Задание 2. Информатика. Апробация 10.03.2023
Миша заполнял таблицу истинности логической функции (F)
$$
(x to neg (y to z)) lor w,
$$
но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных (w), (x), (y), (z).
F | ||||
0 | 0 | 0 | ||
1 | 0 | |||
0 | 1 | 0 |
Определите, какому столбцу таблицы соответствует каждая из переменных (w), (x), (y), (z).
В ответе напишите буквы (w), (x), (y), (z) в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Функция (F) задана выражением ( neg x lor y), зависящим от двух переменных, а фрагмент таблицы имеет следующий вид:
В этом случае первому столбцу соответствует переменная (y), а второму — переменная (x). В ответе следует написать: (yx).
Решение:
Python
from itertools import permutations, product
def F(x, y, z, w):
return (x <= (not y <= z)) or w
for perm in permutations('xyzw'):
for a,b,c,d,e,f,g in product([0,1], repeat=7):
table = [[a,0,b,0,0],
[1,c,d,e,0],
[0,1,f,g,0]]
if table[0] == table[1]:
continue
if all(F(**dict(zip(perm,row))) == row[-1] for row in table):
print(*perm)
Ответ: (yzxw)
Решение и ответы заданий варианта МА2210309 СтатГрад 28 февраля ЕГЭ 2023 по математике (профильный уровень). Тренировочная работа №3. ГДЗ профиль для 11 класса.
+Задания №1, №4, №6, №10 из варианта МА2210311.
Все материалы получены из открытых источников и публикуются после окончания тренировочного экзамена в ознакомительных целях.
Задания №13,16,17,18 долго оформлять, решу их позже, если будет время и желание. Решены те задания, у которых кнопка «Смотреть решение» зелёная.
Задание 1.
В треугольнике ABC угол C равен 90°, CH – высота, BC = 5, cosA=frac{2sqrt{6}}{5}. Найдите длину отрезка AH.
Задание 1 из варианта 2210311.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
Задание 2.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.
Задание 3.
В группе 16 человек, среди них – Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.
Задание 4.
Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Задание 4 из варианта 2210311.
Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.
Задание 5.
Решите уравнение frac{x–1}{5x+11}=frac{x–1}{3x-7}. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.
Задание 6.
Найдите значение выражения frac{(4^{frac{3}{5} }cdot7^{frac{2}{3}})^{15}}{28^{9}} .
Задание 6 из варианта 2210311.
Найдите 98cos2α, если cosα = frac{4}{7}.
Задание 7.
На рисунке изображён график y = f’(x) – производной функции f(x), определённой на интервале (−5; 5). В какой точке отрезка [−4; −1] функция f(x) принимает наибольшее значение?
Задание 8.
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле FA = ρgl3, где l – длина ребра куба в метрах, ρ = 1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте, что g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше чем 2116800 Н? Ответ дайте в метрах.
Задание 9.
Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.
Задание 10.
На рисунке изображён график функции f(x) = ax2 + bx + c. Найдите значение f(−1).
Задание 10 из варианта 2210311.
На рисунке изображены графики функций f(x) = frac{k}{x} и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.
Задание 11.
Найдите точку минимума функции y = x3 − 27x2 + 13.
Задание 12.
а) Решите уравнение 2cos3x = –sin(frac{3pi}{2} + x)
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π; 4π]
Задание 13.
Основанием правильной пирамиды PABCD является квадрат ABCD. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды, если AB = 30.
Задание 14.
Решите неравенство frac{9^{x}–13cdot 3^{x}+30}{3^{x+2}–3^{2x+1}}ge frac{1}{3^{x}}.
Задание 15.
По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» – увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n, при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
Задание 16.
В треугольнике ABC медианы AA1, BB1 и CC1 пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22.
Задание 17.
Найдите все значения a, при каждом из которых система уравнений
begin{cases} (x-5a+1)^{2}+(y-2a-1)^{2}=a-2 \ 3x-4y=2a+3 end{cases}
не имеет решений.
Задание 18.
У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький – 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять.
а) Может ли Аня купить 24 конверта?
б) Может ли Аня купить 29 конвертов?
в) Какое наибольшее число конвертов может купить Аня?
Источник варианта: СтатГрад/statgrad.org.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 5 / 5. Количество оценок: 2
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.
Каждому из четырёх чисел в левом столбце соответствует отрезок, которому оно пр…
Разбор сложных заданий в тг-канале:
Каждому из четырёх чисел в левом столбце соответствует отрезок, которому оно принадлежит. Установите соответствие между числами и отрезками из правого столбца.
ЧИСЛА | ОТРЕЗКИ |
А) $log_{7}345$ Б) ${9}/{4}$ В) $√{85}$ Г) $0.23^{-1}$ |
1) $[3; 4]$ 2) $[9; 10]$ 3) $[2; 3]$ 4) $[4; 5]$ |
Под каждой буквой укажите соответствующий номер.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Решите неравенство $14+2(−x+7)⩽24$. На какой из координатных прямых (см. рис.) изображено множество его решений?
На прямой отмечены числа $n$ и $k$.
Каждому из четырёх чисел в левом столбце соответствует отрезок, которому оно принадлежит. Установите соответствие между числами из левого столбца и …
Решите неравенство $8x−3(2x−1)⩽−2$
1) $[2,5;+∞)$
2) $(−∞;−2,5]$
3) $(−∞;2,5]$
4) $[−2,5;+∞)$
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
1. Определи вид задачи, выбери метод решения.
2. Если в пункте (а) или (б) ответ положительный, то приведи конкретный пример. Если ответ отрицательный — приведи доказательство, опровергающее гипотезу о возможности утверждения.
3. Для решения пункта (в) должна быть построена модель задачи или сделан перебор всех вариантов.
4. Запиши все шаги решения на чистовик разборчиво и кратко.
5. Запиши ответ.
Верное решение задачи пункта (a) оценивается (1) баллом. Верное решение задачи пункта (б) также оценивается (1) баллом. За верное решение пункта (в) можно получить (2) балла. Причём (1) балл — за искомую оценку, ещё (1) балл — за пример, подтверждающий верность оценки.
Как решить задание из примера
1. Решим задачу пункта (a). Сумма трёх чисел может быть равной (240). Нетрудно подобрать пример: подходят числа (227), (11) и (2):
2. Решим задачу пункта (б). Сумма цифр числа имеет такой же остаток при делении на (3), какой имеет само число. Три числа на доске имеют одинаковый остаток при делении на (3), их сумма должна делиться на (3). Число (241) не делится на (3). Значит, сумма не может быть равной (241).
3. Решим задачу пункта (в). Так как первое число трёхзначное, то сумма его цифр не больше (27). Значит, второе число не больше (27). Но сумма цифр второго числа равна (2), значит, второе число может быть только (11) и (20) (помним, что по условию три числа различные).
Задача свелась к подсчёту количества трёхзначных чисел с суммой цифр, равной (11) или (20).
Пусть сумма цифр числа равна (11), имеем:
с первой цифрой (1) девять чисел:
119,128,137,146,155,164,173,182,191;
с первой цифрой (2) десять чисел:
209,218,227,236,245,254,263,272,281,290;
с первой цифрой (3) девять чисел:
308,317,326,335,344,353,362,371,380;
с первой цифрой (4) восемь чисел:
407,416,425,434,443,452,461,470;
с первой цифрой (5) семь чисел:
506,515,524,533,542,551,560;
с первой цифрой (6) шесть чисел:
605,614,623,632,641,650;
с первой цифрой (7) пять чисел:
704,713,722,731,740;
с первой цифрой (8) четыре числа:
803,812,821,830;
с первой цифрой (9) три числа:
902,911,920.
Всего
9+10+9+8+7+6+5+4+3=61.
Пусть сумма цифр числа равна (20), имеем:
с первой цифрой (1) нет таких чисел;
с первой цифрой (2) одно число:
299;
с первой цифрой (3) два числа:
389,398;
с первой цифрой (4) три числа:
479,488,497;
с первой цифрой (5) четыре числа:
569,578,587,596;
с первой цифрой (6) пять чисел:
659,668,677,686,695;
с первой цифрой (7) шесть чисел:
749,758,767,776,785,794;
с первой цифрой (8) семь чисел:
839,848,857,866,875,884,893;
с первой цифрой (9) восемь чисел:
929,938,947,956,965,974,983,992.
Всего
1+2+3+4+5+6+7+8=36.
Количество чисел равно (61+36=97). Количество возможных троек чисел столько же.
4. Перепишем шаги решения в чистовик.
5. Запишем ответ.
Ответ: а) да; б) нет; в) (97).
Сборник «36 тренировочных вариантов для подготовки к ЕГЭ» под редакцией И. В. Ященко, 2020 год. Вариант 5, задача 17
Найдите все значения , при каждом из которых уравнение
имеет два корня, расстояние между которыми больше 1.
Решение:
Если – квадратное уравнение, то его корни:
Разность корней уравнения равна
В нашем уравнении:
Получим:
Если получим:
Если , получим:
Ответ:
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Сборник «36 тренировочных вариантов для подготовки к ЕГЭ» под редакцией И. В. Ященко, 2020 год. Вариант 5, задача 17» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
Система навигации самолёта информирует пассажира о том, что полёт проходит на высоте 29000 футов. Выразите высоту полёта в метрах. Считайте, что 1 фут равен 30,5 см.
Решение
Мы знаем, что (1) м = (100) см. Значит, (1) фут = (30,5 div 100=0,305) м.
Получается, что полет проходит на высоте (29000 cdot 0,305=8845) м.
Ответ: (8845).
Источник: ЕГЭ 2022. Единый государственный экзамен. Математика. Базовый уровень. Готовимся к итоговой аттестации. Учебное пособие (задание 1.2.59) (Купить книгу)