10).

(ЕГЭ 2018, досрочная волна)

Добавить задание в избранное

17. Сложные задачи прикладного характера

4

В январе банк предоставляет кредиты на сумму (A) рублей на (6) лет на следующих условиях:
– в ноябре каждого года, начиная с первого (когда был взят кредит) сумма долга возрастает на некоторое целое число (y) процентов;
– в декабре каждого года, начиная с первого, клиент должен внести платеж в счет погашения части текущего долга;
– платежи подбираются так, чтобы в январе каждого года сумма долга менялась соответственно таблице:

[begin{array}{|c|c|c|c|c|c|c|}
hline 1 text{ год} & 2text{ год} & 3text{ год} & 4text{ год} & 5text{ год} & 6text{ год} & 7text{ год}\
hline A & 0,8A & 0,65A & 0,4A & 0,35A & 0,2A & 0 \
hline
end{array}]

Какой наибольший процент годовых должен выставить банк, чтобы переплата клиента не превысила половину от суммы взятого кредита?

Добавить задание в избранное

5

Найдите все значения параметра (a), при каждом из которых уравнение [sqrt{x-1}+5x^2-9x+3a+8=dfrac{a^2}{x}]

имеет ровно одно решение.

Добавить задание в избранное

19. Задачи на теорию чисел

6

На доске написаны числа (1, 2, 3, …, 30). За один ход разрешается стереть произвольные три числа, сумма которых меньше 35 и отлична от каждой из сумм троек чисел, стёртых на предыдущих ходах.

а) Приведите пример последовательных 5 ходов.

б) Можно ли сделать 10 ходов?

в) Какое наибольшее число ходов можно сделать?

Добавить задание в избранное

Иррациональные уравнения на ЕГЭ прошлых лет

1 а) Решите уравнение x — 3sqrt{x — 1} + 1 = 0
б) Найдите все корни этого уравнения, принадлежащие промежутку left[ sqrt{3}; sqrt{20} right]
Смотреть видеоразбор
2 а) Решите уравнение sqrt{x^3 — 4x^2 — 10x + 29} = 3 — x
б) Найдите все корни этого уравнения, принадлежащие промежутку left[ -sqrt{3}; sqrt{30} right]
Смотреть видеоразбор

Показательные уравнения на ЕГЭ прошлых лет

1 а) Решите уравнение 8^x — 9 cdot 2^{x + 1} + 2^{5 — x} = 0
б) Найдите все корни этого уравнения, принадлежащие промежутку left[log_5 2; log_5 20 right]
Смотреть видеоразбор

Тригонометрические уравнения на ЕГЭ прошлых лет

1 а) Решите уравнение dfrac{sin x}{sin^2dfrac{x}{2}} = 4cos^2dfrac{x}{2}
б) Найдите все корни этого уравнения, принадлежащие промежутку left[ -dfrac{9pi}{2}; -3pi right]
Смотреть видеоразбор
2 а) Решите уравнение cos 2x = 1 — cosleft(dfrac{pi}{2} — xright)
б) Найдите все корни этого уравнения, принадлежащие промежутку left[ -dfrac{5pi}{2}; -pi right)
Смотреть видеоразбор
3 а) Решите уравнение cos^2 (pi — x) — sin left( x + dfrac{3pi}{2} right) = 0
б) Найдите все корни этого уравнения, принадлежащие промежутку left[dfrac{5pi}{2}; 4pi right]
Смотреть видеоразбор
4 а) Решите уравнение 8 sin^2 x + 2sqrt{3} cos left( dfrac{3pi}{2} — xright) = 9
б) Найдите все корни этого уравнения, принадлежащие промежутку left[- dfrac{5pi}{2}; -pi right]
Смотреть видеоразбор
5 а) Решите уравнение sin x + left(cos dfrac{x}{2} — sin dfrac{x}{2}right)left(cos dfrac{x}{2} + sin dfrac{x}{2}right) = 0
б) Найдите все корни этого уравнения, принадлежащие промежутку left[pi; dfrac{5pi}{2}right]
Смотреть видеоразбор

Уравнения смешанного типа на ЕГЭ прошлых лет (логарифмические или показательные + тригонометрия)

1 а) Решите уравнение 2log_3^2 (2 cos x) — 5log_3 (2 cos x) + 2 = 0
б) Найдите все корни этого уравнения, принадлежащие промежутку left[pi; dfrac{5pi}{2} right]
Смотреть видеоразбор
2 а) Решите уравнение left( dfrac{1}{49} right)^{sin x} = 7^{2 sin 2x}
б) Найдите все корни этого уравнения, принадлежащие промежутку left[dfrac{3pi}{2}; 3pi right]
Смотреть видеоразбор
3 а) Решите уравнение log_4 (sin x + sin 2x + 16) = 2
б) Найдите все корни этого уравнения, принадлежащие промежутку left[ -4pi; -dfrac{5pi}{2} right]
Смотреть видеоразбор
3626 а) Решите уравнение (x^2+4x-2)*(4^(3x+1)+8^(2x-1)-11)=0 б) Найдите все корни этого уравнения, принадлежащие отрезку [-0,5; 0,5]
Решение     График
а) Решите уравнение (x2+4x-2)(4^3x+1+8^2x-1-11) = 0 ! 36 вариантов ФИПИ Ященко 2023 Вариант 24 Задание 12 ...X
3619 а) Решите уравнение 5sin(2x)-5cos(x)+14sin(x)-7=0 б) Найдите все корни этого уравнения, принадлежащие отрезку [(3pi)/2; 3pi].
Решение     График
а) Решите уравнение 5sin2x — 5cosx + 14sinx — 7 = 0 ! Тренировочная работа №1 по математике 10 класс Статград 08-02-2023 Вариант МА2200109 Задание 12 ...X
3598 а) Решите уравнение 2sin^2(pi/2-x)+sin(2x)=0 б) Укажите корни этого уравнения, принадлежащие отрезку [3pi; (9pi)/2].
Решение     График
а) Решите уравнение 2sin^2(pi/2-x) +sin2x =0 ! 36 вариантов ФИПИ Ященко 2023 Вариант 21 Задание 12 ...X
3595 а) Решите уравнение 36(log_{1/8}(x))^2+4log_{1/4}(x)-5=0 б) Найдите все корни этого уравнения, принадлежащие отрезку [0,5; 5]
Решение     График
а) Решите уравнение 36log2 1/8 x-+ 4log1/4 x — 5 = 0 ! 36 вариантов ФИПИ Ященко 2023 Вариант 20 Задание 12 # Ошибка в ответе пособия у Ященко : color{red}{sqrt2/2; 4sqrt2} ...X
3570 а) Решите уравнение 15^(sin(x))=3^(sin(x))*5^(-cos(x)) б) Найдите все корни этого уравнения, принадлежащие отрезку [(3pi)/2; 3pi].
Решение     График
а) Решите уравнение 15 sinx =3 sinx 5 -cosx ! Тренировочная работа по математике №2 СтатГрад 11 класс 13.12.2022 Задание 12 Вариант МА2210209 ...X
3561 а) Решите уравнение cos(2x)+sin(2x)+1=0 б) Найдите все корни этого уравнения, принадлежащие отрезку [3pi; (9pi)/2].
Решение     График
а) Решите уравнение cos2x + sin2x +1 = 0 ! 36 вариантов ФИПИ Ященко 2023 Вариант 16 Задание 12 ...X
3551 а) Решите уравнение 25^(x-0.5)-13*10^(x-1)+4^(x+0.5)=0 б) Найдите все корни этого уравнения, принадлежащие отрезку [-pi/2; pi].
Решение     График
а) Решите уравнение 25^ x-0,5 — 13 10^ x-1 +4^ x+0,5 =0! 36 вариантов ФИПИ Ященко 2023 Вариант 14 Задание 12 ...X
3536 а) Решите уравнение 2cos(x)*sin(2x)=2sin(x)+cos(2x) б) Найдите все корни этого уравнения, принадлежащие отрезку [3pi; (9pi)/2].
Решение     График
а) Решите уравнение 2cos x sin 2x =2sinx +cos2x ! 36 вариантов ФИПИ Ященко 2023 Вариант 9 Задание 12 ...X
3528 а) Решите уравнение (log_{2}(8x^2))^2-log_{4}(2x)-1=0 б) Найдите все корни этого уравнения, принадлежащие отрезку [0,4; 0,8]
Решение     График
а) Решите уравнение log2 2(8×2) -log4 (2x) -1 =0 ! 36 вариантов ФИПИ Ященко 2023 Вариант 8 Задание 12 ...X
3517 а) Решите уравнение (log_{2}(4x^2))^2+3*log_{0.5}(8x)=1 б) Найдите все корни этого уравнения, принадлежащие отрезку [0,15; 1,5]
Решение     График
а) Решите уравнение log2 2 (4×2) + 3log 0.5 (8x) = 1 ! 36 вариантов ФИПИ Ященко 2023 Вариант 7 Задание 12 ...X

К следующей страницеПоказать ещё…

Показана страница 1 из 36

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Егэ математика профиль 108 вариант
  • Егэ математика профиль 100бальник
  • Егэ математика профиль 1001
  • Егэ математика пройти тест онлайн бесплатно
  • Егэ математика пробники фипи

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии