Егэ математика 516265

Чтобы выйти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей  — 1 очко, если проигрывает  — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,3.

Спрятать решение

Решение.

Команда может получить не меньше 4 очков в двух играх тремя способами: 3+1, 1+3, 3+3. Эти события несовместны, вероятность их суммы равна сумме их вероятностей. Каждое из этих событий представляет собой произведение двух независимых событий  — результата в первой и во второй игре. Отсюда имеем:

P левая круглая скобка N больше или равно 4 правая круглая скобка =P левая круглая скобка 3 плюс 1 правая круглая скобка плюс P левая круглая скобка 1 плюс 3 правая круглая скобка плюс P левая круглая скобка 3 плюс 3 правая круглая скобка =P левая круглая скобка 3 правая круглая скобка умножить на P левая круглая скобка 1 правая круглая скобка плюс P левая круглая скобка 1 правая круглая скобка умножить на P левая круглая скобка 3 правая круглая скобка плюс P левая круглая скобка 3 правая круглая скобка умножить на P левая круглая скобка 3 правая круглая скобка ==0,3 умножить на 0,4 плюс 0,4 умножить на 0,3 плюс 0,3 умножить на 0,3=0,12 плюс 0,12 плюс 0,09=0,33.

Ответ: 0,33.

Задание 2. Информатика. Апробация 10.03.2023

Миша заполнял таблицу истинности логической функции (F)
$$
(x to neg (y to z)) lor w,
$$
но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных (w), (x), (y), (z).

F
0    0 0
1 0
0 1 0

Определите, какому столбцу таблицы соответствует каждая из переменных (w), (x), (y), (z).
В ответе напишите буквы (w), (x), (y), (z) в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Функция (F) задана выражением ( neg x lor y), зависящим от двух переменных, а фрагмент таблицы имеет следующий вид:

В этом случае первому столбцу соответствует переменная (y), а второму — переменная (x). В ответе следует написать: (yx).

Решение:

Python


from itertools import permutations, product

def F(x, y, z, w):
    return (x <= (not y <= z)) or w

for perm in permutations('xyzw'):
    for a,b,c,d,e,f,g in product([0,1], repeat=7):
        table = [[a,0,b,0,0],
                 [1,c,d,e,0],
                 [0,1,f,g,0]]
        if table[0] == table[1]:
            continue
        if all(F(**dict(zip(perm,row))) == row[-1] for row in table):
            print(*perm)

Ответ: (yzxw)

ЕГЭ по математике профиль

Прототипы задания №15 ЕГЭ по математике профильного уровня — финансовая математика. Практический материал для подготовки к экзамену в 11 классе.

Для успешного выполнения задания №15 необходимо уметь использовать приобретённые знания и умения в практической деятельности и повседневной жизни.

Практика

Примеры заданий:

Дмитрий мечтает о собственной квартире, которая стоит 3 млн руб. Дмитрий может купить её в кредит, при этом банк готов выдать эту сумму сразу, а погашать кредит Дмитрию придётся 20 лет равными ежемесячными платежами, при этом ему придётся выплатить сумму, на 180% превышающую исходную. Вместо этого Дмитрий может какое-то время снимать квартиру (стоимость аренды—15 тыс. руб. в месяц), откладывая каждый месяц на покупку квартиры сумму, которая останется от его возможного платежа банку (по первой схеме) после уплаты арендной платы за съёмную квартиру. За сколько лет в этом случае Дмитрий сможет накопить на квартиру, если считать, что её стоимость не изменится?

***

Сергей мечтает о собственной квартире, которая стоит 2 млн руб. Сергей может купить её в кредит, при этом банк готов выдать эту сумму сразу, а погашать кредит Сергею придётся 20 лет равными ежемесячными платежами, при этом ему придётся выплатить сумму, на 260% превышающую исходную. Вместо этого Сергей может какое-то время снимать квартиру (стоимость аренды—14 тыс. руб. в месяц), откладывая каждый месяц на покупку квартиры сумму, которая останется от его возможного платежа банку (по первой схеме) после уплаты арендной платы за съёмную квартиру. За сколько месяцев в этом случае Сергей сможет накопить на квартиру, если считать, что её стоимость не изменится?

***

Ольга хочет взять в кредит 100 000 рублей. Погашение кредита происходит раз в год равными суммами (кроме, может быть, последней) после начисления процентов. Ставка процента 10% годовых. На какое минимальное количество лет Ольга может взять кредит, чтобы ежегодные выплаты были не более 24 000 рублей?

***

Коды проверяемых элементов содержания (по кодификатору) — 1.1, 2.1.12

Уровень сложности задания — повышенный.

Примерное время выполнения задания выпускником, изучавшим математику на профильном уровне (в мин.) — 25

Связанные страницы:

Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи в разделе контакты

Решение и ответы заданий варианта МА2210309 СтатГрад 28 февраля ЕГЭ 2023 по математике (профильный уровень). Тренировочная работа №3. ГДЗ профиль для 11 класса.
+Задания №1, №4, №6, №10 из варианта МА2210311.

❗Все материалы получены из открытых источников и публикуются после окончания тренировочного экзамена в ознакомительных целях.

❗Задания №13,16,17,18 долго оформлять, решу их позже, если будет время и желание. Решены те задания, у которых кнопка «Смотреть решение» зелёная.

Задание 1.
В треугольнике ABC угол C равен 90°, CH – высота, BC = 5, cosA=frac{2sqrt{6}}{5}. Найдите длину отрезка AH.

В треугольнике ABC угол C равен 90°, CH – высота, BC = 5

Задание 1 из варианта 2210311.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 13.

Задание 2.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2.

Задание 3.
В группе 16 человек, среди них – Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.

Задание 4.
Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Задание 4 из варианта 2210311.
Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.

Задание 5.
Решите уравнение frac{x–1}{5x+11}=frac{x–1}{3x-7}. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.

Задание 6.
Найдите значение выражения frac{(4^{frac{3}{5} }cdot7^{frac{2}{3}})^{15}}{28^{9}} .

Задание 6 из варианта 2210311.
Найдите 98cos2α, если cosα = frac{4}{7}.

Задание 7.
На рисунке изображён график y = f’(x) – производной функции f(x), определённой на интервале (−5; 5). В какой точке отрезка [−4; −1] функция f(x) принимает наибольшее значение?

На рисунке изображён график y = f'(x) – производной функции f(x), определённой на интервале (−5; 5).

Задание 8.
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле FA = ρgl3, где l – длина ребра куба в метрах, ρ = 1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте, что g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше чем 2116800 Н? Ответ дайте в метрах.

Задание 9.
Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

Задание 10.
На рисунке изображён график функции f(x) = ax2 + bx + c. Найдите значение f(−1).

На рисунке изображён график функции f(x) = ax2 + bx + c.

Задание 10 из варианта 2210311.
На рисунке изображены графики функций f(x) = frac{k}{x} и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.

Найдите абсциссу точки B.

Задание 11.
Найдите точку минимума функции y = x3 − 27x2 + 13.

Задание 12.
а) Решите уравнение 2cos3x = –sin(frac{3pi}{2} + x)
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π; 4π]

Задание 13.
Основанием правильной пирамиды PABCD является квадрат ABCD. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды, если AB = 30.

Задание 14.
Решите неравенство frac{9^{x}–13cdot 3^{x}+30}{3^{x+2}–3^{2x+1}}ge frac{1}{3^{x}}.

Задание 15.
По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» – увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n, при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

Задание 16.
В треугольнике ABC медианы AA1, BB1 и CC1 пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22.

Задание 17.
Найдите все значения a, при каждом из которых система уравнений 

begin{cases} (x-5a+1)^{2}+(y-2a-1)^{2}=a-2 \ 3x-4y=2a+3 end{cases}

не имеет решений.

Задание 18.
У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький – 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять.
а) Может ли Аня купить 24 конверта?
б) Может ли Аня купить 29 конвертов?
в) Какое наибольшее число конвертов может купить Аня?

Источник варианта: СтатГрад/statgrad.org.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 2

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

Вчера, 22:23

В закладки

Обсудить

Жалоба

Теория и практика.

Содержание

1) Прямые
2) Параболы
3) Как искать пересечение параболы и прямой, двух парабол
4) Гипербола. Асимптотические точки гиперболы
5) Пересечение гиперболы и прямой
6) Иррациональные функции
7) Пересечение корня и прямой
8) Тригонометрические функции
9) Показательные функции
10) Логарифмические функции

10_zadacha.pdf

Источник: vk.com/profimatika

  • ЗАДАЧИ ЕГЭ С ОТВЕТАМИ

  • АНГЛИЙСКИЙ без ГРАНИЦ

2012-07-14

Александр

26785

НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Конструктор упражнений для позвоночника!

Отзывов (2)

  1. Максим

    2016-07-18 в 02:03

    Потеряли знак минуса при вычислении синуса.

    Ответить

    • Александр

      2016-07-19 в 22:34

      Спасибо!

      Ответить

Добавить комментарий

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

  • РубрикиРубрики
  • Задачи по номерам!

    №1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16

  • МЕТКИ

    БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие

  • ОСТЕОХОНДРОЗУ-НЕТ!

Каждому из четырёх чисел в левом столбце соответствует отрезок, которому оно пр…

Разбор сложных заданий в тг-канале:

Каждому из четырёх чисел в левом столбце соответствует отрезок, которому оно принадлежит. Установите соответствие между числами и отрезками из правого столбца.

ЧИСЛА ОТРЕЗКИ
А) $log_{7}345$
Б) ${9}/{4}$
В) $√{85}$
Г) $0.23^{-1}$
1) $[3; 4]$
2) $[9; 10]$
3) $[2; 3]$
4) $[4; 5]$

Под каждой буквой укажите соответствующий номер.

Объект авторского права ООО «Легион»

Вместе с этой задачей также решают:

Решите неравенство $8x−3(2x−1)⩽−2$
1) $[2,5;+∞)$
2) $(−∞;−2,5]$
3) $(−∞;2,5]$
4) $[−2,5;+∞)$

Решите неравенство $14+2(−x+7)⩽24$. На какой из координатных прямых (см. рис.) изображено множество его решений?

Каждому из четырёх чисел в левом столбце соответствует отрезок, которому оно принадлежит. Установите соответствие между числами и отрезками из правого столбца.

Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Егэ математика 515734
  • Егэ математика 514484
  • Егэ математика 514450
  • Егэ математика 514397
  • Егэ математика 514030

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии