Необходимая теория:
Производная функции
Таблица производных
Первообразная функции
Задание 7 Профильного ЕГЭ по математике — это задачи на геометрический и физический смысл производной. Это задачи о том, как производная связана с поведением функции. И еще (правда, очень редко) в этих задачах встречаются вопросы о первообразной.
Геометрический смысл производной
Вспомним, что производная — это скорость изменения функции.
Производная функции в точке
равна угловому коэффициенту касательной, проведенной к графику функции в этой точке. Производная также равна тангенсу угла наклона касательной.
1. На рисунке изображён график функции и касательная к нему в точке с абсциссой
Найдите значение производной функции
в точке
Производная функции в точке
равна тангенсу угла наклона касательной, проведенной в точке
.
Достроив до прямоугольного треугольника АВС, получим:
Ответ: 0,25.
2. На рисунке изображён график функции и касательная к нему в точке с абсциссой
Найдите значение производной функции в точке
Начнём с определения знака производной. Мы видим, что в точке функция убывает, следовательно, её производная отрицательна. Касательная в точке
образует тупой угол
с положительным направлением оси
. Поэтому из прямоугольного треугольника мы найдём тангенс угла
, смежного с углом
.
Мы помним, что тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему: Поскольку
, имеем:
Ответ: −0, 25.
Касательная к графику функции
3. Прямая является касательной к графику функции
Найдите абсциссу точки касания.
Запишем условие касания функции и прямой
в точке
При значения выражений
и
равны.
При этом производная функции равна угловому коэффициенту касательной, то есть
.
Из второго уравнения находим или
Первому уравнению удовлетворяет только
.
Физический смысл производной
Мы помним, что производная — это скорость изменения функции.
Мгновенная скорость — это производная от координаты по времени. Но это не единственное применение производной в физике. Например, cила тока — это производная заряда по времени, то есть скорость изменения заряда. Угловая скорость — производная от угла поворота по времени.
Множество процессов в природе, экономике и технике описывается дифференциальными уравнениями — то есть уравнениями, содержащими не только сами функции, но и их производные.
4. Материальная точка движется прямолинейно по закону , где
— расстояние от точки отсчета в метрах,
— время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени
с.
Мгновенная скорость движущегося тела является производной от его координаты по времени. Это физический смысл производной. В условии дан закон изменения координаты материальной точки, то есть расстояния от точки отсчета:
Найдем скорость материальной точки как производную от координаты по времени:
В момент времени
получим:
.
Ответ: 3.
Применение производной к исследованию функций
Каждый год в вариантах ЕГЭ встречаются задачи, в которых старшеклассники делают одни и те же ошибки.
Например, на рисунке изображен график функции — а спрашивают о производной. Кто их перепутал, тот задачу не решил.
Или наоборот. Нарисован график производной — а спрашивают о поведении функции.
И значит, надо просто внимательно читать условие. И знать, как же связана производная с поведением функции.
Если , то функция
возрастает.
Если , то функция
убывает.
В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».
В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».
возрастает | точка максимума | убывает | точка минимума | возрастает | |
0 | 0 |
5. На рисунке изображен график функции , определенной на интервале
Найдите количество точек, в которых производная функции
равна 0.
Производная функции в точках максимума и минимума функции
Таких точек на графике 5.
Ответ: 5.
6. На рисунке изображён график — производной функции
, определённой на интервале
. В какой точке отрезка
функция
принимает наибольшее значение?
Не спешим. Зададим себе два вопроса: что изображено на рисунке и о чем спрашивается в этой задаче?
Изображен график производной, а спрашивают о поведении функции. График функции не нарисован. Но мы знаем, как производная связана с поведением функции.
На отрезке производная функции
положительна.
Значит, функция возрастает на этом отрезке. Большим значениям х соответствует большее значение
Наибольшее значение функции достигается в правом конце отрезка, то есть в точке 3.
Ответ: 3.
7. На рисунке изображён график функции , определённой на интервале
. Найдите количество точек, в которых касательная к графику функции параллельна прямой
Прямая параллельна оси абсцисс. Найдем на графике функции
точки, в которых касательная параллельна оси абсцисс, то есть горизонтальна. Таких точек на графике 7. Это точки максимума и минимума.
Ответ: 7.
8. На рисунке изображен график производной функции , определенной на интервале
Найдите количество точек максимума функции
на отрезке
Очень внимательно читаем условие задачи. Изображен график производной, а спрашивают о точках максимума функции. В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». На отрезке такая точка всего одна! Это
Ответ: 1.
9. На рисунке изображен график производной функции , определенной на интервале
Найдите точку экстремума функции
на отрезке
Точками экстремума называют точки максимума и минимума функции. Если производная функции в некоторой точке равна нулю и при переходе через эту точку меняет знак, то это точка экстремума. На отрезке график производной (а именно он изображен на рисунке) пересекает ось абсцисс в точке
В этой точке производная меняет знак с минуса на плюс.
Значит, является точкой экстремума.
Первообразная и формула Ньютона-Лейбница
Функция , для которой
является производной, называется первообразной функции
Функции вида
образуют множество первообразных функции
10. На рисунке изображён график — одной из первообразных некоторой функции
, определённой на интервале
Пользуясь рисунком, определите количество решений уравнения
на отрезке
Функция для которой
является производной, называется первообразной функции
Это значит, что на графике нужно найти такие точки, принадлежащие отрезку , в которых производная функции
равна нулю. Это точки максимума и минимума функции
На отрезке
таких точек 4.
Ответ: 4.
Больше задач на тему «Первообразная. Площадь под графиком функции» — в этой статье
Первообразная функции. Формула Ньютона-Лейбница.
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание №7. Производная. Поведение функции. Первообразная u0026#8212; профильный ЕГЭ по Математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023
-
Главная
-
Теория ЕГЭ
-
Математика — теория ЕГЭ
-
Задание 7 ЕГЭ 2021 по математике, теория
- 08.10.2018
Необходимая теория для успешного освоения и решения заданий №7 по математике профильного уровня на ЕГЭ в 2021 году.
Представлена вся теория и алгоритм решения различных заданий такого типа.
- Тренировочные кимы ЕГЭ по математике
- Практика — примеры для решения каждого типа заданий
Обсудить решение конкретных заданий вы можете в комментариях ниже.
Смотреть в PDF:
Или прямо сейчас: cкачать в pdf файле.
Сохранить ссылку:
Комментарии (0)
Добавить комментарий
Добавить комментарий
Комментарии без регистрации. Несодержательные сообщения удаляются.
Имя (обязательное)
E-Mail
Подписаться на уведомления о новых комментариях
Отправить
Справочный материал задание 7 ЕГЭ математике (профиль)
Скачать:
Предварительный просмотр:
По теме: методические разработки, презентации и конспекты
Справочный материал по географии 6 класс
Представлен справочный материал по всем разделам курса география 6 класса. Возможно использовать на уроках, внеурочной работе. С любым УМК географии 6 класса….
Справочный материал по географии 5 класс
Представлен справочный материал по всем разделам курса география 6 класса. Возможно использовать на уроках и внеурочной деятельности. Полезен при подготовке к ЕГЭ и ГИА….
- Мне нравится
Уважаемый посетитель!
Если у вас есть вопрос, предложение или жалоба, пожалуйста, заполните короткую форму и изложите суть обращения в текстовом поле ниже. Мы обязательно с ним ознакомимся и в 30-дневный срок ответим на указанный вами адрес электронной почты
Статус Абитуриент Студент Родитель Соискатель Сотрудник Другое
Филиал Абакан Актобе Алагир Алматы Алушта Анапа Ангарск Архангельск Армавир Асбест Астана Астрахань Атырау Баку Балхаш Барановичи Барнаул Белая Калитва Белгород Бельцы Берлин Бишкек Благовещенск Бобров Бобруйск Борисов Боровичи Бронницы Брянск Бузулук Чехов Челябинск Череповец Черкесск Дамаск Дербент Димитровград Дмитров Долгопрудный Домодедово Дубай Дубна Душанбе Екатеринбург Электросталь Елец Элиста Ереван Евпатория Гана Гомель Гродно Грозный Хабаровск Ханты-Мансийск Хива Худжанд Иркутск Истра Иваново Ижевск Калининград Карабулак Караганда Каракол Кашира Казань Кемерово Киев Кинешма Киров Кизляр Королев Кострома Красноармейск Краснодар Красногорск Красноярск Краснознаменск Курган Курск Кызыл Липецк Лобня Магадан Махачкала Майкоп Минеральные Воды Минск Могилев Москва Моздок Мозырь Мурманск Набережные Челны Нальчик Наро-Фоминск Нижневартовск Нижний Новгород Нижний Тагил Ногинск Норильск Новокузнецк Новосибирск Новоуральск Ноябрьск Обнинск Одинцово Омск Орехово-Зуево Орел Оренбург Ош Озёры Павлодар Пенза Пермь Петропавловск Подольск Полоцк Псков Пушкино Пятигорск Радужный Ростов-на-Дону Рязань Рыбинск Ржев Сальск Самара Самарканд Санкт-Петербург Саратов Сергиев Посад Серпухов Севастополь Северодвинск Щербинка Шымкент Слоним Смоленск Солигорск Солнечногорск Ставрополь Сургут Светлогорск Сыктывкар Сызрань Тамбов Ташкент Тбилиси Терек Тихорецк Тобольск Тольятти Томск Троицк Тула Тверь Тюмень Уфа Ухта Улан-Удэ Ульяновск Ургенч Усть-Каменогорск Вёшенская Видное Владимир Владивосток Волгодонск Волгоград Волжск Воркута Воронеж Якутск Ярославль Юдино Жлобин Жуковский Златоуст Зубова Поляна Звенигород
Тип обращения Вопрос Предложение Благодарность Жалоба
Тема обращения Поступление Трудоустройство Обучение Оплата Кадровый резерв Внеучебная деятельность Работа автоматических сервисов университета Другое
* Все поля обязательны для заполнения
Я даю согласие на обработку персональных данных, согласен на получение информационных рассылок от Университета «Синергия» и соглашаюсь c политикой конфиденциальности
6 задача ЕГЭ – на понимание производной функции. Задание проверяет знание связи между графиком функции и значением ее производной в различных точках, и наоборот – графиком производной и возрастанием/убыванием функции на интервалах и в точках.
Хотя это задание относится к сложному разделу (математический анализ), само по себе оно довольно простое. Решается в одно действие и знать нужно немного — для решения большинства задач хватит информации написанной на этих двух картинках:
Более подробно об этом теме – рассказано в этих видео:
Что такое производная | Наглядное объяснение на графиках
Разбор задач на поиск экстремумов, минимумов и максимумов
Геометрический смысл производной | Теория + разбор задач ЕГЭ
Задачи, которые были на экзамене за последние 10 лет
2011:
2012:
2013:
2014:
2015:
2016:
2017:
2018:
2019:
2020:
2021:
В открытом банке есть и другие типы заданий (на первообразную, физический смысл производной и условия касания), но в вариантах реальных ЕГЭ я таких задачи не нашла. Хотя это и не значит, что в будущем на ЕГЭ такого никогда не будет, так что лучше разберитесь и в них тоже. Вот примеры таких задач:
Процент выполнения
Сколько процентов пишущих экзамен решили задачу на производные в разные годы:
Сколько процентов из тех, кто решал экзамен в 2021 году, набрал в задаче хотя бы 1 балл:
Какой вывод можно сделать? Шестую задачу решает примерно 6 человек из 10 и это третья задача по потерянным баллам (в первой части). Для меня это несколько удивительно, потому что 6 задача не требует большого количества знаний и решается в одно действие. В чем же может быть причина таких результатов?
Типичные ошибки
1. Перепутать производную и функцию
Многие начинают в этой задаче отвечать так будто перед ними график функции и выбирают точки – (x_1), (x_4), (x_7), (x_8). Хотя правильные точки (x_4), (x_5), (x_6) и ответ (3).
Вот, что авторы ЕГЭ написали в Методических рекомендациях по итогам ЕГЭ об этой задаче: «Выполнение – около 69%. Типичные ошибки связаны в первую очередь с невнимательным чтением условия – почти 24% участников указали количество точек, в которых значение функции положительно, а еще около 2% участников пытались перечислить номера точек, в которых производная принимает положительные значения.»
2. Не ограничить график данным отрезком
Если забыть про отрезок, который указан в конце условия, то в ответ задаче (3). Если не забывать про отрезок, то ответ в задаче (2). Составители ЕГЭ пишут, что около (31)% экзаменуемых делают такую ошибку, а правильный ответ дают лишь (43)%. Поэтому Ященко, Семенов и Высоцкий советуют начинать решение задачи с отмечания данного отрезка в КИМе. Напомню, что вы МОЖЕТЕ рисовать на выданных вам бланках КИМ.
3. Неправильно вычислить тангенс или не учесть убывание/возрастание функции
Чтобы найти производную в точке, нужно вычислить тангенс угла наклона касательной с положительным направлением оси (Ox). На практике задача решается в 2 этапа:
1. Определить убывает касательная или возрастает и соответственно поставить знак минус или плюс.
2. Определить тангенс угла в треугольнике, в котором гипотенуза является частью касательной, а вершины треугольника совпадали с вершинами клеточек.
В этой задаче многие, во-первых, забывали про первый пункт, а во-вторых, путались в определении тангенса и вместо (frac{AC}{BC}) считали (frac{BC}{AC}).
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.
- Оценивание (первичные баллы) — 1
- Время на выполнение (мин) — 4
- Сложность — базовая
Теория по заданию 7
4.1. Производная
4.1.1. Понятие о производной функции, геометрический смысл производной
4.1.2. Физический смысл производной, нахождение скорости для процесса, заданного формулой или графиком
4.1.3. Уравнение касательной к графику функции
4.1.4. Производные суммы, разности, произведения, частного
4.1.5. Производные основных элементарных функций
4.1.6. Вторая производная и её физический смысл
4.2. Исследование функций
4.2.1. Применение производной к исследованию функций и построению графиков
4.2.2. Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально- экономических, задачах
4.3. Первообразная и интеграл
4.3.1. Первообразные элементарных функций
4.3.2. Примеры применения интеграла в физике и геометрии
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.