Егэ физика формула работы

3 сентября 2022

В закладки

Обсудить

Жалоба

Все формулы по физике для ЕГЭ

В сборник включены все формулы базового курса школьной программы по физике.

Они полностью соответствуют кодификатору ЕГЭ — перечню всех теоретических фактов, которыми должен владеть выпускник школы, сдающий физику. Формулы, отмеченные звёздочками, рекомендуется запомнить и применять при решении задач. Но они не входят в кодификатор ЕГЭ. Поэтому при оформлении развёрнутого решения заданий второй части экзамена эти формулы необходимо вывести самостоятельно.

formuls.pdf

Законы сохранения. Работа и мощность.
(теория и формулы для ЕГЭ)

Законы сохранения

Импульсом тела (материальной точки) называют произведение массы тела на вектор его скорости. Единица модуля импульса тела – 1 кг·м/c.

Импульсом силы называют произведение вектора скорости на интервал времени её действия ∆t. Единица модуля импульса силы – 1 кг·м/c.

                  [F·∆t] = Н·м.



Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения.

Абсолютно упругим ударом  называется столкновение, при котором сохраняется механическая энергия  системы тел.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются  друг с другом  и              движутся дальше как одно тело.  Механическая энергия не сохраняется (она частично или полностью переходит во внутреннюю энергию тел).

Закон сохранения импульса.

Замкнутая (изолированная) система – система тел, взаимодействующих только между собой и не взаимодействующих с телами, не входящими в эту систему.

Закон сохранения импульса: векторная сумма импульсов тел, составляющих  замкнутую систему, не изменяется.

Энергия – скалярная физическая величина, являющаяся мерой способности тела (или системы тел) совершить работу. Существует кинетическая и потенциальная энергия.

Закон сохранения энергии в механических процессах – сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

Е = Еk1 + Ep1 = Еk2 + Ep2 = const              при Fтр = 0

Если Fтр≠ 0, механическая энергия переходит во внутреннюю (тепловую)  энергию тела:

Q = Е2 – Е1,  где Q =Атр


механическая энергия


Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями. Такие силы называются консервативными (силы тяжести и силы упругости)

 Работа силы.

Механической  работой A, совершаемой постоянной силой, называется скалярная физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы и перемещения.        

                  А = Fscos α                     [А] = Дж                                1Дж =1Н∙1м

 Работа зависит от угла α.


работа силы, мощность


Работа силы  тяжести не зависит от формы траектории и равна изменению потенциальной энергии тела, взятому с противоположным знаком.
Атяж. = mg(h1h2) =  — ( mgh1 mgh2) = — (Ер2 – Ер1)

Работа силы  тяжести по замкнутой траектории равна нулю.

Мощность – скалярная физическая величина, равная отношению совершенной работы к промежутку времени, за который она совершена.

Коэффициент полезного действия механизмов КПДвеличина, равная отношению полезной работы к полной работ, выраженная в процентах.

методы вычисления работы


Конспект урока «Законы сохранения. Работа и мощность. Теория и формулы для ЕГЭ».

Еще конспекты для 10-11 классов:

Энергия.

  • Работа.

  • Мощность.

  • Механическая энергия.

  • Кинетическая энергия.

  • Потенциальная энергия тела вблизи поверхности Земли.

  • Потенциальна яэнергия деформированной пружины.

  • Закон сохранения механической энергии.

  • Закон изменения механической энергии.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: работа силы, мощность, кинетическая энергия, потенциальная энергия, закон сохранения механической энергии.

Мы приступаем к изучению энергии — фундаментального физического понятия. Но предварительно нужно разобраться с другой физической величиной — работой силы.

к оглавлению ▴

Работа.

Пусть на тело действует постоянная сила vec F и тело, двигаясь прямолинейно по горизонтальной поерхности, совершило перемещение vec s. Сила vec F не обязательно является непосредственной причиной перемещения (так, сила тяжести не является непосредственной причиной перемещения шкафа, который передвигают по комнате).

Предположим сначала, что векторы силы и перемещения сонаправлены (рис. 1; остальные силы, действующие на тело, не указаны)

Рис. 1.A=Fs

В этом простейшем случае работа A определяется как произведение модуля силы на модуль перемещения:

A=Fs. (1)

Единицей измерения работы служит джоуль (Дж): Дж=Н cdot м. Таким образом, если под действием силы 1 Н тело перемещается на 1 м, то сила совершает работу 1 Дж.

Работа силы, перпендикулярной перемещению, по определению считается равной нулю. Так, в данном случае сила тяжести и сила реакции опоры не совершают работы.

