Егэ математика 541049


Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

Сайты, меню, вход, новости

Задания

Версия для печати и копирования в MS Word

Материальная точка движется прямолинейно по закону x левая круглая скобка t правая круглая скобка = дробь: числитель: 1, знаменатель: 3 конец дроби t в кубе минус 5t в квадрате минус 4t минус 7 (где x  — расстояние от точки отсчета в метрах, t  — время в секундах, измеренное с начала движения). В какой момент времени (в секундах) ее скорость была равна 71 м/с?

Спрятать решение

Решение.

Найдем закон изменения скорости:  v левая круглая скобка t правая круглая скобка =x' левая круглая скобка t правая круглая скобка =t в квадрате минус 10t минус 4 м/с. Чтобы найти, в какой момент времени t скорость была равна 71 м/с, решим уравнение:

t в квадрате минус 10t минус 4=71 равносильно t в квадрате минус 10t минус 75=0 равносильно совокупность выражений  новая строка t= минус 5;  новая строка t=15 конец совокупности .undersett больше 0mathop равносильно t=15с.

Ответ: 15.

  • ЗАДАЧИ ЕГЭ С ОТВЕТАМИ

  • АНГЛИЙСКИЙ без ГРАНИЦ

2012-07-25

Александр

Задача 26579 из единого банка задач ЕГЭ по математике

Вероятно, Ваш браузер не поддерживается. Чтобы использовать тренажёр «Час ЕГЭ», попробуйте скачать
Firefox

Проект «Математика? Легко!!!« для вас!

НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Конструктор упражнений для позвоночника!

Отзывов (14)

  1. Виктор

    2013-02-28 в 21:25

    Ещё раз здравствуйте Александр,это опять я,Виктор.В подобных заданиях с таким условием (только другие числовые данные) я нашел закономерность её решения.78 прибавляю 13 = 91. Теперь нахожу два числа,которые в сумме дадут 91,а разница между ними должна быть 13.И это числа 52 и 39. Ну и тут уже ясно какой ответ (у меня всегда было наибольшее число).Данный способ у меня всегда работает. Может ли это быть случайность,и способ когда-нибудь подведет?

    Ответить

    • Александр Крутицких

      2013-03-01 в 10:11

      Виктор, возможно такая закономерность и есть, но я не смог проанализировать и уловить её суть. В любом случае рекомендую при решении задач идти через понимание рассматриваемого процесса (движение, работа, прогрессии и прочее), тогда ошибки точно не будет. А сами «хитрые» приёмы (закономерности) применять только для экономии времени.

      Ответить

  2. Виктор

    2013-03-01 в 11:56

    Александр,у меня есть вопрос.Вот вы нашли x1 и x2.52 и 39.Это скорость первого и второго автомобилистов,или это два решения только первого автомобилиста,из которых только одно верно?

    Ответить

    • Александр Крутицких

      2013-03-01 в 14:51

      Это просто два решения задачи — и 39 и 52 это скорость первого автомобилиста. То есть при скорости первого 52 и 39 км/ч поставленное условие будет выполняться. Оба верны. Просто в условии ещё наложено дополнительное ограничение (скорость больше 48), поэтому мы выбираем 52.

      Ответить

  3. Виктор

    2013-03-01 в 20:24

    Все ясно.Думаю,проще решать сразу через дискриминант.91 мы получили путём 78 плюс 13,а 2028,это мы 78 умножили на 13 и ещё на два,так?

    Ответить

    • Александр Крутицких

      2013-03-01 в 21:35

      Да, 2028 получили именно так, а 91 нет. 91 мы получили в ходе преобразований в уравнении. Кстати, спасибо, что обратили внимание на эту задачу, увидел «неточность» вместо плюса поставил минус перед 78 на 13. Исправлю.

      Ответить

  4. Виктор

    2013-03-01 в 22:36

    Так,а откуда мы взяли 0.5 в самом начале решения?Это как бы первая и вторая половина пути 2 автомобилиста?

    Ответить

    • Александр Крутицких

      2013-03-01 в 22:39

      Да! Так и есть.

      Ответить

  5. Виктор

    2013-03-01 в 22:47

    Я думаю,что теперь я нашел быстрый способ решения именно такой задачи.

    0.5 * 78 = 39

    0.5 *13 = 6.5

    39 + 6.5 = 45.5

    45.5 * 2 = 91.

    Ну и дальше по дискриминанту.Такой способ будет работать в таких задачах?

    Ответить

    • Александр Крутицких

      2013-03-02 в 05:13

      Виктор, у этого способа я системы и закономерности не обнаружил. Советую, всё-таки, практиковаться в правильном составлении  уравнения и навыке его быстрого решения. Уйдёт  чуть-чуть больше времени, но решите гарантировано без ошибки. С уважением!!!

      Ответить

  6. Виктор

    2013-04-03 в 01:44

    Так,а почему мы 45.5 и 1014 умножаем именно на два?И всегда ли нужно это делать?

    Ответить

    • Александр Крутицких

      2013-04-04 в 10:58

      Нет необязательно, можно вычислять с любыми коэффициентами, но удобнее когда при х в квадрате стоит целое число.

      Ответить

  7. Виктор

    2013-04-24 в 14:00

    Александр,какую задачу из B13 вы считаете самой сложной?

    Ответить

    • Александр Крутицких

      2013-04-25 в 14:44

      Про трёх велосипедистов (есть отдельная статья на сайте), и про две кампании 99587 (запутаться легко).

      Ответить

Добавить комментарий

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

  • РубрикиРубрики
  • Задачи по номерам!

    №1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16

  • МЕТКИ

    БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие

  • ОСТЕОХОНДРОЗУ-НЕТ!

������� ����������

��������-������� ������� ����������

������� ������� ����������

���� ����������� � ���� ������������ �������� �������, � ������� ��������� �������������� ������� � ������������� ������� ��� ���������� � ���������� ������� �� ����������.

������-������������ ����������

������-������������ ����������

��������� � ����������-������������ ������������, ������� ���������, ���������, ��������� ���������� ������, �������� �����, �����������.

����� � ��������

����� � ��������

������� � ����� �������� �������������� ����� � ��������, �������� ������� �� ���� � ��������� ��� �������, ������ ��� ������� ������� ��������� ����� ������� ���������� �������.

��������-������

��������-������

������ �������� �� ����������� ����� � �������� ������������� ����������� � ��������-������� �� �����, � ������� ����� ����������� ��������� � ������ ������, ���������; �������� (� ��������) ������ ����� ������� ���� ������.

�������� �� ����������

��������

� ��������� ����� 12600 ������� �� ����� ��������� ����� ����������, ���� ����������� ������ ������������ ����������� ������� � ��������� ��������� � �����������.

��������� �  ����� ����������

��������� � �����

������� ������, ������������� ����� � ������ ������� �������, ������� ������ ������������ �� ������, �������� � ���������.

��������

������ ��������������� ������� (���) �� ����������

������������ �����, ���, ���

������������ �����

���������� � ��������� � ������� ���������������� ��������� � ������������ ������, ������� ����������� �������� ������������� ������������.

��������� �� �������

��������� �� �������

������ �����, �������������� ��������������, 
�������, ��������, �������������� ������, 
�������, �������, 
�������������, 
����������, �����������, �������������

��������� �� ���������

�������� �� ����������

�����������

����������� �������� ����������

��� ��������� ������� ������� �� ���� ������-������������ �������� �������� ���������� ������ ��������� �����������.

� �����

��� ������� �����������

������������ ����� — ��� ������� �����������, �������� �������������� ����, ������� ������ ���������, ���������� ������ ���������� ��.

�����-��������

temaplan.ru

������� ��������

������� �������� ����������� �����-���������
�������� ����� ���������� ������������
���������� ������ ����������� �����-���������
��������� ������ �������� �������� ����� �������
������� ������� ���������� ��������
��������� ��� �������� �������
���������� ��������� ������������ ����������
�������� ������� ������� ���������
����ԣ�� �.�.-�������� �.�. ������
������ ������ ���������� ������������
��������� ������� ������������� ������-���, ���������� ����� ��
��������� ����� ��������� �����-���������
�������� ����� ���������� �������
���������� ������ ������������� ������-���
������� ���� ���������� ���
������� ������ ���������� �������
������� �������� ���������� �������
�������� ���� ����������� �����-���������
������� ������� ���������� �����-���������
�������� ������� ���������� ������������

������ � �����

�� ������ ������ ������ ������������� �����, ���������� ��� ������, ��� �����-���� �������������� ������.

Решение и ответы заданий варианта МА2210309 СтатГрад 28 февраля ЕГЭ 2023 по математике (профильный уровень). Тренировочная работа №3. ГДЗ профиль для 11 класса.
+Задания №1, №4, №6, №10 из варианта МА2210311.

❗Все материалы получены из открытых источников и публикуются после окончания тренировочного экзамена в ознакомительных целях.

❗Задания №13,16,17,18 долго оформлять, решу их позже, если будет время и желание. Решены те задания, у которых кнопка «Смотреть решение» зелёная.

Задание 1.
В треугольнике ABC угол C равен 90°, CH – высота, BC = 5, cosA=frac{2sqrt{6}}{5}. Найдите длину отрезка AH.

В треугольнике ABC угол C равен 90°, CH – высота, BC = 5

Задание 1 из варианта 2210311.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 13.

Задание 2.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2.

Задание 3.
В группе 16 человек, среди них – Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.

Задание 4.
Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Задание 4 из варианта 2210311.
Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.

Задание 5.
Решите уравнение frac{x–1}{5x+11}=frac{x–1}{3x-7}. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.

Задание 6.
Найдите значение выражения frac{(4^{frac{3}{5} }cdot7^{frac{2}{3}})^{15}}{28^{9}} .

Задание 6 из варианта 2210311.
Найдите 98cos2α, если cosα = frac{4}{7}.

Задание 7.
На рисунке изображён график y = f’(x) – производной функции f(x), определённой на интервале (−5; 5). В какой точке отрезка [−4; −1] функция f(x) принимает наибольшее значение?

На рисунке изображён график y = f'(x) – производной функции f(x), определённой на интервале (−5; 5).

Задание 8.
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле FA = ρgl3, где l – длина ребра куба в метрах, ρ = 1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте, что g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше чем 2116800 Н? Ответ дайте в метрах.

Задание 9.
Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

Задание 10.
На рисунке изображён график функции f(x) = ax2 + bx + c. Найдите значение f(−1).

На рисунке изображён график функции f(x) = ax2 + bx + c.

Задание 10 из варианта 2210311.
На рисунке изображены графики функций f(x) = frac{k}{x} и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.

Найдите абсциссу точки B.

Задание 11.
Найдите точку минимума функции y = x3 − 27x2 + 13.

Задание 12.
а) Решите уравнение 2cos3x = –sin(frac{3pi}{2} + x)
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π; 4π]

Задание 13.
Основанием правильной пирамиды PABCD является квадрат ABCD. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды, если AB = 30.

Задание 14.
Решите неравенство frac{9^{x}–13cdot 3^{x}+30}{3^{x+2}–3^{2x+1}}ge frac{1}{3^{x}}.

Задание 15.
По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» – увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n, при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

Задание 16.
В треугольнике ABC медианы AA1, BB1 и CC1 пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22.

Задание 17.
Найдите все значения a, при каждом из которых система уравнений 

begin{cases} (x-5a+1)^{2}+(y-2a-1)^{2}=a-2 \ 3x-4y=2a+3 end{cases}

не имеет решений.

Задание 18.
У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький – 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять.
а) Может ли Аня купить 24 конверта?
б) Может ли Аня купить 29 конвертов?
в) Какое наибольшее число конвертов может купить Аня?

Источник варианта: СтатГрад/statgrad.org.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 2

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

Задание 2. Информатика. Апробация 10.03.2023

Миша заполнял таблицу истинности логической функции (F)
$$
(x to neg (y to z)) lor w,
$$
но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных (w), (x), (y), (z).

F
0    0 0
1 0
0 1 0

Определите, какому столбцу таблицы соответствует каждая из переменных (w), (x), (y), (z).
В ответе напишите буквы (w), (x), (y), (z) в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Функция (F) задана выражением ( neg x lor y), зависящим от двух переменных, а фрагмент таблицы имеет следующий вид:

В этом случае первому столбцу соответствует переменная (y), а второму — переменная (x). В ответе следует написать: (yx).

Решение:

Python


from itertools import permutations, product

def F(x, y, z, w):
    return (x <= (not y <= z)) or w

for perm in permutations('xyzw'):
    for a,b,c,d,e,f,g in product([0,1], repeat=7):
        table = [[a,0,b,0,0],
                 [1,c,d,e,0],
                 [0,1,f,g,0]]
        if table[0] == table[1]:
            continue
        if all(F(**dict(zip(perm,row))) == row[-1] for row in table):
            print(*perm)

Ответ: (yzxw)

Шкалирование

Первичный Тестовый Оценка
5-6 27-34 3
7-8 40-46 4
9-10 52-58
11-12-13 64-66-68 5
14-15-16 70-72-74
17-18-19 76-78-80
20-21-22 82-84-86
23-24-25 88-90-92
26-27-28 94-96-98
29-30-31 100
Первичный балл
/
Тестовый балл
5/27 6/34 7/40 8/46 9/52 10/58 11/64 12/66 13/68 14/70
15/72 16/74 17/76 18/78 19/80 20/82 X / 2X+42 29+ / 100

Тренировочная работа №3 статград пробник ЕГЭ 2023 по математике 11 класс 12 тренировочных вариантов МА2210301-МА2210312 с ответами и решением базовый и профильный уровень (БАЗА И ПРОФИЛЬ). Официальная дата проведения работы: 28 февраля 2023 года.

Скачать ответы и решения для вариантов

Пробник ЕГЭ 2023 математика 11 класс статград база

Варианты профильного уровня ЕГЭ 2023 математика статград

ответы для олимпиады

Вариант МА2210301 и ответы

1. Каждый день во время конференции расходуется 60 пакетиков чая. Конференция длится 9 дней. В пачке чая 50 пакетиков. Какого наименьшего количества пачек чая хватит на все дни конференции?

2. Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.

3. В таблице показано расписание пригородных электропоездов по направлению Москва Курская – Крутое – Петушки. Владислав пришёл на станцию Москва Курская в 18:20 и хочет уехать в Петушки на электропоезде без пересадок. Найдите номер ближайшего электропоезда, который ему подходит.

5. В коробке вперемешку лежат чайные пакетики с чёрным и зелёным чаем, одинаковые на вид, причём пакетиков с чёрным чаем в 4 раза больше, чем пакетиков с зелёным. Найдите вероятность того, что случайно выбранный из этой коробки пакетик окажется пакетиком с чёрным чаем.

8. Некоторые учащиеся 10-х классов школы ходили в апреле на спектакль «Гроза». В мае некоторые десятиклассники пойдут на постановку по пьесе «Бесприданница», причём среди них не будет тех, кто ходил в апреле на спектакль «Гроза». Выберите утверждения, которые будут верны при указанных условиях независимо от того, кто из десятиклассников пойдёт на постановку по пьесе «Бесприданница».

