Колебания напряжения на конденсаторе в цепи переменного тока описываются уравнением где все величины выражены в СИ. Емкость конденсатора равна
Найдите амплитуду силы тока. (Ответ дать в амперах.)
Спрятать решение
Решение.
Общий вид зависимости напряжения на конденсаторе в колебательном контуре: где
— амплитудное значение напряжения. Сравнивая с
находим, что
Значение максимального заряда на обкладках конденсатора равно
Амплитуда колебаний силы тока связана с частотой колебаний и максимальным значением заряда конденсатора соотношением
Отсюда находим
Ответ: 0,12.
В рамках онлайн-консультаций по подготовке к ЕГЭ «На все 100» от разработчиков экзаменационных материалов из ФИПИ прошел эфир, посвященный экзамену по физике.
Об особенностях выполнения экзаменационной работы и изменениях, которые ждут участников экзамена в 2023 году, рассказал член комиссии по разработке контрольных измерительных материалов (КИМ) ЕГЭ по физике Сергей Стрыгин.
Он сообщил, что существенных изменений в КИМ ЕГЭ в этом году не произошло. Экзаменационная работа состоит из 30 заданий: 23 задания в первой части и 7 заданий во второй части. В этом году расширилась тематика задания 30: кроме задач на применение законов Ньютона и задач на применение законов сохранения в механике добавлены задачи по статике.
Сергей Стрыгин подробно рассказал о структуре КИМ ЕГЭ по физике, тематике заданий, которые могут встретиться в экзаменационной работе, специфике выполнения различных заданий, а также ответил на вопросы зрителей эфира.
«На экзамен отведено 3 часа 55 минут, и за это время надо успеть много: не только решить задачи, но и правильно их оформить. Я бы посоветовал основные законы и ход решения задачи набросать на черновике, и после того, как вы решили задачу, сразу оформлять ее на чистовик, чтобы не терять время», — посоветовал Сергей Стрыгин.
В решении задачи необходимо сперва указать формулы, а каждую физическую формулу, которой нет в кодификаторе, нужно вывести прежде, чем использовать ее при решении. В заданиях второй части важно не забыть указать в ответе единицы измерения. Это поможет избежать наиболее распространенных ошибок.
Источник: https://obrnadzor.gov.ru
Связанные страницы:
Задание 18045
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18103
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18111
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18142
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18243
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18615
Установление соответствия
Решение
→
Задание 18684
Установление соответствия
Решение
→
Задание 18789
Установление соответствия
Решение
→
Задание 18478
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18533
Введите ответ в поле ввода
Решение
→
Задание 18190
Установление соответствия
Решение
→
Задание 18785
Установление соответствия
Решение
→
Задание 17495
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18143
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18207
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18176
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18473
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Рубрика «Физика варианты»
Тренировочный вариант ЕГЭ 2023 по физике №3 с ответами
Тренировочный вариант ЕГЭ 2023 по физике №3 с ответами «ЕГЭ 100 БАЛЛОВ». Пробные варианты ЕГЭ по физике 2023. ЕГЭ физика. https://vk.com/ege100ballov https://vk.com/physics_100 скачать Примеры некоторых заданий из варианта Смотрите также: Тренировочный вариант ЕГЭ 2023 по физике №2 с ответами
Читать далее
Тренировочный вариант ЕГЭ 2023 по физике №2 с ответами
Тренировочный вариант ЕГЭ 2023 по физике №2 с ответами «ЕГЭ 100 БАЛЛОВ». Пробные варианты ЕГЭ по физике 2023. ЕГЭ физика. https://vk.com/ege100ballov https://vk.com/physics_100 скачать Примеры некоторых заданий из варианта Смотрите также: Тренировочный вариант ЕГЭ 2023 по физике №1 с ответами
Читать далее
Тренировочный вариант ЕГЭ 2023 по физике №1 с ответами
Тренировочный вариант ЕГЭ 2023 по физике №1 с ответами «ЕГЭ 100 БАЛЛОВ». Пробные варианты ЕГЭ по физике 2023. ЕГЭ физика. https://vk.com/ege100ballov https://vk.com/physics_100 скачать Примеры некоторых заданий из варианта Смотрите также: Демоверсия ЕГЭ 2023 по физике с ответами
Читать далее
Демоверсия ЕГЭ 2023 по физике с ответами
Демоверсия ЕГЭ 2023 по физике с ответами. Демонстрационный вариант ЕГЭ 2023 г. ФИЗИКА, 11 класс. Единый государственный экзамен по ФИЗИКЕ. скачать Кодификатор — скачать Спецификация — скачать Смотрите также: Демоверсия ЕГЭ 2022 по физике с ответами
Читать далее
Разбор задачи с основной волны ЕГЭ по физике 6 июня 2022 Школково
Разбор задачи с основной волны ЕГЭ по физике 6 июня 2022 Школково. Разбор ЕГЭ 2022 по физике. Как это было? скачать
Читать далее
Открытый вариант КИМ ЕГЭ по физике 2022
Открытый вариант КИМ ЕГЭ по физике 2022. Открытые варианты КИМ ЕГЭ 2022 ФИПИ. Реальный вариант с досрочного ЕГЭ 2022 по физике. Опубликованы открытые варианты контрольных измерительных материалов единого государственного экзамена 2022 года скачать
Читать далее
Тренировочный вариант ЕГЭ 2022 по физике №7 с ответами
Тренировочный вариант ЕГЭ 2022 по физике №7 с ответами «ЕГЭ 100 БАЛЛОВ». Пробные варианты ЕГЭ по физике 2022. ЕГЭ физика. https://vk.com/ege100ballov https://vk.com/physics_100 скачать Примеры некоторых заданий из варианта Смотрите также: Тренировочный вариант ЕГЭ 2022 по физике №6 с ответами
Читать далее
Тренировочный вариант ЕГЭ 2022 по физике №6 с ответами
Тренировочный вариант ЕГЭ 2022 по физике №6 с ответами «ЕГЭ 100 БАЛЛОВ». Пробные варианты ЕГЭ по физике 2022. ЕГЭ физика. https://vk.com/ege100ballov https://vk.com/physics_100 скачать Примеры некоторых заданий из варианта Смотрите также: Тренировочный вариант ЕГЭ 2022 по физике №5 с ответами
Читать далее
Тренировочный вариант ЕГЭ 2022 по физике №5 с ответами
Тренировочный вариант ЕГЭ 2022 по физике №5 с ответами «ЕГЭ 100 БАЛЛОВ». Пробные варианты ЕГЭ по физике 2022. ЕГЭ физика. https://vk.com/ege100ballov https://vk.com/physics_100 Примеры некоторых заданий из варианта скачать Смотрите также: Тренировочный вариант ЕГЭ 2022 по физике №3 с ответами
Читать далее
Тренировочный вариант ЕГЭ 2022 по физике №3 с ответами
Тренировочный вариант ЕГЭ 2022 по физике №3 с ответами «ЕГЭ 100 БАЛЛОВ». Пробные варианты ЕГЭ по физике 2022. ЕГЭ физика. https://vk.com/ege100ballov https://vk.com/physics_100 Примеры некоторых заданий из варианта скачать Смотрите также: Тренировочный вариант ЕГЭ 2022 по физике №2 с ответами Реальный вариант ЕГЭ 2021 по физике с ответами Умскул
Читать далее
Решу егэ физика 1920
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
—>
Задание 16 № 1920
Колебания напряжения на конденсаторе в цепи переменного тока описываются уравнением где все величины выражены в СИ. Емкость конденсатора равна Найдите амплитуду силы тока. (Ответ дать в амперах.)
Общий вид зависимости напряжения на конденсаторе в колебательном контуре: где — амплитудное значение напряжения. Сравнивая с находим, что Значение максимального заряда на обкладках конденсатора равно Амплитуда колебаний силы тока связана с частотой колебаний и максимальным значением заряда конденсатора соотношением Отсюда находим
Позвольте предложить, на мой взгляд, более простой способ решения. Известно, что в цепи переменного тока, в которой есть конденсатор, выполняется зависимость Im=Um/Xc, где под током и напряжением имеются ввиду их амплитудные значения, а Хс — емкостное сопротивление конденсатора, равное Хс=1/w*C. Подставляя 2-ую формулу в первую, окончательно имеем: Im=Um*w*C. Подставляя значения величин из условия, получаем значение амплитуды силы тока, которое совпадает с вашим.
P. S. Мой способ решения кажется мне более разумным по той причине, что обе формулы даны в учебнике по физике, в отличие от последней формулы в предложенном вами способе решения.
Спасибо. Хороший вариант.
Но использованная в конце формула, конечно же, дается в школьном курсе. Ведь насколько я знаю, в этот момент в школьной физике уже начинают использовать производные. Формула следует из закона изменения заряда со временем при гармонических колебаниях и из того, что ток — это производная от заряда
Задание 16 № 1920
—>
Известно, что в цепи переменного тока, в которой есть конденсатор, выполняется зависимость Im Um Xc, где под током и напряжением имеются ввиду их амплитудные значения, а Хс — емкостное сопротивление конденсатора, равное Хс 1 w C.
Phys. reshuege. ru
09.05.2019 23:18:56
2019-05-09 23:18:56
Источники:
Http://phys. reshuege. ru/problem? id=1920
Гущин решу егэ физика. Подготовка к ЕГЭ по физике: примеры, решения, объяснения » /> » /> .keyword { color: red; } Решу егэ физика 1920
Гущин решу егэ физика. Подготовка к ЕГЭ по физике: примеры, решения, объяснения
Гущин решу егэ физика. Подготовка к ЕГЭ по физике: примеры, решения, объяснения
2) СТРУКТУРА КИМов — 2018 и 2019 по сравнению с 2017г. несколько ИЗМЕНИЛАСЬ: Вариант экзаменационной работы будет состоять из двух частей и включит в себя 32 задания. Часть 1 будет содержать 24 задания с кратким ответом, в том числе задания с самостоятельной записью ответа в виде числа, двух чисел или слова, а также задания на установление соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр. Часть 2 будет содержать 8 заданий, объединенных общим видом деятельности – решение задач. Из них 3 задания с кратким ответом (25–27) и 5 заданий (28–32), для которых необходимо привести развернутый ответ. В работу будут включены задания трех уровней сложности. Задания базового уровня включены в часть 1 работы (18 заданий, из которых 13 заданий с записью ответа в виде числа, двух чисел или слова и 5 заданий на соответствие и множественный выбор). Задания повышенного уровня распределены между частями 1 и 2 экзаменационной работы: 5 заданий с кратким ответом в части 1, 3 задания с кратким ответом и 1 задание с развернутым ответом в части 2. Последние четыре задачи части 2 являются заданиями высокого уровня сложности. Часть 1 экзаменационной работы будет включать два блока заданий: первый проверяет освоение понятийного аппарата школьного курса физики, а второй – овладение методологическими умениями. Первый блок включает 21 задание, которые группируются, исходя из тематической принадлежности: 7 заданий по механике, 5 заданий по МКТ и термодинамике, 6 заданий по электродинамике и 3 по квантовой физике.
Новым заданием базового уровня сложности является последнее задание первой части (24 позиция), приуроченное к возвращению курса астрономии в школьную программу. Задание имеет характеристику типа «выбор 2 суждений из 5». Задание 24, как и другие аналогичные задания в экзаменационной работе, оценивается максимально в 2 балла, если верно указаны оба элемента ответа, и в 1 балл, если в одном из элементов допущена ошибка. Порядок записи цифр в ответе значения не имеет. Как правило, задания будут иметь контекстный характер, т. е. часть данных, необходимых для выполнения задания будут приводиться в виде таблицы, схемы или графика.
В соответствии с этим заданием в кодификаторе добавился подраздел «Элементы астрофизики» раздела «Квантовая физика и элементы астрофизики», включающий следующие пункты:
· Солнечная система: планеты земной группы и планеты-гиганты, малые тела Солнечной системы.
· Звёзды: разнообразие звездных характеристик и их закономерности. Источники энергии звезд.
· Современные представления о происхождении и эволюции Солнца и звёзд. Наша галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной.
· Современные взгляды на строение и эволюцию Вселенной.
Подробнее о структуре КИМ-2018 Вы можете узнать, посмотрев вебинар с участием М. Ю. Демидовой https://www. youtube. com/watch? v=JXeB6OzLokU либо в документе, приведенном ниже.
Подготовка к ОГЭ и ЕГЭ
Среднее общее образование
Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)
Линия УМК А. В. Грачева. Физика (7-9)
Линия УМК А. В. Перышкина. Физика (7-9)
Подготовка к ЕГЭ по физике: примеры, решения, объяснения
Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).
В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т. е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.
На рисунке представлен график зависимости модуля скорости от времени T . Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.
Решение. Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость V = 10 м/с, т. е.
S = | (30 + 20) С | 10 м/с = 250 м. |
2 |
Ответ. 250 м.
Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V груза на ось, направленную вверх, от времени T . Определите модуль силы натяжения троса в течение подъема.
Решение. По графику зависимости проекции скорости V груза на ось, направленную вертикально вверх, от времени T , можно определить проекцию ускорения груза
A = | ∆V | = | (8 – 2) м/с | = 2 м/с 2 . |
∆T | 3 с |
На груз действуют: сила тяжести, направленная вертикально вниз и сила натяжения троса, направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.
Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем
T – Mg = Ma (2);
Из формулы (2) модуль силы натяжения
Т = M (G + A ) = 100 кг (10 + 2) м/с 2 = 1200 Н.
Ответ . 1200 Н.
Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F ?
Решение. Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.
Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила, с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х . Проекция силы F положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F cosα – F тр = 0; (1) выразим проекцию силы F , это F cosα = F тр = 16 Н; (2) тогда мощность, развиваемая силой, будет равна N = F cosα V (3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):
N = 16 Н · 1,5 м/с = 24 Вт.
Ответ. 24 Вт.
Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения X груза от времени T . Определите, чему равна масса груза. Ответ округлите до целого числа.
Решение. Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза Х от времени T , определим период колебаний груза. Период колебаний равен Т = 4 с; из формулы Т = 2π выразим массу M груза.
= | T | ; | M | = | T 2 | ; M = K | T 2 | ; M = 200 H/м | (4 с) 2 | = 81,14 кг ≈ 81 кг. |
2π | K | 4π 2 | 4π 2 | 39,438 |
Ответ: 81 кг.
На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите Два верных утверждения и укажите в ответе их номера.
Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н. Изображенная на рисунке система блоков не дает выигрыша в силе. H , нужно вытянуть участок веревки длиной 3H . Для того чтобы медленно поднять груз на высоту HH .
Решение. В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:
Для того чтобы медленно поднять груз на высоту H , нужно вытянуть участок веревки длиной 2H . Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.
В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?
Увеличивается; Уменьшается; Не изменяется.
Решение. Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F упр, направленная вдоль нити вверх; сила тяжести, направленная вертикально вниз; архимедова сила A , действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный
Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V ж
Часть данных, необходимых для выполнения задания будут приводиться в виде таблицы, схемы или графика.
Testet. ru
13.05.2018 6:44:49
2018-05-13 06:44:49
Источники:
Http://testet. ru/biogafii/gushchin-reshu-ege-fizika-podgotovka-k-ege-po-fizike-primery. html
Решу егэ физика демонстрационные варианты. Подготовка к ЕГЭ по физике: примеры, решения, объяснения » /> » /> .keyword { color: red; } Решу егэ физика 1920
Решу егэ физика демонстрационные варианты. Подготовка к ЕГЭ по физике: примеры, решения, объяснения
Подготовка к ЕГЭ по физике: примеры, решения, объяснения
Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).
В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т. е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.
На рисунке представлен график зависимости модуля скорости от времени T . Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.
Решение. Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость V = 10 м/с, т. е.
S = | (30 + 20) С | 10 м/с = 250 м. |
2 |
Ответ. 250 м.
Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V груза на ось, направленную вверх, от времени T . Определите модуль силы натяжения троса в течение подъема.
Решение. По графику зависимости проекции скорости V груза на ось, направленную вертикально вверх, от времени T , можно определить проекцию ускорения груза
A = | ∆V | = | (8 – 2) м/с | = 2 м/с 2 . |
∆T | 3 с |
На груз действуют: сила тяжести, направленная вертикально вниз и сила натяжения троса, направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.
Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем
T – Mg = Ma (2);
Из формулы (2) модуль силы натяжения
Т = M (G + A ) = 100 кг (10 + 2) м/с 2 = 1200 Н.
Ответ . 1200 Н.
Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F ?
Решение. Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.
Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила, с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х . Проекция силы F положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F cosα – F тр = 0; (1) выразим проекцию силы F , это F cosα = F тр = 16 Н; (2) тогда мощность, развиваемая силой, будет равна N = F cosα V (3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):
N = 16 Н · 1,5 м/с = 24 Вт.
Ответ. 24 Вт.
Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения X груза от времени T . Определите, чему равна масса груза. Ответ округлите до целого числа.
Решение. Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза Х от времени T , определим период колебаний груза. Период колебаний равен Т = 4 с; из формулы Т = 2π выразим массу M груза.
= | T | ; | M | = | T 2 | ; M = K | T 2 | ; M = 200 H/м | (4 с) 2 | = 81,14 кг ≈ 81 кг. |
2π | K | 4π 2 | 4π 2 | 39,438 |
Ответ: 81 кг.
На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите Два верных утверждения и укажите в ответе их номера.
Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н. Изображенная на рисунке система блоков не дает выигрыша в силе. H , нужно вытянуть участок веревки длиной 3H . Для того чтобы медленно поднять груз на высоту HH .
Решение. В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:
Для того чтобы медленно поднять груз на высоту H , нужно вытянуть участок веревки длиной 2H . Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.
В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?
Увеличивается; Уменьшается; Не изменяется.
Решение. Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F упр, направленная вдоль нити вверх; сила тяжести, направленная вертикально вниз; архимедова сила A , действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный
Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V ж Демонстрационный вариант контрольных измерительных материалов единого государственного экзамена 2017 года по физике
15 На рисунке приведён график зависимости силы тока от времени в электрической цепи, индуктивность которой 1 мГн. Определите модуль ЭДС самоиндукции в интервале времени от 15 до 20 с.
18. Заряженная частица массой m, несущая положительный заряд q, движется перпендикулярно линиям индукции однородного магнитного поля B по окружности радиусом R. Действием силы тяжести пренебречь. Установите соответствие между физическими величинами и фо
19.Сколько протонов и сколько нейтронов содержится в ядре 6027 Co?
20. Как изменяются с уменьшением массового числа изотопов одного и того же элемента число нейтронов в ядре и число электронов в электронной оболочке соответствующего нейтрального атома?
21. Запишите в таблицу выбранные цифры для каждой физической величины.
22. Чему равно напряжение на лампочке (см. рисунок), если погрешность прямого измерения напряжения составляет половину цены деления вольтметра?
23. Необходимо экспериментально изучить зависимость ускорения бруска, скользящего по шероховатой наклонной плоскости, от его массы (на всех представленных ниже рисунках m – масса бруска, α – угол наклона плоскости к горизонту, μ – коэффициент трения между
24. Брусок движется по горизонтальной плоскости прямолинейно с постоянным ускорением 1 м/c2 под действием силы F, направленной вниз под углом 30° к горизонту (см. рисунок). Какова масса бруска, если коэффициент трения бруска о плоскость равен 0,2, а F
25. По параллельным проводникам bc и ad, находящимся в магнитном поле с индукцией В = 0,4 Тл, скользит проводящий стержень MN, который находится в контакте с проводниками (см. рисунок). Расстояние между проводниками l = 20 см. Слева проводники замкнуты ре
Спецификация
Контрольных измерительных материалов
Для проведения в 2017 году единого государственного экзамена
По ФИЗИКЕ
1. Назначение КИМ ЕГЭ
Единый государственный экзамен (далее — ЕГЭ) представляет собой форму объективной оценки качества подготовки лиц, освоивших образовательные программы среднего общего образования, с использованием заданий стандартизированной формы (контрольных измерительных материалов).
ЕГЭ проводится в соответствии с Федеральным законом от 29.12.2012 г. № 273-ФЗ «Об образовании в Российской Федерации».
Контрольные измерительные материалы позволяют установить уровень освоения выпускниками Федерального компонента государственного образовательного стандарта среднего (полного) общего образования по физике, базовый и профильный уровни.
Результаты единого государственного экзамена по физике признаются образовательными организациями среднего профессионального образования и образовательными организациями высшего профессионального образования как результаты вступительных испытаний по физике.
2. Документы, определяющие содержание КИМ ЕГЭ
3. Подходы к отбору содержания, разработке структуры КИМ ЕГЭ
Каждый вариант экзаменационной работы включает в себя контролируемые элементы содержания из всех разделов школьного курса физики, при этом для каждого раздела предлагаются задания всех таксономических уровней. Наиболее важные с точки зрения продолжения образования в высших учебных заведениях содержательные элементы контролируются в одном и том же варианте заданиями разных уровней сложности. Количество заданий по тому или иному разделу определяется его содержательным наполнением и пропорционально учебному времени, отводимому на его изучение в соответствии с примерной программой по физике. Различные планы, по которым конструируются экзаменационные варианты, строятся по принципу содержательного дополнения так, что в целом все серии вариантов обеспечивают диагностику освоения всех включенных в кодификатор содержательных элементов.
Приоритетом при конструировании КИМ является необходимость проверки предусмотренных стандартом видов деятельности (с учетом ограничений в условиях массовой письменной проверки знаний и умений обучающихся): усвоение понятийного аппарата курса физики, овладение методологическими знаниями, применение знаний при объяснении физических явлений и решении задач. Овладение умениями по работе с информацией физического содержания проверяется опосредованно при использовании различных способов представления информации в текстах (графики, таблицы, схемы и схематические рисунки).
Наиболее важным видом деятельности с точки зрения успешного продолжения образования в вузе является решение задач. Каждый вариант включает в себя задачи по всем разделам разного уровня сложности, позволяющие проверить умение применять физические законы и формулы как в типовых учебных ситуациях, так и в нетрадиционных ситуациях, требующих проявления достаточно высокой степени самостоятельности при комбинировании известных алгоритмов действий или создании собственного плана выполнения задания.
Объективность проверки заданий с развернутым ответом обеспечивается едиными критериями оценивания, участием двух независимых экспертов, оценивающих одну работу, возможностью назначения третьего эксперта и наличием процедуры апелляции.
Единый государственный экзамен по физике является экзаменом по выбору выпускников и предназначен для дифференциации при поступлении в высшие учебные заведения. Для этих целей в работу включены задания трех уровней сложности. Выполнение заданий базового уровня сложности позволяет оценить уровень освоения наиболее значимых содержательных элементов курса физики средней школы и овладение наиболее важными видами деятельности.
Среди заданий базового уровня выделяются задания, содержание которых соответствует стандарту базового уровня. Минимальное количество баллов ЕГЭ по физике, подтверждающее освоение выпускником программы среднего (полного) общего образования по физике, устанавливается исходя из требований освоения стандарта базового уровня. Использование в экзаменационной работе заданий повышенного и высокого уровней сложности позволяет оценить степень подготовленности учащегося к продолжению образования в вузе.
4. Структура КИМ ЕГЭ
Каждый вариант экзаменационной работы состоит из 2 частей и включает в себя 32 задания, различающихся формой и уровнем сложности (таблица 1).
Часть 1 содержит 24 задания, из которых 9 заданий с выбором и записью номера правильного ответа и 15 заданий с кратким ответом, в том числе задания с самостоятельной записью ответа в виде числа, а также задания на установление соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр.
Часть 2 содержит 8 заданий, объединенных общим видом деятельности — решение задач. Из них 3 задания с кратким ответом (25-27) и 5 заданий (28-32), для которых необходимо привести развернутый ответ.
Что бы учителя и выпускники имели представление о КИМ предстоящего ЕГЭ по физике, на официальном сайте ФИПИ каждый год публикуются демонстрационные варианты ЕГЭ по всем предметам. Каждый желающий может может ознакомиться и получить представление о структуре, объеме, примерных заданиях реальных вариантов.
При подготовке к ЕГЭ выпускникам лучше пользоваться вариантами из официальных источников информационного сопровождения выпускного экзамена.
Демонстрационный вариант ЕГЭ 2017 по физике
Вариант задания + ответы | Variant + otvet |
Спецификация | Скачать |
Кодификатор | Скачать |
Демоверсии ЕГЭ по физике 2016-2015 года
Физика | Скачать вариант |
2016 | Вариант ЕГЭ 2016 |
2015 | Variant EGE fizika |
Всего заданий – 31; из них по уровню сложности: Базовый – 18; Повышенный – 9; Высокий – 4.
Максимальный первичный балл за работу – 50.
Общее время выполнения работы – 235 мин
Примерное время на выполнение заданий различных частей работы составляет:
1) для каждого задания с кратким ответом – 3–5 минут;
2) для каждого задания с развернутым ответом – 15–25 минут.
Дополнительные материалы и оборудование Используется непрограммируемый калькулятор (на каждого ученика) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка. Перечень дополнительных устройств и материалов, использование которых разрешено на ЕГЭ, утверждается Рособрнадзором.
При ознакомлении с демонстрационным вариантом ЕГЭ 2017 по физике следует иметь в виду, что задания, включённые в него, не отражают всех вопросов содержания, которые будут проверяться с помощью вариантов КИМ в 2017 г.
Изменения в КИМ ЕГЭ по физике в 2017 году по сравнению с 2016 годом
Изменена структура части 1 экзаменационной работы, часть 2 оставлена без изменений. Из экзаменационной работы исключены задания с выбором одного верного ответа и добавлены задания с кратким ответом.
При внесении изменений в структуру экзаменационной работы по физике сохранены общие концептуальные подходы к оценке учебных достижений. В том числе остался без изменений максимальный балл за выполнение всех заданий экзаменационной работы, сохранено распределение максимальных баллов за задания разных уровней сложности и примерное распределение количества заданий по разделам школьного курса физики и способам деятельности.
Полный перечень вопросов, которые могут контролироваться на едином государственном экзамене 2017 г., приведён в кодификаторе элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена 2017 г. по физике.
Изображенная на рисунке система блоков не дает выигрыша в силе.
Tugulympu. ru
25.02.2017 8:33:47
2017-02-25 08:33:47
Источники:
Http://tugulympu. ru/reshu-ege-fizika-demonstracionnye-varianty-podgotovka-k-ege-po-fizike/
За это задание ты можешь получить 2 балла. Уровень сложности: повышенный.
Средний процент выполнения: 55.3%
Ответом к заданию 17 по физике может быть последовательность цифр, чисел или слов. Порядок записи имеет значение.
Разбор сложных заданий в тг-канале
Задачи для практики
Задача 1
В колебательном контуре конденсатор подключён к источнику постоянного напряжения. В момент t = 0 переключатель K переводят из положения 1 в положение 2. Графики А и Б представляют изменения физических величин, характеризующих колебания в контуре после этого. T — период колебаний. Установите соответствие между графиками и физическими величинами, зависимости которых от времени изображены на этих графиках.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Решение
Для данного колебательного контура справедливо, что А) заряд левой «+» обкладки конденсатора Б). Энергия магнитного поля катушки $W_L={LI^2}/{2}$, т.к. идеальный колебательный контур за период $W_L$ максимальна 2 раза.
Ответ: 13
Задача 2
Установите соответствие между графиками, изображёнными на рисунках, и законами (зависимостями), которые они могут представлять.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Решение
А) Соответствует зависимости силы фототока от предложенного напряжения, где $U_{max}=U_{напряжения}$.
Б) Соответствует зависимость максимальной $E_к$ энергии фотоэлектронов от частоты света, где $hυ_{min}=A_{вых}$, а остальная энергия идет на $E_к$.
Ответ: 23
Задача 3
Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Физические величины | Формулы |
А) напряжение на внешней цепи Б) мощность тока на внутренней цепи |
1) $ε − Ir$ 2) $I(R+r)$ 3) ${ε^2}/{R+r}$ 4) $({ε}/{R+r})^2r$ |
Решение
1) Напряжение на внешней цепи по 2 закону Кирхгофа $U=ε-I·r$.
2) Мощность тока на внутренней цепи $P=I^2·r=({ε}/{R+r})^2·r$.
Ответ: 14
Задача 4
Установите соответствие между графиками, представленными на рисунках, и законами (зависимостями), которые они могут выражать.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Решение
Дано:
Решение:
Закон радиоактивного распада имеет такую форму, т.к. $N=N_0·2^{-t/{T_{полураспада}}}$
Зависимость энергии фотона от частоты света зависит $E=hυ$.
Ответ: 14
Задача 5
Идеальный колебательный контур состоит из конденсатора ёмкостью 400 мкФ и катушки индуктивностью 50 мГн. Заряд на пластинах конденсатора изменяется во времени в соответствии с формулой q(t) = 4 · 10−4 cos(2000 · t) (все величины выражены в СИ). Установите соответствие между физическими величинами и формулами, выражающими их зависимость от времени в условиях данной задачи.
К каждой позиции первого столбца подберите соответствующую позицию второго и запишите выбранные цифры под соответствующими буквами.
Физические величины | Формулы |
А) сила тока в колебательном контуре Б) напряжение на конденсаторе |
1) −0,8 sin(2000 · t + π/2) 2) −0,8 sin(2000 · t) 3) cos(2000 · t) 4) 100 cos(2000 · t) |
Решение
Дано:
$С=400$мкФ
$L=50$мГн
$g(t)=4·10^{-4}·cos(2000·t)$
Решение:
А) Сила тока в колебательном контуре $I(t)=q'(t)=-0.8·sin(2000·t)$.
Б) Напряжение в конденсаторе $U(t)=I'(t)=cos(2000·t)$
Ответ: 23
Задача 6
Частица массой m движется со скоростью v = 0,9c, где c — скорость света в вакууме. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Физические величины | Формулы |
А) энергия частицы (E) Б) импульс частицы (p) |
1) $mc^2$ 2) ${mc^2}/{√{1-{v^2}/{c^2}}}$ 3) ${mv}/{√{1-{v^2}/{c^2}}}$ 4) ${mc}/{√{1-{v^2}/{c^2}}}$ |
Решение
Из теории о релятивистском движении частиц, очевидно: $E={mc^2}/{√{1-{υ^2}/{c^2}}}$, а импульс частицы $p↖{→}={mυ}/{√{1-{υ^2}/{c^2}}}$.
Ответ: 23
Задача 7
Источник тока, ЭДС которого ε, а внутреннее сопротивление r, замкнут на реостат. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под сооветствующими буквами.
Физические величины | Формулы |
А) мощность, развиваемая во внешней цепи Б) КПД при изменении сопротивления R реостата |
1) ${ε^2}/{(R +r)^2}R$ 2) ${ε^2}/{R+r}$ 3) ${R}/{R+r}$ 4) ${εR}/{R+r}$ |
Решение
Из теории о постоянном токе:
А) $P=U·I={ε^2}/{(R+r)^2}R$, где ${ε^2}/{(R+r)^2}=I^2$ — квадрат тока.
Б) $η={R}/{R+r}$, где $r$ — внутреннее сопротивление источника.
Ответ: 13
Задача 8
В катушке с индуктивностью L при равномерном увеличении силы тока на ∆I возникла ЭДС самоиндукции E. Графики А и Б представляют изменения физических величин во время изменения силы тока в катушке. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Решение
А) Данному графику соответствует сила тока, т.к. ток равномерно увеличивают по условию.
Б) Данному графику соответствует энергия магнитного поля в катушке, $E_L={LI^2}/{2}$ зависимость тока квадратичная.
Ответ: 13
Задача 9
В цепь переменного тока включена катушка индуктивностью L. Частоту тока равномерно увеличивают. Графики А и Б представляют зависимости физических величин от частоты переменного тока. Установите соответствие между графиками и физическими величинами, зависимости которых от частоты они могут представлять.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Решение
Дано:
$υ_2 > υ_1$
Решение:
Для графика А) соответствует индуктивное сопротивление $x_L=ω·L=2nυ·{h}/{2}$, а для графика Б) сила тока зависит квадратичную зависимость от частоты 3.
Ответ: 23
Задача 10
Как определяется направление следующих физических величин? К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Физическая величина | Правило определения направления |
А) вектор магнитной индукции Б) индукционный ток |
1) правило левой руки 2) правило буравчика 3) правило Ленца |
Решение
Из основ магнетизма известно, что $B↖{→}$ (магн.индукция) по Буравчику определяется, а индукционный ток по правилу Ленца.
Ответ: 23
Задача 11
Конденсатор колебательного контура заряжен некоторым зарядом, после чего контур предоставлен сам себе. Графики А и Б представляют изменения физических величин, характеризующих колебания в контуре после того, как ток в катушке индуктивности в очередной раз достиг максимальной силы. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Решение
В начальный момент времени графиков по условию сила тока в катушке имела максимальное значение. Следовательно, график А отражает изменение силы тока на катушке, а Б — заряд на конденсаторе (заряд на конденсаторе равен нулю в тот момент, когда сила тока максимальна). Графиком зависимости энергии от времени здесь нет, так как энергия успевает совершить два колебания за время одного колебания контура.
Ответ: 21
Задача 12
В электрической цепи, схема которой показана на рисунке, через резистор B течёт ток силой I0. Чему равна сила тока, текущего через резистор A и через резистор C? Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Физические величины | Их значение |
А) сила тока, текущего через резистор A Б) сила тока, текущего через резистор C |
1) I0 2) 2I0 3) 3I0 4) 2I0/3 |
Решение
Для решения задачи необходимо вспомнить законы постоянного тока для последовательного и параллельного соединения. При параллельном соединении одинаково и в ветвях, а при последовательном, тогда в резисторе протекает ток $I_0$, а в резисторе $3I_0$.
Ответ: 31
Задача 13
На рисунке представлен график зависимости силы тока I в катушке индуктивностью 100 мГн от времени t. Установите соответствие между участками графика и значениями модуля ЭДС самоиндукции. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Участок графика | Модуль ЭДС самоиндукции |
А) АБ Б) БВ |
1) 0 В 2) 0,075 В 3) 0,5 мВ 4) 0,025 В 5) 2 мВ |
Решение
Согласно закону электромагнитной индукции, ЭДС самоиндукции равна $|ε_i|=L{dI}/{dt}$. На участке БВ сила тока постоянна, поэтому $ε_i=0$, но на участке АБ $|ε_i|=|100·10^{-3}·{60-80}/{8-4}|=0.5$мВ.
Ответ: 31
Задача 14
Пучок света переходит из воздуха в стекло. Частота световой волны ν, скорость света в воздухе c, показатель преломления стекла относительно воздуха n. Чему равны длина волны и скорость света в стекле? Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Физические величины | Формулы |
А) скорость света в стекле Б) длина волны света в стекле |
1) $c · n$ 2) $c · n · ν$ 3) ${c}/{n}$ 4) ${c}/{n · ν}$ |
Решение
Показатель преломления $n$ показывает во сколько раз скорость света в воздухе больше скорости света в стекле для нашего случая, т.е. $n={c}/{υ}$, откуда $υ={c}/{n}$. Длина волны света в стекле: $λ=υ·T={cT}/{n}={c}/{n·v}$, где $T$ — период колебаний, $v$ — частота света.
Ответ: 34
Задача 15
В катушке с индуктивностью L ток равномерно нарастает от нуля до величины I за время ∆t. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Физические величины | Формулы |
А) модуль ЭДС самоиндукции в катушке Б) энергия магнитного поля катушки в конце промежутка ∆t |
1) $LI ∆t$ 2) ${LI}/{∆t}$ 3) ${LI^2}/{2}$ 4) $LI$ |
Решение
Дано:
$L, ∆t, J$
$ε-?W_м-?$
Решение:
А) Запишем закон электромагнитной индукции: $ε=|-{∆Ф}/{∆t}|=|-{LJ}/{∆t}|={LJ}/{∆t}$
Б) Запишем выражение энергии магнитного поля катушки в конце промежутка $∆t$: $W_м={LJ^2}/{2}$
Ответ: 23
Задача 16
Колебательный контур радиоприёмника, состоящий из катушки с индуктивностью L и конденсатора ёмкостью C, настроен на некоторую длину волны λ (c — скорость света). Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Физические величины | Формулы |
А) резонансная частота контура ν Б) длина волны λ, на которую настроен контур |
1) ${c}/{2π√{LC}}$ 2) $2πc√{LC}$ 3) $√{LC}$ 4) ${1}/{2π√{LC}}$ |
Решение
Дано:
$L, C, λ, c, π$
$v-?λ-?$
Решение:
Период колебаний колебательного контура рассчитывается по формуле Томсона $T=2π√{LC}$. Учитывая, что резонансная частота контура $v={1}/{T}={1}/{2π√{LC}}$
Длина волны $λ={c}{T}=c·2π√{LC}$
Ответ: 42
Задача 17
Собирающая линза даёт на экране увеличенное в Γ раз изображение предмета, находящегося на расстоянии d от линзы. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Физические величины | Формулы |
А) расстояние от изображения предмета до линзы Б) оптическая сила линзы |
1) $Γ · d$ 2) ${Γ}/{(Γ + 1) · d}$ 3) ${Γ + 1}/{Γ · d}$ 4) ${d}/{Γ}$ |
Решение
Учитывая, что $Г={f}/{d}$, где $f$ — расстояние от изображения предмета до линзы; имеем $f=Г·d$. Оптическая сила линзы $D={1}/{F}$, где $F$ — фокус линзы. Увеличение $Г$ равно: $Г={f-F}/{F}⇒Г·F=f-F⇒{Г·1}/{D}=f-{1}/{D}|·D⇒Г=f·D⇒fD=Г+1⇒D={Г+1}/{f}={Г+1}/{Г·d}$
Ответ: 13
Задача 18
В идеальном колебательном контуре происходят гармонические колебания с циклической частотой ω. Максимальное напряжение между обкладками конденсатора ёмкостью C равно Um . Каковы период колебаний в контуре и максимальное значение силы тока в катушке индуктивности? Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Физические величины | Формулы |
А) период колебаний Б) амплитуда силы тока |
1) ${1}/{ω}$ 2) ${2π}/{ω}$ 3) $U_{m}ωC$ 4) ${U_m}/{ωC}$ |
Решение
Дано:
$ω, С, U_m$
$T-?J_m-?$
Решение:
Циклическая частота $ω$ связана с периодом колебаний соотношением: $ω={2π}/{T}$, откуда $T={2π}/{ω}$(1). Амплитуда силы тока по закону Ома равна: $J_m={U_m}/{x_c}$(2), где $x_c={1}/{ωc}$ — емкостное сопротивление, тогда имеем $J_m=U_m·ωc$(3)
Ответ: 23
Задача 19
Положительно заряженная пылинка (q > 0) массой m влетела со скоростью v в однородное электрическое поле напряжённостью E вдоль его силовых линий. Установите соответствие между величинами и формулами, по которым их можно рассчитать.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Физические величины | Формулы |
А) сила, действующая на пылинку со стороны поля Б) скорость пылинки в момент времени t |
1) $qE$ 2) $mE$ 3) $υ + {qE}/{m}t$ 4) ${qE}/{m}t$ |
Решение
Дано:
$q > 0, m, E$
$υ, t$
$F-?υ_к-?$
Решение:
Пылинка ускоряется под действием силы Кулона $F=qE$(1), тогда $ma=qE$ или $a={qE}/{m}$(2)
Скорость пылинки при равноускоренном движении определяется выражением: $υ_к=υ_0+at=υ+{qEt}/{m}$(3)
Ответ: 13
Задача 20
Положительно заряженная пылинка (q > 0) массой m влетела со скоростью v в однородное электрическое поле напряжённостью E вдоль его силовых линий. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.
Физические величины | Формулы |
А) ускорение пылинки Б) кинетическая энергия пылинки в момент времени t |
1) ${qE}/{m}$ 2) ${mE}/{q}$ 3) ${m(v + {qE}/{m}t)^2}/{2}$ 4) ${qEt^2}/{2m}$ |
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите выбранные цифры под соответствующими буквами.
Решение
Дано:
$q > 0, m$
$υ, E, t$
$a-?E_k-?$
Решение:
Пылинка ускоряется под действием силы Кулона $F=qE$(1), тогда $ma=qE$ или $a={qE}/{m}$(2)
Кинетическая энергия пылинки определяется выражением: $E_k={mυ_k^2}/{2}$(3), учитывая, что скорость пылинки при равноускоренном движении определяется выражением: $υ_k=υ_0+at=υ+{qEt}/{m}$(4)
Подставим числовые значения (4) в (3): $E_k={mυ_k^2}/{2}={m(υ+{qEt}/{m})^2}/{2}$(5)
Ответ: 13
Рекомендуемые курсы подготовки
Единый государственный экзамен по физике 2023 года пройдет в следующие даты:
- 30 марта (четверг) — досрочный период
- 14 апреля (пятница) — резервный день досрочного периода
- 5 июня (понедельник) — основной период
- 29 июня (четверг) — резервный день
Ознакомьтесь с утвержденными демоверсиями ЕГЭ по физике 2023.
Как перевести первичные баллы ЕГЭ по физике в тестовые, смотрите по ссылке.
Пробные варианты ЕГЭ по физике с ответами и решениями от ЕГЭ на 100 баллов:
- Тренировочный вариант № 1
- Тренировочный вариант № 2
- Тренировочный вариант № 3
- Тренировочный вариант № 4
Показать варианты 2020 года
Все варианты ЕГЭ по физике представлены в формате pdf — вы легко можете скачать их и распечатать.