Пусть теперь вектор силы образует с вектором перемещения острый угол alpha (рис. 2).

Разложим силу vec F на две составляющие: vec F _{parallel } (параллельную перемещению) и vec F _{perp } (перпендикулярную перемещению). Работу совершает только vec F _{parallel }. Поэтому для работы силы vec F получаем:

A=vec F _{parallel }s=Fcosalpha cdot s. Итак,

A=Fs cosalpha . (2)

Если вектор силы образует с вектором перемещения тупой угол alpha, то работа по-прежнему определяется формулой (2). В этом случае работа оказывается отрицательной.

Например, работа силы трения скольжения, действующей на тело в рассмотренных ситуациях, будет отрицательной, так как сила трения направлена противоположно перемещению. В этом случае имеем:

alpha=180^{circ}, cos alpha=-1, и для работы силы трения получаем:

A_{TP}=-F_{TP}s=-mu mgs,

где m — масса тела,mu — коэффициент трения между телом и опорой.

Соотношение (2) означает, что работа является скалярным произведением векторов силы и перемещения:

A=vec F vec s.

Это позволяет вычислять работу через координаты данных векторов:

A=F_{displaystyle x}s_{displaystyle x}+F_{displaystyle y}s_{displaystyle y}+F_{displaystyle z}s_{displaystyle z}.

Пусть на тело действуют несколько сил vec F_{1},vec F_{2},..,vec F_{n} и vec F — равнодействующая этих сил. Для работы силы vec F имеем:

A=vec F vec s=(vec F_{1}+vec F_{2}+...+vec F_{n})vec s=vec F_{1}vec s+vec F_{2}vec s+...+vec F_{n}vec s,

или

A=A_{1}+A_{2}+...+A_{n},

где A_{1}, A_{2},...,A_{n} — работы сил F_{1}, F_{2},...,F_{n}. Итак, работа равнодействующей приложенных к телу сил равна сумме работ каждой силы в отдельности.

к оглавлению ▴

Мощность.

Часто имеет значение быстрота, с которой совершается работа. Скажем, на практике важно знать, какую работу сможет выполнить данное устройство за фиксированное время.

Мощность — это величина, характеризующая скорость совершения работы. Мощность N есть отношение работы A ко времени t, за которое эта работа совершена:

N=frac{displaystyle A}{displaystyle t}.

Мощность измеряется в ваттах (Вт). 1 Вт = 1 Дж/с, то есть 1 Вт — это такая мощность, при которой работа в 1 Дж совершается за 1 с.

Предположим, что силы, действующие на тело, уравновешены, и тело движется равномерно и прямолинейно со скоростью vec v. В этом случае существует полезная формула для мощности, развиваемой одной из действующих сил vec F.

За время t тело совершит перемещение vec s= vec v t. Работа силы vec F будет равна:

A=vec F vec s=vec F vec v t.

Отсюда получаем мощность:

N=vec F vec v ,

или

N=Fv cos alpha ,

где alpha -угол между векторами силы и скорости.

Наиболее часто эта формула используется в ситуации, когда vec F — сила «тяги» двигателя автомобиля (которая на самом деле есть сила трения ведущих колёс о дорогу). В этом случае alpha = 0, и мы получаем просто:

N=Fv .

к оглавлению ▴

Механическая энергия.

Энергия является мерой движения и взаимодействия любых объектов в природе. Имеются различные формы энергии: механическая, тепловая, электромагнитная, ядерная. . .

Опыт показывает, что энергия не появляется ниоткуда и не исчезает бесследно, она лишь переходит из одной формы в другую. Это самая общая формулировка закона сохранения энергии.

Каждый вид энергии представляет собой некоторое математическое выражение. Закон сохранения энергии означает, что в каждом явлении природы определённая сумма таких выражений остаётся постоянной с течением времени.

Измеряется энергия в джоулях, как и работа.

Механическая энергия является мерой движения и взаимодействия механических объектов (материальных точек, твёрдых тел).

Мерой движения тела является кинетическая энергия. Она зависит от скорости тела. Мерой взаимодействия тел является потенциальная энергия. Она зависит от взаимного расположения тел.

Механическая энергия системы тел равна сумме кинетической энергии тел и потенциальной энергии их взаимодействия друг с другом.

к оглавлению ▴

Кинетическая энергия.

Кинетической энергией тела (принимаемого за материальную точку) называется величина

K=frac{displaystyle mv^{displaystyle 2}}{displaystyle 2},

где m — масса тела, v — его скорость.

Кинетической энергией системы из N тел называется сумма кинетических энергий каждого тела:

K=frac{displaystyle m_{displaystyle 1}v_{displaystyle 1}^{displaystyle 2}}{displaystyle 2}+frac{displaystyle m_{displaystyle 2}v_{displaystyle 2}^{displaystyle 2}}{displaystyle 2}+...+frac{displaystyle m_{displaystyle N}v_{displaystyle N}^{displaystyle 2}}{displaystyle 2}.

Если тело движется под действием силы vec F, то кинетическая энергия тела, вообще говоря, меняется со временем. Оказывается, именение кинетической энергии тела за некоторый промежуток времени равно работе силы vec F. Покажем это для случая прямолинейного равноускоренного движения.

Пусть vec{v_{1}} — начальная скорость, vec{v_{2}} — конечная скорость тела. Выберем ось X вдоль траектории тела (и, соответственно, вдоль вектора силы vec F). Для работы силы vec F получаем:

A=vec{F}vec{s}=F_{x}s_{displaystyle s}=ma_{displaystyle x}s_{displaystyle x}= ma_{displaystyle x}frac{{v_{displaystyle 2x}}^{displaystyle 2}-{v_{displaystyle 1x}}^{displaystyle 2}}{displaystyle 2a_{displaystyle x}}=frac{{displaystyle mv_{displaystyle 2x}}^{displaystyle 2}-{displaystyle mv_{displaystyle 1x}}^{displaystyle 2}}{displaystyle 2}.

(мы воспользовались формулой для s_{x} , выведенной в статье «Равноускоренное движение»). Заметим теперь, что в данном случае проекция скорости отличается от модуля скорости разве что знаком; поэтому {v_{displaystyle 1x}}^{displaystyle 2}={v_{displaystyle 1}}^{displaystyle 2} и {v_{displaystyle 2x}}^{displaystyle 2}={v_{displaystyle 2}}^{displaystyle 2} . В результате имеем:

A=frac{displaystyle mv_{displaystyle 2}^{displaystyle 2}}{displaystyle 2}-frac{displaystyle mv_{displaystyle 1}^{displaystyle 2}}{displaystyle 2}=K_{displaystyle 2}-K_{displaystyle 1}=Delta K,

что и требовалось.

На самом деле соотношение Delta K=A справедливо и в самом общем случае криволинейного движения под действием переменной силы.

Теорема о кинетической энергии. Изменение кинетической энергии тела равно работе, совершённой приложенными к телу внешними силами за рассматриваемый промежуток времени.

Если работа внешних сил положительна, то кинетическая энергия увеличивается (Delta K>0, тело разгоняется).

Если работа внешних сил отрицательна, то кинетическая энергия уменьшается (Delta K<0, тело замедляет движение). Пример — торможение под действием силы трения, работа которой отрицательна.

Если же работа внешних сил равна нулю, то кинетическая энергия тела за это время не меняется. Нетривиальный пример — равномерное движение по окружности, совершаемое грузом на нити в горизонтальной плоскости. Сила тяжести, сила реакции опоры и сила натяжения нити всегда перпендикулярны скорости, и работа каждой из этих сил равна нулю в течение любого промежутка времени. Соответственно, кинетическая энергия груза (а значит, и его скорость) остаётся постоянной в процессе движения.

Задача. Автомобиль едет по горизонтальной дороге со скоростью v и начинает резко тормозить. Найти путь s, пройденный автомобилем до полной остановки, если коэффициент трения шин о дорогу равен mu.

Решение. Начальная кинетическая энергия автомобиля K_{displaystyle 1}=frac{displaystyle mv^{displaystyle 2}}{displaystyle 2}, конечная кинетическая энергия K_{displaystyle 2}=0. Изменение кинетической энергии Delta K=K_{displaystyle 2}-K_{displaystyle 1}=-frac{displaystyle mv^{displaystyle 2}}{displaystyle 2}.

На автомобиль действуют сила тяжести m vec g, реакция опоры vec N и сила трения vec f. Сила тяжести и реакция опоры, будучи перпендикулярны перемещению автомобиля, работы не совершают. Работа силы трения:

A=-fs=- mu Ns=- mu mgs.

Из теоремы о кинетической энергии теперь получаем:

Delta K=A Rightarrow - frac{displaystyle mv^{displaystyle 2}}{displaystyle 2}=- mu mgs Rightarrow s=frac{displaystyle v^{displaystyle 2}}{displaystyle 2 mu g}.

к оглавлению ▴

Потенциальная энергия тела вблизи поверхности Земли.