  • 1) Каждый учащийся 10-х классов, который не ходил на спектакль «Гроза», пойдёт на постановку по пьесе «Бесприданница».
  • 2) Нет ни одного десятиклассника, который ходил на спектакль «Гроза» и пойдёт на постановку по пьесе «Бесприданница».
  • 3) Среди учащихся 10-х классов этой школы, которые не пойдут на постановку по пьесе «Бесприданница», есть хотя бы один, который ходил на спектакль «Гроза».
  • 4) Найдётся десятиклассник, который не ходил на спектакль «Гроза» и не пойдёт на постановку по пьесе «Бесприданница».

9. На фрагменте географической карты схематично изображены границы деревни Покровское и очертания озёр (площадь одной клетки равна одному гектару). Оцените приближённо площадь озера Малого. Ответ дайте в гектарах с округлением до целого значения.

10. Диагональ прямоугольного экрана ноутбука равна 40 см, а ширина экрана ― 32 см. Найдите высоту экрана. Ответ дайте в сантиметрах.

11. Пирамида Снофру имеет форму правильной четырёхугольной пирамиды, сторона основания которой равна 220 м, а высота — 104 м. Сторона основания точной музейной копии этой пирамиды равна 55 см. Найдите высоту музейной копии. Ответ дайте в сантиметрах.

12. В треугольнике ABC проведена биссектриса AL, угол ALC равен 112° , угол ABC равен 106° . Найдите угол ACB . Ответ дайте в градусах.

13. Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 2 и 6, а второго — 6 и 4. Во сколько раз объём второго цилиндра больше объёма первого?

15. В школе мальчики составляют 55 % от числа всех учащихся. Сколько в этой школе мальчиков, если их на 50 человек больше, чем девочек?

19. Цифры четырёхзначного числа, кратного 5, записали в обратном порядке и получили второе четырёхзначное число. Затем из исходного числа вычли второе и получили 3366. В ответе укажите какое-нибудь одно такое исходное число.

20. Имеется два сплава. Первый содержит 45 % никеля, второй — 5 % никеля. Из этих двух сплавов получили третий сплав, содержащий 15 % никеля. Масса первого сплава равна 40 кг. На сколько килограммов масса первого сплава была меньше массы второго?

21. Прямоугольник разбит на четыре меньших прямоугольника двумя прямолинейными разрезами. Периметры трёх из них, начиная с левого верхнего и далее по часовой стрелке, равны 2, 3 и 18. Найдите периметр четвёртого прямоугольника.

Вариант МА2210305 и ответы

1. Для покраски 1 кв. м потолка требуется 230 г краски. Краска продаётся в банках по 2 кг. Какое наименьшее количество банок краски нужно для покраски потолка площадью 44 кв. м?

3. В таблице представлены налоговые ставки на автомобили в Москве с 1 января 2013 года. Какова налоговая ставка (в рублях за 1 л. с. в год) на автомобиль мощностью 115 л. с.?

5. Помещение освещается двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года обе лампы перегорят.

6. В таблице даны результаты олимпиад по русскому языку и биологии в 9 «А» классе. Похвальные грамоты дают тем школьникам, у кого суммарный балл по двум олимпиадам больше 110 или хотя бы по одному предмету набрано не меньше 60 баллов. Укажите номера учащихся 9 «А» класса, набравших меньше 60 баллов по русскому языку и получивших похвальные грамоты, без пробелов, запятых и других дополнительных символов.

7. На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D. В правом столбце указаны значения производной функции в точках A, B, C и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.

8. Некоторые учащиеся 10-х классов школы ходили в ноябре на оперу «Евгений Онегин». В марте некоторые десятиклассники пойдут на оперу «Руслан и Людмила», причём среди них не будет тех, кто ходил в ноябре на оперу «Евгений Онегин». Выберите утверждения, которые будут верны при указанных условиях независимо от того, кто из десятиклассников пойдёт на оперу «Руслан и Людмила».

  • 1) Каждый учащийся 10-х классов, который не ходил на оперу «Евгений Онегин», пойдёт на оперу «Руслан и Людмила».
  • 2) Нет ни одного десятиклассника, который ходил на оперу «Евгений Онегин» и пойдёт на оперу «Руслан и Людмила».
  • 3) Найдётся десятиклассник, который не ходил на оперу «Евгений Онегин» и не пойдёт на оперу «Руслан и Людмила».
  • 4) Среди учащихся 10-х классов этой школы, которые не пойдут на оперу «Руслан и Людмила», есть хотя бы один, который ходил на оперу «Евгений Онегин».

9. План местности разбит на клетки. Каждая клетка обозначает квадрат 1м×1м . Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.

10. Пожарную лестницу длиной 10 м приставили к окну дома. Нижний конец лестницы отстоит от стены на 6 м. На какой высоте находится верхний конец лестницы? Ответ дайте в метрах.

11. Прямолинейный участок трубы длиной 4 м, имеющей в сечении окружность, необходимо покрасить снаружи (торцы трубы открыты, их красить не нужно). Найдите площадь поверхности, которую необходимо покрасить, если внешний обхват трубы равен 19 см. Ответ дайте в квадратных сантиметрах.

12. В треугольнике ABC стороны AC и BC равны. Внешний угол при вершине B равен 146° . Найдите угол C. Ответ дайте в градусах.

13. Даны два шара радиусами 4 и 2. Во сколько раз объём большего шара больше объёма меньшего?

15. Число больных гриппом в школе уменьшилось за месяц в пять раз. На сколько процентов уменьшилось число больных гриппом?

19. Найдите пятизначное число, кратное 15, любые две соседние цифры которого отличаются на 3. В ответе укажите какое-нибудь одно такое число.

20. Теплоход, скорость которого в неподвижной воде равна 19 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 3 км/ч, стоянка длится 5 часов, а в исходный пункт теплоход возвращается через 43 часа после отправления из него. Сколько километров проходит теплоход за весь рейс?

21. На кольцевой дороге расположены четыре бензоколонки: А, Б, В и Г. Расстояние между А и Б — 55 км, между А и В — 40 км, между В и Г — 40 км, между Г и А — 30 км (все расстояния измеряются вдоль кольцевой дороги по кратчайшей дуге). Найдите расстояние (в километрах) между Б и В.

Вариант МА2210309 и ответы

2. Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.

3. В группе 16 человек, среди них — Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.

4. Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

9. Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

13. Основанием правильной пирамиды PABCD является квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если AB = 30.

15. По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n , при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

16. В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M . Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22 .

18. У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький — 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять. а) Может ли Аня купить 24 конверта? б) Может ли Аня купить 29 конвертов? в) Какое наибольшее число конвертов может купить Аня?

Вариант МА2210311 и ответы

1. Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.

2. Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 78. Найдите площадь поверхности шара.

3. В магазине в среднем из 120 сумок 15 имеют скрытые дефекты. Найдите вероятность того, что выбранная в магазине сумка окажется со скрытыми дефектами.

4. Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.

9. Игорь и Паша, работая вместе, могут покрасить забор за 40 часов. Паша и Володя, работая вместе, могут покрасить этот же забор за 48 часов, а Володя и Игорь, работая вместе, — за 60 часов. За сколько часов мальчики покрасят забор, работая втроём?

13. Основанием правильной пирамиды PABCD является квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если AB = 24 .

15. По вкладу «А» банк в конце каждого года планирует увеличивать на 11 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n , при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

16. В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M . Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 18.

18. У Ани есть 400 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 22 рубля, а маленький — 17 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять. а) Может ли Аня купить 19 конвертов? б) Может ли Аня купить 23 конверта? в) Какое наибольшее число конвертов может купить Аня?

Работы статград по математике для 9 и 11 класса

Share the post «Математика 11 класс ЕГЭ 2023 статград база и профиль варианты и ответы с решением»

  • Twitter
  • VKontakte
  • WhatsApp

Метки: ЕГЭ 2023заданияматематика 11 классответыстатградтренировочная работа

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Егэ математика 525719
  • Егэ математика 525716
  • Егэ математика 523986
  • Егэ математика 520698
  • Егэ математика 518437

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии