Найдите все значения a, при каждом из которых система
имеет единственное решение.
Спрятать решение
Решение.
Решение системы может быть единственным в двух случаях.
1 случай. Единственное решение является граничной точкой для множества решений каждого из двух неравенств. В этом случае это единственное решение должно удовлетворять системе уравнений
Вычитая из второго уравнения первое, получаем:
Если то
а значит,
При этом значении a система принимает вид:
Единственное решение
Если то
и
Система принимает вид:
При этом значении a система имеет бесконечно много решений.
2 случай. Одно из неравенств имеет единственное решение, удовлетворяющее другому неравенству.
Первое неравенство имеет единственное решение при
При этом первое неравенство имеет единственное решение которое удовлетворяет второму неравенству.
Второе неравенство имеет единственное решение при
При этом второе неравенство имеет единственное решение которое не удовлетворяет первому неравенству.
Ответ:
Спрятать критерии
Критерии проверки:
Критерии оценивания выполнения задания | Баллы |
---|---|
Обоснованно получен правильный ответ. | 4 |
С помощью верного рассуждения получены оба значения |
3 |
С помощью верного рассуждения получено одно из значений |
2 |
Задача верно сведена к исследованию системы уравнений. | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
Задание 2. Информатика. Апробация 10.03.2023
Миша заполнял таблицу истинности логической функции (F)
$$
(x to neg (y to z)) lor w,
$$
но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных (w), (x), (y), (z).
F | ||||
0 | 0 | 0 | ||
1 | 0 | |||
0 | 1 | 0 |
Определите, какому столбцу таблицы соответствует каждая из переменных (w), (x), (y), (z).
В ответе напишите буквы (w), (x), (y), (z) в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Функция (F) задана выражением ( neg x lor y), зависящим от двух переменных, а фрагмент таблицы имеет следующий вид:
В этом случае первому столбцу соответствует переменная (y), а второму — переменная (x). В ответе следует написать: (yx).
Решение:
Python
from itertools import permutations, product
def F(x, y, z, w):
return (x <= (not y <= z)) or w
for perm in permutations('xyzw'):
for a,b,c,d,e,f,g in product([0,1], repeat=7):
table = [[a,0,b,0,0],
[1,c,d,e,0],
[0,1,f,g,0]]
if table[0] == table[1]:
continue
if all(F(**dict(zip(perm,row))) == row[-1] for row in table):
print(*perm)
Ответ: (yzxw)
Решение и ответы заданий варианта МА2210309 СтатГрад 28 февраля ЕГЭ 2023 по математике (профильный уровень). Тренировочная работа №3. ГДЗ профиль для 11 класса.
+Задания №1, №4, №6, №10 из варианта МА2210311.
Все материалы получены из открытых источников и публикуются после окончания тренировочного экзамена в ознакомительных целях.
Задания №13,16,17,18 долго оформлять, решу их позже, если будет время и желание. Решены те задания, у которых кнопка «Смотреть решение» зелёная.
Задание 1.
В треугольнике ABC угол C равен 90°, CH – высота, BC = 5, cosA=frac{2sqrt{6}}{5}. Найдите длину отрезка AH.
Задание 1 из варианта 2210311.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
Задание 2.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.
Задание 3.
В группе 16 человек, среди них – Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.
Задание 4.
Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Задание 4 из варианта 2210311.
Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.
Задание 5.
Решите уравнение frac{x–1}{5x+11}=frac{x–1}{3x-7}. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.
Задание 6.
Найдите значение выражения frac{(4^{frac{3}{5} }cdot7^{frac{2}{3}})^{15}}{28^{9}} .
Задание 6 из варианта 2210311.
Найдите 98cos2α, если cosα = frac{4}{7}.
Задание 7.
На рисунке изображён график y = f’(x) – производной функции f(x), определённой на интервале (−5; 5). В какой точке отрезка [−4; −1] функция f(x) принимает наибольшее значение?
Задание 8.
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле FA = ρgl3, где l – длина ребра куба в метрах, ρ = 1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте, что g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше чем 2116800 Н? Ответ дайте в метрах.
Задание 9.
Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.
Задание 10.
На рисунке изображён график функции f(x) = ax2 + bx + c. Найдите значение f(−1).
Задание 10 из варианта 2210311.
На рисунке изображены графики функций f(x) = frac{k}{x} и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.
Задание 11.
Найдите точку минимума функции y = x3 − 27x2 + 13.
Задание 12.
а) Решите уравнение 2cos3x = –sin(frac{3pi}{2} + x)
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π; 4π]
Задание 13.
Основанием правильной пирамиды PABCD является квадрат ABCD. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды, если AB = 30.
Задание 14.
Решите неравенство frac{9^{x}–13cdot 3^{x}+30}{3^{x+2}–3^{2x+1}}ge frac{1}{3^{x}}.
Задание 15.
По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» – увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n, при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
Задание 16.
В треугольнике ABC медианы AA1, BB1 и CC1 пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22.
Задание 17.
Найдите все значения a, при каждом из которых система уравнений
begin{cases} (x-5a+1)^{2}+(y-2a-1)^{2}=a-2 \ 3x-4y=2a+3 end{cases}
не имеет решений.
Задание 18.
У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький – 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять.
а) Может ли Аня купить 24 конверта?
б) Может ли Аня купить 29 конвертов?
в) Какое наибольшее число конвертов может купить Аня?
Источник варианта: СтатГрад/statgrad.org.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 5 / 5. Количество оценок: 2
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.
3631 | В прямоугольнике ABCD диагонали пересекаются в точке O, а угол BDC равен 75°. Точка P лежит вне прямоугольника, а угол APB равен 150°. а) Докажите, что углы BAP и POB равны. б) Прямая PO пересекает сторону CD в точке F. Найдите CF, если AP=6sqrt3 и BP=4 |
В прямоугольнике ABCD диагонали пересекаются в точке O, а угол BDC равен 75° ! 36 вариантов ФИПИ Ященко 2023 Вариант 25 Задание 16 # Задача-аналог 2559 | |
3625 | В четырёхугольнике ABCD противоположные стороны не параллельны. Диагонали четырёхугольника ABCD пересекаются в точке O под прямым углом и образуют четыре подобных треугольника, у каждого из которых одна из вершин — точка O. а) Докажите, что около в четырёхугольник ABCD можно вписать окружность. б) Найдите радиус вписанной окружности, если AC=12, BD=13 |
Докажите, что около в четырёхугольник ABCD можно вписать окружность ! 36 вариантов ФИПИ Ященко 2023 Вариант 24 Задание 16 # Задача — аналог 2530 | |
3616 | Четырёхугольник ABCD вписан в окружность, причём диаметром окружности является его диагональ AC. Также известно, что в четырёхугольник ABCD можно вписать окружность. а) Докажите, что отрезки AC и BD перпендикулярны. б) Найдите радиус окружности, вписанной в четырёхугольник ABCD, если AC=50 и BD=14 |
Четырёхугольник ABCD вписан в окружность, причём диаметром окружности является его диагональ AC ! Тренировочная работа №1 по математике 10 класс Статград 08-02-2023 Вариант МА2200109 Задание 16 | |
3568 | Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке H. а) Докажите, что ∠BB1C1 = ∠BAH. б) Найдите расстояние от центра окружности, описанной около треугольника ABC, до стороны BC, если B1C1=9 и ∠BAC = 60° |
Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке H. а) Докажите, что ∠BB1C1 = ∠BAH ! Тренировочная работа по математике №2 СтатГрад 11 класс 13.12.2022 Задание 16 Вариант МА2210209 |
|
3532 | На сторонах AB и CD четырёхугольника ABCD, около которого можно описать окружность, отмечены точки K и N соответственно. Около четырёхугольников AKND и BCNK также можно описать окружность. Косинус одного из углов четырёхугольника ABCD равен 0,25. а) Докажите, что четырёхугольник ABCD является равнобедренной трапецией. б) Найдите радиус окружности, описанной около четырёхугольника AKND, если радиус окружности, описанной около четырёхугольника ABCD, равен 8, AK:KB = 2:5, а BC < AD и BC = 4 |
На сторонах AB и CD четырёхугольника ABCD, около которого можно описать окружность, отмечены точки K и N соответственно ! 36 вариантов ФИПИ Ященко 2023 Вариант 9 Задание 16 | |
3514 | Окружность с центром в точке C касается гипотенузы AB прямоугольного треугольника ABC и пересекает его катеты AC и BC в точках E и F соответственно. Точка D — основание высоты, опущенной из вершины C. I и J — центры окружностей, вписанных в треугольники BCD и ACD. а) Докажите, что I и J лежат на отрезке EF. б) Найдите расстояние от точки C до прямой IJ, если AC=15, BC=20 |
Окружность с центром в точке C касается гипотенузы AB прямоугольного треугольника ABC и пересекает его катеты AC и BC в точках E и F соответственно ! 36 вариантов ФИПИ Ященко 2023 Вариант 7 Задание 16 | |
3502 | В трапеции ABCD с меньшим основанием BC точки E и F — середины сторон ВC и AD соответственно. В каждый из четырёхугольников ABEF и ECDF можно вписать окружность. а) Докажите, что трапеция ABCD равнобедренная. б) Найдите радиус окружности, описанной около трапеции ABCD, если AB=7, а радиус окружности, вписанной в четырёхугольник ABEF, равен 2,5 |
В трапеции ABCD с меньшим основанием BC точки E и F — середины сторон ВC и AD соответственно ! 36 вариантов ФИПИ Ященко 2023 Вариант 5 Задание 16 | |
3492 | Четырёхугольник ABCD со сторонами BC=7 и AB=CD=20 вписан в окружность радиусом R=16. а) Докажите, что прямые BC и AD параллельны. б) Найдите AD |
Четырёхугольник ABCD со сторонами BC=7 и AB=CD=20 вписан в окружность радиусом R=16 ! 36 вариантов ФИПИ Ященко 2023 Вариант 3 Задание 16 | |
3490 | Дана равнобедренная трапеция ABCD. На боковой стороне AB и большем основании AD взяты соответственно точки F и E так, что FE параллельно CD, a FC=ED. а) Докажите, что угол BCF равен углу AFE. б) Найдите площадь трапеции ABCD, если DE=5BF, FE=8 и площадь трапеции FCDE равна 27sqrt11 |
Дана равнобедренная трапеция ABCD. На боковой стороне AB и большем основании AD взяты соответственно точки F и E так, что FE параллельно CD, a FC=ED ! Досрочный ЕГЭ 2022 по математике 28.03.2022 Задание 16 | |
3477 | В параллелограмме ABCD угол ВАС вдвое больше угла CAD. Биссектриса угла BAC пересекает отрезок BC в точке L. На продолжении стороны CD за точку D выбрана такая точка E, что AE=CE. а) Докажите, что AL:BC=AB:BC. б) Найдите EL, если AC=21, tg /_BCA=0,4 |
В параллелограмме ABCD угол ВАС вдвое раза больше угла CAD ! 36 вариантов ФИПИ Ященко 2023 Вариант 1 Задание 16 # ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 16 Санкт-Петербург, Центр # Задача-Аналог 3356 | |
Показать ещё…
Показана страница 1 из 34
- ЗАДАЧИ ЕГЭ С ОТВЕТАМИ
- АНГЛИЙСКИЙ без ГРАНИЦ
2012-07-25
НЕ ОТКЛАДЫВАЙ! Заговори на английском!
ДОЛОЙ обидные ошибки на ЕГЭ!!
Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!
Конструктор упражнений для позвоночника!
Добавить комментарий
*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.
- РубрикиРубрики
- Задачи по номерам!
№1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16
- МЕТКИ
БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие
- ОСТЕОХОНДРОЗУ-НЕТ!
Шкалирование
Первичный | Тестовый | Оценка |
---|---|---|
5-6 | 27-34 | 3 |
7-8 | 40-46 | 4 |
9-10 | 52-58 | |
11-12-13 | 64-66-68 | 5 |
14-15-16 | 70-72-74 | |
17-18-19 | 76-78-80 | |
20-21-22 | 82-84-86 | |
23-24-25 | 88-90-92 | |
26-27-28 | 94-96-98 | |
29-30-31 | 100 |
Первичный балл / Тестовый балл |
5/27 | 6/34 | 7/40 | 8/46 | 9/52 | 10/58 | 11/64 | 12/66 | 13/68 | 14/70 |
---|---|---|---|---|---|---|---|---|---|---|
15/72 | 16/74 | 17/76 | 18/78 | 19/80 | 20/82 | X / 2X+42 | 29+ / 100 |
Каждому из четырёх чисел в левом столбце соответствует отрезок, которому оно пр…
Разбор сложных заданий в тг-канале:
Каждому из четырёх чисел в левом столбце соответствует отрезок, которому оно принадлежит. Установите соответствие между числами и отрезками из правого столбца.
ЧИСЛА | ОТРЕЗКИ |
А) $log_{7}345$ Б) ${9}/{4}$ В) $√{85}$ Г) $0.23^{-1}$ |
1) $[3; 4]$ 2) $[9; 10]$ 3) $[2; 3]$ 4) $[4; 5]$ |
Под каждой буквой укажите соответствующий номер.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Решите неравенство $14+2(−x+7)⩽24$. На какой из координатных прямых (см. рис.) изображено множество его решений?
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
На координатной прямой отмечены точки $A, B, C$ и $D$, число $p$ равно $√2$. Установите соответствие между указанными точками из левого столбца и числами из правого столбца, которые им соо…
Решите неравенство $8x−3(2x−1)⩽−2$
1) $[2,5;+∞)$
2) $(−∞;−2,5]$
3) $(−∞;2,5]$
4) $[−2,5;+∞)$