Рассмотрим тело массы m, находящееся на некоторой высоте над поверхностью Земли. Высоту считаем много меньше земного радиуса. Изменением силы тяжести в процессе перемещения тела пренебрегаем.

Если тело находится на высоте h, то потенциальная энергия тела по определению равна:

W=mgh

где g — ускорение свободного падения вблизи поверхности Земли.

Высоту не обязательно отсчитывать от поверхности Земли. Как мы увидим ниже (формулы (3), (4)), физическим смыслом обладает не сама по себе потенциальная энергия, но её изменение. А изменение потенциальной энергии не зависит от уровня отсчёта. Выбор нулевого уровня потенциальной энергии в конкретной задаче диктуется исключительно соображениями удобства.

Найдём работу, совершаемую силой тяжести при перемещении тела. Предположим, что тело перемещается по прямой из точки P, находящейся на высоте h_{1}, в точку Q, находящуюся на высоте h_{2} (рис. 3).

Рис. 3.A=mg(h1-h2)[/math]

Угол между силой тяжести m vec g и перемещением тела vec s обозначим alpha . Для работы силы тяжести получим:

A=m vec g vec s=mgs cos alpha.

Но, как видно из рис. 3, s cos alpha=h_{1}-h_{2}. Поэтому

A=mg(h_{1}-h_{2})=mgh_{1}-mgh_{2},

или

A=W_{1}-W_{2}. (3)

Учитывая, что W_{1}-W_{2}=-(W_{2}-W_{1})=- Delta W, имеем также:

A=- Delta W. (4)

Можно доказать, что формулы (3) и (4) справедливы для любой траектории, по которой тело перемещается из точки P в точку Q, а не только для прямолинейного отрезка.

Работа силы тяжести не зависит от формы траектории, по которой перемещается тело, и равна разности значений потенциальной энергии в начальной и конечной точках траектории. Иными словами, работа силы тяжести всегда равна изменению потенциальной энергии с противоположным знаком. В частности, работа силы тяжести по любому замкнутому пути равна нулю.

Сила называется консервативной, если при перемещении тела работа этой силы не зависит от формы траектории, а определяется только начальным и конечным положением тела. Сила тяжести, таким образом, является консервативной. Работа консервативной силы по любому замкнутому пути равна нулю. Только в случае консервативной силы возможно ввести такую величину, как потенциальная энергия.

к оглавлению ▴

Потенциальна яэнергия деформированной пружины.

Рассмотрим пружину жёсткости k. Начальная деформация пружины равна x_{1}. Предположим,
что пружина деформируется до некоторой конечной величины деформации x_{2}. Чему равна при этом работа силы упругости пружины?

В данном случае силу на перемещение не умножишь, так как сила упругости меняется в процессе деформации пружины. Для нахождения работы переменной силы требуется интегрирование. Мы не будем приводить здесь вывод, а сразу выпишем конечный результат.

Оказывается, сила упругости пружины также является консервативной. Её работа зависит лишь от величин x_{1} и x_{2} и определяется формулой:

A=frac{kx_{displaystyle 1}^{displaystyle 2}}{displaystyle 2}-frac{displaystyle kx_{displaystyle 2}^{displaystyle 2}}{displaystyle 2}.

Величина

W=frac{displaystyle kx^{displaystyle 2}}{displaystyle 2}

называется потенциальной энергией деформированной пружины (x — величина деформации).

Следовательно,

A=W_{1}-W_{2}=- Delta W,

что полностью аналогично формулам (3) и (4).

к оглавлению ▴

Закон сохранения механической энергии.

Консервативные силы называются так потому, что сохраняют механическую энергию замкнутой системы тел.

Механическая энергия E тела равна сумме его кинетической и потенциальной энергий:

E=K+W.

Механическая энергия системы тел равна сумме их кинетических энергий и потенциальной энергии их взаимодействия друг с другом.

Предположим, что тело совершает движение под действием силы тяжести и/или силы упругости пружины. Будем считать, что трения нет. Пусть в начальном положении кинетическая и потенциальная энергии тела равны K_{1} и W_{1} , в конечном положении — K_{2} и W_{2}. Работу внешних сил при перемещении тела из начального положения в конечное обозначим A.

По теореме о кинетической энергии

K_{2}-K_{1}=A.

Но работа консервативных сил равна разности потенциальных энергий:

A=W_{1}-W_{2}.

Отсюда получаем:

K_{2}-K_{1}=W_{1}-W_{2},

или

K_{1}+W_{1}=K_{2}+W_{2}.

Левая и правая части данного равенства представляют собой механическую энергию тела в начальном и конечном положении:

E_{1}=E_{2}.

Следовательно, при движении тела в поле силы тяжести и/или на пружине механическая энергия тела остаётся неизменной при отсутствии трения. Справедливо и более общее утверждение.

Закон сохранения механической энергии. Если в замкнутой системе действуют только консервативные силы, то механическая энергия системы сохраняется.

При этих условиях могут происходить лишь превращения энергии: из кинетической в потенциальную и наоборот. Общий запас механической энергии системы остаётся постоянным.

к оглавлению ▴

Закон изменения механической энергии.

Если между телами замкнутой системы имеются силы сопротивления (сухое или вязкое трение), то механическая энергия системы будет уменьшаться. Так, автомобиль останавливается в результате торможения, колебания маятника постепенно затухают и т. д. Силы трения неконсервативны: работа силы трения очевидным образом зависит от пути, по которому перемещается тело между данными точками. В частности, работа силы трения по замкнутому пути не равна нулю.

Снова рассмотрим движение тела в поле силы тяжести и/или на пружине. Вдобавок на тело действует сила трения, которая за рассматриваемый промежуток времени совершает отрицательную работу A_{TP}. Работу консервативных сил (тяжести и упругости) по-прежнему обозначаем A.

Изменение кинетической энергии тела равно работе всех внешних сил:

K_{2}-K_{1}=A+A_{TP}.

Но A=W_{1}-W_{2}, следовательно

K_{2}-K_{1}=W_{1}-W_{2}+A_{TP}.

Отсюда

K_{2}+W_{2}-(K_{1}+W_{1})=A_{TP},

или

E_{2}-E_{1}=A_{TP}.

В левой части стоит величина Delta E=E_{2}-E_{1} — изменение механической энергии тела:

Delta E=A_{TP}.

Итак,при движении тела в поле силы тяжести и/или на пружине изменение механической энергии тела равно работе силы трения. Так как работа силы трения отрицательна,изменение механической энергии также отрицательно: механическая энергия убывает.
Справедливо и более общее утверждение.

Закон изменения механической энергии.
Изменение механической энергии замкнутой системы равно работе сил трения, действующих внутри системы.

Ясно, что закон сохранения механической энергии является частным случаем данного утверждения.

Конечно, убыль механической энергии не противоречит общефизическому закону сохранения энергии. В данном случае механическая энергия превращается в энергию теплового движения частиц вещества и их потенциальную энергию взаимодействия друг с другом, т. е. переходит во внутреннюю энергию тел системы.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Энергия.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Механика
Молекулярная физика и термодинамика
Электричество и магнетизм
Оптика
Теория относительности
Квантовая физика

Механика

Кинематика

Равноускоренное движение:    
Ускорение: `a=(v-v_0)/t`  
Скорость: `v=v_0+at`  
Путь, пройденный телом: `S=v_0t+(at^2)/2`
  `S=(v^2-v_0^2)/(2a)`  
  `S=(v+v_0)/2t`  
`v(t)=S'(t)`    
`a(t)=v'(t)=S»(t)`    
Тело брошено под углом к горизонту:    
Горизонтальная проекция скорости: `v_x=v_0*cosalpha=const`
Вертикальная проекция скорости: `v_y=v_0*sinalpha`
Движение по окружности:  
Центростремительное ускорение: `a_(цс)=v^2/R=omega^2R`
Угловая скорость: `omega=(Deltavarphi)/(Deltat)=(2pi)/T=2pinu`
Связь линейной и угловой скоростей: `v=omegaR`

Динамика

Плотность: `rho=m/V`  
Второй закон Ньютона: `vec F=mvec a`
Гравитационное притяжение: `F=G(m_1m_2)/R^2`  
1-я космическая скорость: `v_I=sqrt(gR)=sqrt((GM)/R)`  
2-я космическая скорость: `v_(II)=sqrt(2)*v_I`  
Закон Гука: `F=-kx`  
Сила трения: `F_(тр)=muN`  
Давление: `p=F/S`  

Статика

Момент силы: `M=F*l`  
Условие равновесия: `{(M_1+M_2+…=0),(vec F_1+vec F_2+…=0):}`
Правило рычага: `F_1*l_1=F_2*l_2`
Давление жидкости: `p=rhogh`  
Сила Архимеда: `F_A=rho_жgV_т`  

Импульс и энергия

Импульс: `vec p=mvec v`
Изменение импульса: `Deltavec p=vec FDeltat`
Работа силы: `A=F*l*cosalpha`
Мощность: `P=A/t`
КПД: `eta=A_(полезная)/A_(затраченная)`
Кинетическая энергия: `E_к=(mv^2)/2`
Потенциальная энергия тяжести: `E_п=mgh`
Потенциальная энергия пружины: `E_п=(kx^2)/2`

Механические колебания и волны

`x(t)=Asin(omegat+varphi_0)`  
`v(t)=x'(t)=Aomegacos(omegat+varphi_0)`  
`a(t)=v'(t)=-Aomega^2sin(omegat+varphi_0)`  
Период колебаний: `T=1/nu=(2pi)/omega`
Период математического маятника: `T=2pisqrt(l/g)`
Период пружинного маятника: `T=2pisqrt(m/k)`
Скорость волны: `v=lambdanu`

Молекулярная физика и термодинамика

Молекулярная физика

Средняя кинетическая энергия молекул `bar E_к=3/2kT`
Давление газа: `p=nkT`  
Уравнение Менделеева-Клайперона: `pV=nuRT`  
Количество вещества в молях: `nu=m/M=N/N_A`
Внутренняя энергия: `U=3/2nuRT`  
Закон Дальтона для смеси: `p=p_1+p_2+…`  
Относительная влажность: `varphi=p_(парц)/p_(насыщ)=rho_(парц)/rho_(насыщ)`
Уравнение теплобаланса: `Q_1+Q_2+Q_3+…=0`

Термодинамика

`Q=cmDeltaT`
`Q=lambdam`
`Q=rm`
`Q=qm`
Первое начало термодинамики: `Q=DeltaU+A`  
Работа газа в любом термодинамическом процессе — это площадь под pV-графиком
Работа в изобарном процессе: `A=p*DeltaV`  
Работа газа всегда связана с изменением объёма: `Vuarr rArr A>0`
`Vdarr rArr A`V=const rArr A=0`
 
Работа внешних сил над газом: `A_(внеш.сил)=-A_(газа)`  
КПД: `eta=A_(цикл)/Q_н=(Q_н-Q_х)/Q_н`  
Машина Карно: `eta=(T_н-T_х)/T_н`  

Электричество и магнетизм

Электрическое поле

Сила Кулона: `F=k(q_1*q_2)/r^2`
Поле точечного заряда: `E=kq/r^2`  
Сила, действующая на заряд в эл.поле: `F=q*E`  
Потенциал поля: `varphi=W/q`
Работа по перемещению заряда: `A=DeltaW=qDeltavarphi=qU`  
Напряжение в однородном поле: `U=Ed`  
Ёмкость конденсатора (любого): `C=q/U`  
Ёмкость плоского конденсатора: `C=(epsilonepsilon_0S)/d`  
Параллельное соединение конденсаторов: `C_(общ)=C_1+C_2+…`  
Последовательное соединение конденсаторов: `1/C_(общ)=1/C_1+1/C_2+…`  
Энергия конденсатора: `W_c=(CU^2)/2=(qU)/2=q^2/(2C)`  

Постоянный ток

Сила тока: `I=(Deltaq)/(Deltat)`
Переменный ток: `I(t)=q'(t)`
Сопротивление: `R=rhol/S`
Закон Ома для участка цепи: `I=U/R`
Закон Ома для полной цепи: `I=varepsilon/(R+r)`
Параллельное соединение проводников: `1/R=1/R_1+1/R_2+…`
  `R=(R_1*R_2*…)/(R_1+R_2+…)`
  `I=I_1+I_2+…`
  `U=U_1=U_2=…`
Последовательное соединение проводников: `R=R_1+R_2+…`
  `I=I_1=I_2=…`
  `U=U_1+U_2+…`
Мощность тока: `P=UI=I^2R=U^2/R`
Закон Джоуля-Ленца: `Q=I^2Rt`

Магнитное поле

Сила Ампера: `F_A=BIl*sinalpha`
Сила Лоренца: `F_Л=qvB*sinalpha`

Электромагнитная индукция:

Магнитный поток: `Ф=BScosalpha`
Закон электромагнитной индукции: `varepsilon_i=-(DeltaФ)/(Deltat)=-Ф’_t`
ЗДС в движущемся проводнике: `varepsilon_i=Blvsinalpha`
Индуктивность: `L=Ф/I`
ЭДС самоиндукции: `varepsilon_(si)=-L(DeltaI)/(Deltat)=-LI’_t`
Энергия катушки с током: `W_L=(LI^2)/2`

Электромагнитные колебания и волны:

`q(t)=q_0sin(omegat+varphi_0)`
`I(t)=q'(t)=q_0omegacos(omegat+varphi_0)=I_0cos(omegat+varphi_0)`
Формула Томсона: `T=2pisqrt(LC)`
  `omega=(2pi)/T=1/sqrt(LC)`
Скорость электромагнитной волны: `c=lambdanu`

Оптика

Прохождение границы двух сред:

Закон отражения: `alpha=gamma`
Показатель преломления: `n=c/v`
Закон преломления: `sinalpha/sinbeta=n_2/n_1`
  `nu_1=nu_2`
  `n_1lambda_1=n_2lambda_2`

Линзы:

Оптическая сила линзы: `D=1/F`
Формула тонкой линзы: `1/F=1/d+1/f`
Линейное увеличение: `Г=h/H=f/d`

Волновая оптика:

Условие максимумов интерференции: `Deltad=klambda,   kinZZ`
Условие минимумов интерференции: `Deltad=(2k+1)lambda/2,   kinZZ`
Формула дифракционной решётки: `dsinvarphi=klambda,   kinZZ`

Основы специальной теории относительности

Энергия частицы: `E=(mc^2)/sqrt(1-v^2/c^2)`
Импульс частицы: `vec p=(mvec v)/sqrt(1-v^2/c^2)`
Связь энергии и массы: `E^2-(pc)^2=(mc^2)^2`
Энергия покоя частицы: `E_0=mc^2`

Квантовая физика

Корпускулярно-волновой дуализм:

Энергия фотона: `Е=hnu=(hc)/lambda`
Импульс фотона: `p=h/lambda=(hnu)/c`
Уравнение фотоэффекта: `hnu=A_(вых)+(mv^2)/2`
Запирающее напряжение: `eU_(зап)=(mv^2)/2`

Постулаты Бора:

Уровнии энергии атома водорода: `E_n=(-13,6 эВ)/n^2`
Излучение и поглощение фотона при переходе между уровнями: `hnu_(mn)=|E_n-E_m|`

Ядерная физика:

Дефект массы ядра: `Deltam=Z*m_p+(A-Z)*m_n-m_(ядра)`  
`alpha`-распад: `color(white)(*)_Z^AX->_(Z-2)^(A-4)Y+_2^4He`
`beta`-распад электронный: `color(white)(*)_Z^AX->_(Z+1)^AY+_(-1)^0e`
`beta`-распад позитронный: `color(white)(*)_Z^AX->_(Z-1)^AY+_(+1)^0e`
Закон радиоактивного распада: `N(t)=N_0*2^(-t/T)`  
См. также таблицу Менделеева с комментариями

Подборка тренировочных вариантов ЕГЭ 2022 по физике для 11 класса с ответами из различных источников.

 Соответствуют демоверсии ЕГЭ 2022 по физике

Структура варианта КИМ ЕГЭ 2022 по физике

Каждый вариант экзаменационной работы состоит из двух частей и включает в себя 30 заданий, различающихся формой и уровнем сложности.

Часть 1 содержит 23 задания с кратким ответом, из них 11 заданий с записью ответа в виде числа или двух чисел и 12 заданий на установление соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр.

Часть 2 содержит 7 заданий с развёрнутым ответом, в которых необходимо представить решение задачи или ответ в виде объяснения с опорой на изученные явления или законы.

При разработке содержания КИМ учитывается необходимость проверки усвоения элементов знаний, представленных в разделе 2 кодификатора.

Продолжительность ЕГЭ по физике

На выполнение всей экзаменационной работы отводится 235 минут. Примерное время на выполнение заданий экзаменационной работы составляет:

− для каждого задания с кратким ответом – 2–5 минут;

− для каждого задания с развёрнутым ответом – от 5 до 20 минут.

Дополнительные материалы и оборудование

Перечень дополнительных устройств и материалов, пользование которыми разрешено на ЕГЭ, утверждён приказом Минпросвещения России и Рособрнадзора. Используется непрограммируемый калькулятор (на каждого участника экзамена) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка

Связанные страницы:

Изменения в КИМ ЕГЭ 2022 г. по физике нет.

Структура заданий ЕГЭ по физике-2022

Экзаменационная работа состоит из двух частей, включающих в себя 32 задания.

Часть 1 содержит 26 заданий.

  • В заданиях 1–4, 8–10, 14, 15, 20, 25–26 ответом является целое число или конечная десятичная дробь.
  • Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр.
  • Ответом к заданию 13 является слово.
  • Ответом к заданиям 19 и 22 являются два числа.

Часть 2 содержит 6 заданий. Ответ к заданиям 27–32 включает в себя подробное описание всего хода выполнения задания. Вторая часть заданий (с развёрнутым ответом) оцениваются экспертной комиссией на основе критериев.

Темы ЕГЭ по физике, которые будут в экзаменационной работе

  1. Механика (кинематика, динамика, статика, законы сохранения в механике, механические колебания и волны).
  2. Молекулярная физика (молекулярно-кинетическая теория, термодинамика).
  3. Электродинамика и основы СТО (электрическое поле, постоянный ток, магнитное поле, электромагнитная индукция, электромагнитные колебания и волны, оптика, основы СТО).
  4. Квантовая физика и элементы астрофизики (корпускулярноволновой дуализм, физика атома, физика атомного ядра, элементы астрофизики).

Продолжительность ЕГЭ по физике

На выполнение всей экзаменационной работы отводится 235 минут.

Примерное время на выполнение заданий различных частей работы составляет:

  1. для каждого задания с кратким ответом – 3–5 минут;
  2. для каждого задания с развернутым ответом – 15–20 минут.

Что можно брать на экзамен:

  • Используется непрограммируемый калькулятор (на каждого ученика) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка.
  • Перечень дополнительных устройств и материалов, использование которых разрешено на ЕГЭ, утверждается Рособрнадзором.

Важно!!! не стоит рассчитывать на шпаргалки, подсказки и использование технических средств (телефонов, планшетов) на экзамене. Видеонаблюдение на ЕГЭ-2022 усилят дополнительными камерами.

Баллы ЕГЭ по физике

  • 1 балл — за 1-4, 8, 9, 10, 13, 14, 15, 19, 20, 22, 23, 25, 26, задания.
  • 2 балла — 5, 6, 7, 11, 12, 16, 17, 18, 21, 24, 28.
  • 3 балла — 27, 29, 30, 31, 32.

Всего: 53 баллов (максимальный первичный балл).

Что необходимо знать при подготовки заданий в ЕГЭ:

  • Знать/понимать смысл физических понятий, величин, законов, принципов, постулатов.
  • Уметь описывать и объяснять физические явления и свойства тел (включая космические объекты), результаты экспериментов… приводить примеры практического использования физических знаний
  • Отличать гипотезы от научной теории, делать выводы на основе эксперимента и т.д.
  • Уметь применять полученные знания при решении физических задач.
  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

С чего начать подготовку к ЕГЭ по физике:

  1. Изучать теорию, необходимую для каждого заданий.
  2. Тренироваться в тестовых заданиях по физике, разработанные на основе демонстрационного варианта ЕГЭ. На нашем сайте задания и варианты по физике будут пополняться.
  3. Правильно распределяйте время.

Желаем успеха!

*В логине разрешены латинские буквы/цифры/точка/@

Регистрируясь через данную форму, я соглашаюсь с политикой конфеденциальности и согласен на обработку персональных данных.

Хочу, что вы отправляли мне индивидуальные подборки и лучшие предложения от вузов по нужным мне критериям.

17 января 2020

В закладки

Обсудить

Жалоба

В сборник включены все формулы базового курса школьной программы по физике.

Они полностью соответствуют кодификатору ЕГЭ — перечню всех теоретических фактов, которыми должен владеть выпускник школы, сдающий физику. Формулы, отмеченные звёздочками, рекомендуется запомнить и применять при решении задач. Но они не входят в кодификатор ЕГЭ. Поэтому при оформлении развёрнутого решения заданий второй части экзамена эти формулы необходимо вывести самостоятельно.

formuls.pdf

Этапы закрепощения крестьян в России

Крепостное право на Руси появилось позже, чем во многих средневековых европейских королевствах. Это было связано с объективными причинами – низкая плотность населения, зависимость от ордынского ига.


Задания 12-18 досрочного ЕГЭ по математике

3 примера по каждому заданию. Досрочный ЕГЭ по математике прошёл 28 марта.


ОГЭ по математике. Тренировочный вариант СтатГрад

Видеоуроки ОГЭ | Вчера, 21:46

Решение тестовой части (№1-19) тренировочной работы по математике от 18 апреля 2022 года.


Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Егэ физика типовые экзаменационные варианты под редакцией демидовой
  • Егэ физика типовые экзаменационные варианты 30 вариантов под ред м ю демидовой м
  • Егэ физика термодинамика задачи часть с
  • Егэ физика темы заданий по номерам
  • Егэ физика структура экзамена

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии